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ABSTRACT

The purpose of this study was to evaluate the concentrations of potentially toxic elements in the
Suches river using standardized geochemical indices and to identify the main sources of contamination
in the section from the Suches lagoon up to 33.8 km downstream of the effluent river, in the district of
Cojata, Puno, Peru. The concentration of Al, Ba, Co, Fe, M, Ni, P, V and Zn in sediments of the
Suches river was determined by means of mass spectrometry from October 2019 to February 2020.
The values of Co, Fe, Mn, Ni, P and Zn exceeded the base values of contamination according to the
general geological references while Al, Ba and V, did not surpass them. The contamination factor
showed that the elements Co and Ni revealed a very high level of contamination, while the Zn, a
considerable level. The area has an average pollution load index value of 2.24, indicating moderate
general pollution. The elements Co, Ni, Al and Zn were within the moderate and extreme
classification according to the pollution index. The Spearman's correlation analysis allowed
determining the association between Al, Fe, Mn, P and V, which share a natural origin and the
accumulation of these elements is due to the effects of weathering and soil erosion. The evaluation of
the contamination indices and the correlation confirm that Cobalt, Nickel and Zinc are toxic elements
associated with gold mining and agricultural activities.
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INTRODUCTION

Human activity and continuous expansion of industrial production cause the accumulation of
polluting chemical elements in water, soil, plants, animals and even in microorganisms
(Londofio et al., 2016). These elements produce adverse effects for life in general (Kusin et
al., 2019; Su et al., 2014; Yi et al., 2020) due to their wide availability, diverse transport
dynamics and interaction with organic and inorganic substances (Mandeng et al., 2019). Some
chemical elements are found in the soil naturally but in low concentrations (Siqueiros-
Beltrones et al., 2014) and these influence the chemical composition of the surrounding
aquatic ecosystems (Mulholland et al., 2012). However, environmental imbalances are mainly
produced by the intervention of anthropogenic activities related to mining, water discharges
residuals and agricultural activities (Yan et al., 2018), causing the alteration of water quality
in natural areas (Kusin et al., 2019b; Su et al., 2014). Mining operations in the basins derives
mainly from the continuous removal of large volumes of land that are accumulated in the
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open in different surrounding areas which are considered as mining waste. Due to weathering,
acid rock drainage of the waste occurs generating a deterioration in the quality of the solil
(Karbassi et al., 2014). These deposits are potential sources of contamination due to their high
concentrations of metals and other elements (Karbassi, et al., 2016), that are transported in
greater quantities during the rainy season to rivers, lakes and other aquatic systems where a
series of interactions with other compounds and elements take place (Santos-Francés et al.,
2017).

Physical and chemical processes such as sorption, ion exchange, complexation,
precipitation, oxidation-reduction reactions, desorption and bioaccumulation, can occur in
aquatic environments of water; however, when environmental conditions change due to
natural or anthropogenic processes, the accumulated chemical elements can be mobilized
again due to interaction with sediments (Salomons and Stigliani, 1995). Physicochemical
modifications or hydrodynamic erosion of the sediment-water interface can re-transfer these
elements in the water column (Copaja et al., 2020; Yi et al., 2020). Sorption-desorption is
considered a key process in the transfer of metals within rivers, playing an extremely
important role and considerably increasing the downstream pollution load (Alahabadi and
Malvandi, 2018; Londofio et al., 2016). Metal ions in water generate hydroxides by hydrolysis
which react with inorganic ions to form chelates, sulfur complexes, carbonates and
phosphates due to their low solubility, their complexes are easy to precipitate in sediments.
The highest concentrations of chemical elements are found in sediments (Mendoza et al.,
2020) because they adhere to solid particles becoming future sources of contamination due to
their displacement to other environmental bodies (Yacoub et al., 2015) (Rigner et al., 2014),
where their entry into the food chain could generate serious problems for nearby populations
(Karbassi et al., 2014).

At the basin of the Suches river, the residuals are due to the small-scale mining and
meteorological fluvial conditions which produce infiltrations and superficial runoffs in the
surrounding environments where the sediments behave as a reservoir to the chemical specie s
(Zhang et al., 2018), which could be a threat to the health of the population (Saiful et al.,
2018). The tailings produced by the small-scale mining exhibit high concentrations of
inorganic chemical elements and they are released to the Suches river through infiltration,
precipitation, weathering and affluent leaks (Ministry of the Environment and Water, 2019).

In Peru there are no set standards of quality environment that allow the evaluation of
concentrations of chemical elements in sediments. Generally what is used are the Canadian
guidelines (CCME, 1998) to do the evaluations; however, these guidelines do not include
appropriate classifications that contribute to decision making. Because of this, it is important
to complement the evaluation of chemical elements in sediments using validated indicators.

Krika and Krika (2018) proposed to apply the Contamination Factor (CF), Geo-
accumulation Index (lIgeo) and Pollution Load Index (PLI) to evaluate the contamination of
sediments along with international norms, determining that the metals were below these
norms. However, the results based on indicators revealed that there is an important
accumulation in the sampling sites. Other studies, such as the ones developed by Li et al.
(2020), suggest that the Enrichment Factor (EF), PLI and Igeo can help determine the degree
of alterations due to the anthropic activity, as well as the identification of possible
predominant sources of contamination and what could cause this contribution, (Agah, 2021).
On the other hand, (Agah, 2021) suggests using the contamination index (IPoll) instead of
Igeo, since more significant results are obtained concluding that the evaluation with
geochemical indices helps defining whether there is contamination in soils and sediments.

Furthermore, it is important to evaluate the chemical contamination with normalized
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indices, incorporating principal elements and trace elements given that the evaluation rules
consider only heavy metals (Marra et al., 2021) and these do not include other elements such
as nutrients, which can provide further information and explanation of its origins (Buscaroli et
al., 2021). The purpose of this study is to evaluate the concentration of potentially toxic
elements in the Suches river through normalized geochemical indices to classify contaminants
and the identification of contamination sources.

MATERIALS AND METHODS

The lagoon Suches is a body of water that originates due to the melting of the Andean
glaciers, in the Region of Puno, located in the southeastern part of Peru, at 4,605 meters above
sea level with an area of 14,2 km? (ANA, 2014). This lagoon is the source of the river with the
same name which is 164 km long (lltis et al., 1991), it is an important water source for Puno
because it drains its water to Lake Titicaca (Gammons et al., 2006), forming a natural border
between Peru and Bolivia Fig 1. The study area is comprised of a 33.8 km stretch, where PM1
is the area of origin of the Suches River; PM2 is the mining discharge area; PM3 is the zone
of agricultural activity; PM4 is the entry zone of the effluents, and finally PM5 is located 120
m downstream from the Castilla bridge, near the town of Cojata. Error! Reference source
not found. shows the coordinates of the sampling points, established from the
recommendations of the Guide for Soil Sampling of the Ministry of the Environment of Peru
(MINAM, 2014).

The Suches River is located inside the Suches basin which has a complex geology since it
is made up of 20 lithostratigraphic units (Gobierno Regional de Puno, 2015) from the
geotectonic domain of the eastern altiplano of the Cenozoic era with a neogene system (Tapia
et al., 2019). The lithostratigraphic units with the highest percentage of occupied area in the
basin are the Upper Vilquechico formation (14%), Ambo group (13%), Sandia formation
(12%) and the Morrénicos Deposits (12%). The Suches river basin is located in a high
Andean ecosystem called Pajonal de humid puna (MINAM, 2019), made up of short grasses
and grasslands, that limit the development of agricultural activity. Therefore, one of the main
activities in this area is the breeding of alpacas, llamas and vicufias (MINAGRI, 2018).
Besides that, another main activity is open cast artisanal mining (INGEMMET, 2009) which
takes place in the Peruvian and Bolivian zones using traditional technologies for the
extraction of gold mineral (Salas-Avila et al., 2021).

Table 1. Geographic coordinates of the sampling sites.

Sampling Sites South Latitude West Longitude
PM1 14° 47°44.57” 69° 20’ 24.85”
PM2 14° 54°28.74” 69° 21’ 48.33”
PM3 14° 54°48.81” 69° 22’ 8.03”
PM4 14° 55°30.04” 69°22°13.8”

PM5 14° 59 1.22” 69° 22’ 4.08”
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Fig 1. Map of the study area of the Suches river (Frontier Peru - Bolivia).

To investigate the presence of contamination, identification sampling was applied by
obtaining representative samples composed of surface sediments at each sampling point
between October 2019 and February 2020. The samples consisted of 250 g of sediments
collected at each sampling site at 5 cm beneath the surface. The samples were stored in
airtight bags at a temperature of 4° C to ensure its preservation until its transfer to the
accredited laboratory ALS Global Perd (Arequipa branch), which has an global Quality
Control and Analytics Control Integrated System (AQ/QC). The procedures were executed
under the guidelines of the norms ISO/IEC 17025 y 1SO 9001:2000.3. The concentration of
nine chemical elements were determined in the matrix of the collected sediments: Aluminum
(Al), Barium (Ba), Cobalt (Co), Iron (Fe), Manganese (Mn), Nickel (Ni), Phosphorus (P),
Vanadium (V) and Zinc (Zn), by an inductively-coupled plasma mass spectrometer (I CAP Q,
Thermo Scientific), using the guidelines of EPA Method 3050B (1996). To calculate the
contamination of chemical elements in sediments the base values were used according to the
predominant type of sandstone rock in the study area (Gobierno Regional de Puno, 2015;
Turekian et al., 1961).

The contamination Factor (CF) was calculated as an indicator of the levels of
contaminations in sediments for each element examined in the area (Hakanson, 1980), with
the following equation:

CFl' — rlnelement

i
Cbase

where Cliomen: iS the concentration of the chemical element and C/ ., is the base value of the
element explored. The degrees of contamination of each element are: Low (CF <1), moderate
(1 < CF < 3); considerable (3 < CF < 6) and very high degree (CF > 6). Furthermore, the
Pollution Load Index (PLI) of each area was determined in order to obtain the combination of
the contaminants and to conduct a comparison of the environmental condition (Tomlinson et
al., 1980), using the following equation:
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PLI = \/CFxCF,xCF3x .....xCF,

where n is the number of contamination factors. The Pollution Load Index is classified in
seven levels (El-Said et al., 2014; Singh et al., 1999): When PLI=0, the contamination load is
the same as the base; (0<PLI<I) unpolluted; (1<PLI<2) unpolluted to moderately polluted;
(2<PLI<3) moderately polluted; (3<PLI<4) moderately to highly polluted; (4<PLI<S5) highly
polluted; and (PLI>5) extremely polluted.

Subsequently we used the contamination index (Ipgy,) suggested by Karbassi et al. (2008)
to evaluate the contamination of chemical elments in sediments comparing them with the base
values (Farkas et al., 2007; Haynes et al., 2000; Karbassi et al., 2016; Organismen &
Ausbreitungswege, 1974), through the following equation:

i
Celementl

Iporr = log, [ i
base

where e, Clioment IS the concentration of the element studied, CL.., is the base value of the
element studied present in lithology. The classification suggested by (Salehi et al., 2014)was
used which considers a state without contamination (Ipgr; < 0.42); low contamination
(0.42 < Ipgr, < 1.42); moderately contaminated (0.42 < Ipgr, < 1.42);  heavily
contaminated (0.42 < Ipgp < 1.42); extremely contaminated (0.42 < Ipgr, < 1.42) and
finally, to determine the impact of the anthropogenic activities the Enrichment Factor (EF)
was used, utilizing the following formula (Sinex & Wright, 1988).

[( ei{ement >-|
EF = I Feélement I

Fell)ase

Where <M) is the relation between the concentration of the element and the FE

i
l::eelement

explored in the study area, while (M>the relation between the values of the elements and

1
€base

the Fe existing in the earth's crust. Iron (Fe) was established as the standardization element
since it is predominant in Peru (Acosta et al., 2009) and two categories were established to
determine the origin of the contamination: When EF <1.5, its origin is naturally as suggested
by (J. Zhang & Liu, 2002) and when EF> 2, there is a level of contamination from
anthropogenic activities (Nguyen et al., 2016).

In order to determine the association of the chemical elements the normality of the
concentrations was verified with the Shapiro-Wilk analysis. Later, the data was standardized
with the Z scale in order to avoid bias and loss of data. Also, the Spearman’s Correlation
Index was applied because the data did not have a normal distribution. The R software version
4.0.2 was utilized (Team, 2020).

RESULTS AND DISCUSSION

Table 2 shows the average concentrations of the chemical elements detected at the sampling
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sites of the Suches river. The average values of AL, Ba and V do not exceed the base values;
while the averages of Co, Fe, Mn, Ni, P y Zn do present high values. The total concentrations
of these elements present in the sediments, in relation of the sample sites, are in the following
order PM3 > PM1 > PM2 > PM5 > PM4, indicating that the higher concentration of the total
elements is located in PM3. This site is the closest one to mining waste discharges that are
produced close to site PM2. It is inferred that the river flow and the discharges could have
influenced the accumulation of the chemical elements transported by the sediments in this site
since downstream effluents connect to small rivers and creeks, causing a new decrease of the
concentration due to the changes in volume, nature and flow of the water. The site PM3 was
above these confluences therefore it was not affected. The site of origin of the Suches river
(PM1) has the second highest average concentration of the total evaluated elements, which
could be attributed to the extraction work done due to the small-scale mining that is
performed in the areas surrounding the Suches lagoon and very close to the river mouth.

Table 2. Concentration of chemical elements in sediments.

Sampling Al Ba Co Fe Mn Ni P \Y Zn
Sites (mg/kg) (mg/kg) (mg/kg) (mg/kg)  (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg)

PM1 11604.4 19.3 12.54 28609.4  291.72 23.04 455.4 155 63.9
+394.0 +1.3 1.5 +1,425.1 +17.8 +2.0 +41.6 +0.7 +2.4

PM2 10897.4 35 11.7 27906 363.78 19.58 412.38 17.3 58.9
+1,507.9 +9.9 1.5 +2,830.1 +61.8 1.7 +59.3 +2.2 +5.3

PM3 11630.8 43.46 12.92 29928.8  405.16 20 436.88 16.5 56.7
+959.3 +6.6 1.5 +1,528.3  £35.2 2.2 +66.2 +1.2 +3.6

PM4 10187.4 39.52 11.94 26521.8  307.14 17.92 386.62 15.7 50.8
+291.8 +2.9 +1.3 +654.2 +23.2 1.5 +35.8 0.6 +1.5

PM5 10378.6 61.12 11.9 27151.8 383.94 20.54 393.14 14.8 67.1
+187.8 +6.1 +1.7 +1,659.1 +31.5 +1.8 +30.5 +0.5 +2.4

Average 10939.72  39.68 1220  28023.56  350.35 20.22 416.88 15.96 59.48

SD (o) 671.20 15.09 0.51 1323.09 49.03 1.86 29.08 20.02 6.34

Max. 11630.8 61.12 12.92 29928.8  405.16 23.04 455.4 436.88 67.1

Min. 10187.4 19.3 11.7 26521.8  291.72 17.92 386.62  386.62 50.8

Base 25000 170 0.3 9800 200 2 170 20 16

# (Turekian et al., 1961)

Table 3 presents the concentration of the elements of this study compared to the findings
from other investigations performed around the world in areas with mining and agricultural
influence.

Table 3. Comparison of the average concentrations of elements of this study with other investigations.

River Fe Al P Mn Zn Ba Ni \Y Co References

mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg  mg/kg
Calore 33650 40650 2400 29525 3786 7284 445 1160 308 ZU290Ctal
K. P. Singh,
Malik, Sinha,
Singh, &
Murthy, 2005

Copaja &
Lluta 20776 14208 114 15830 2315 - - - - Mufioz, 2018

Malasia 2042 1918 - 381 109 - 17 ] 12 Kuszigleéal.,

Paracatu 78150 77650 - 1050.0 10535 566.0 - - 12905 Mulholland,

Gomti 9894 - - 450.2 176.1 - 40.4 - -
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River Fe Al P Mn Zn Ba Ni \Y Co References

mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg  mg/kg

Boaventura, &
Araljo, 2012

Nasrabadi et
Haraz 17300 - - - 73.8 - 435 - 9.5 al., 2010

Suches 28023 10939 416.9 350.4 59.5 39.7 20.2 16.0 12.2 This study

As it is shown in Fig 2, the sediments of all the sampling sites present a degree of very
high contamination of the potential toxic elements such as Co and Ni, followed by Zn which
present a considerable degree while Fe, Mn and P show a moderate degree. Likewise, the
metals that were found in a low degree of contamination are Al, Ba and V. Cobalt has a
mainly geological origin since it is a typical trace element from pyrite and phyllites
chlorite/sericite (Mulholland et al., 2012; Zuzolo et al., 2017); it is not observed considerable
variants of concentration of cobalt among all the sampling sites. On the other hand, even
though the tendency denotes a major storage capacity of Ni and Zn in the area of origin and
the last site of the study area, these differences are not significant. The weathering and erosion
of the geological materials seem to be the reason of the release of both elements to the
environment due to the sedimentary transport (Chau and Kulikovsky-Cordeiro, 1995).
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Fig 2. Degree of metal contamination in the sampling sites.

The average value of the contamination load in the areas of study was of 2.24, this is why
it is considered that all the areas are moderately polluted Fig 2. The tendency of the pollution
load from the sample sites, in descending order, are the following PM3 (2.40) >PM5 (2.37)
>PM2 (2.21) >PM1 (2.13) >PM4 (2.11), finding that the PLI wvalue in all its
points/degrees/sites are high and at the same time superior to the values of other studies
performed in Andean areas in Peru where anthropogenic activities such as cattle and
agriculture whose range was of 0.66 to 1.48 (Mendoza et al., 2020). The values of the CF of
Co, Ni and Zn provide a mayor contribution in the determination of the PLI in the study area
(Fig 3). These results indicate that the sediments are generating a possible ecological risk in
the Suches river, affecting the towns located downstream (Hasimuna et al., 2021).
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Fig 3. Pollution load per area.

Error! Reference source not found. shows the he Ipo . values of chemical elements in
sediments at each sampling point. In decreasing order the averages are presented as follows:
Co (5.29 £ 0.06) > Ni (3.31 £ 0.13) > Zn (1.88 +£ 0.16) > Fe (1.5 £ 0.07) > P (1.26 £ 0.10) >
Mn (0.77 £ 0.20) > V (-0.32 £ 0.10) > Al (-1.21 £ 0.09) > Ba (-2.26 + 0.61). Al, Baand V are
within the uncontaminated class; Mn and P are slightly contaminated; Fe, Zn, Ni are
moderately contaminated and Co is extremely contaminated. The main chemical elements that
generate contamination are Co, Fe, Ni and Zn, suggesting that there is a contribution from the
mining sector due to the removal of volumes of soil in the extraction process (Zuzolo et al.,
2017) and the agricultural activity in the use of agrochemicals in cattle with the intention to
accelerate its growth and the complementation of the food (Saiful et al., 2018).
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Fig 4. Pollution Index of metals in the sample sites.
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Table shows the Enrichment Factor (EF) values of the chemical elements present in the
Suches River, whose average values of Al, Ba, Mn, P, V and Zn are below 1.5 which would
indicate that its origin is natural. While elements such as Co and Ni exceed the value of 2,
which would suggest that the contamination caused by these metals is of anthropogenic
origin. The concentrations of these heavy metals could have increased due to population
growth and socio-economic activities (Nguyen et al., 2016) such as mining and raising
livestock (MINEM, 2001; DRAP 2014). Artisanal mining activities have increased
exponentially in recent years in the area (Malone et al., 2021) and have developed its
operations without using adequate technologies. Also, the demand for alpaca breeding has
grown due to the economic benefit of wool (Paredes, 2016) because the higher the altitude,
the better the quality of the wool fiber.

Tabla 1. Descriptive values of the enrichment factors estimated/calculated based on the chemical elements
of the sediments.

Element Mean Min Max SD
Al 0.15 0.15 0.16 0.00
Ba 0.08 0.04 0.13 0.03
Co 14.24 13.93 14.63 0.30
Mn 0.61 0.50 0.69 0.08
Ni 3.54 3.24 3.94 0.29
P 0.86 0.83 0.92 0.04
\Y/ 0.28 0.27 0.30 0.01
Zn 1.31 1.16 1.55 0.16

Table shows the analysis of the Spearman’s correlation to identify the association levels
among chemical elements (Wang et al., 2012). All the correlations had positive results, which
could indicate that the chemical elements originate from common sources (Yang et al., 2020).
Element Al has a strong association with Fe, Mn, P y V ((r>0.70 - 0.87; p<0.01); Fe with V
(r>0.79; p<0.01); Mn with V (r>0.76; p<0.01) and P with V (r>0.77; p<0.01). According to
Haxel and Boore (2015), the combination formed by Al, Fe, Mn and V have natural origins
since these chemical elements are abundant in the soil, which would suggest that their
accumulation in the areas of the study are the result of weathering and erosion in the soils
(Siqueiros-Beltrones et al., 2014); while, on the other hand, Co with Ni (r>0.78; p<0.01); Ni
with Zn (r>0.76; p<0.01), according to the contamination indices analyzed are toxic elements
(Fashola et al., 2016) that could come from mining activity due to the release of sulfide
minerals such as pyrite, chalcopyrite and galena in the gold mineral extraction process
(Alonso Carballo, 1979; Villegas et al., 2012), as well as from livestock due to the
agrochemicals (Saiful et al., 2018). On the other hand, these toxic elements present an
association with phosphorus (r>0.82 — 0.83; p<0.01), since this element performs an
important role in the process of transportation and deposition of chemical elements (Shen,
Tang, Li, Liu, and Hu, 2020). Additionally, phosphorus is considered an important nutrient
for livelihood because it is part of the development and growth of vegetation, which could
allow that the associated toxic chemical elements enter in the food chain (Fernandez, 2007;
Griffith et al., 1977).
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Table 5. Matrix of the Spearman’s correlation of the metal concentrations in sediments of the Suches River.

Element Al Ba Co Fe Mn Ni P \Y
Al
Ba 0.34
Co 0.50* 0.16
Fe 0.70** 0.08 0.50*
Mn 0.71%* 0.65** 0.62** 0.60**
Ni 0.57** -0.03 0.78** 0.69** 0.44*
P 0.78** 0.25 0.82** 0.58** 0.63** 0.83**
\Y 0.87** 0.38 0.62** 0.79** 0.76** 0.55** 0.77**
Zn 0.50* 0.23 0.41* 0.63** 0.40 0.76** 0.51** 0.36

Note. * indicates p <0.05. ** indicates p <0.01.

Co, Ni and Zn are rooted in the studied areas naturally since they are present in the
lithology of the Suches basin (Acosta et al., 2009; Alloway, 1990; Santos-Francés, Martinez-
Grafia, Alonso, et al., 2017). However, the evaluation with geochemical indices such as CF,
IPOLL and EF, reveal that there is contamination of moderate to considerable level that could
be caused by natural erosion due to weathering (Siqueiros-Beltrones et al., 2014). Also, the
anthropogenic activities carried out in the area such as artisanal open cast mining
(INGEMMET, 2009) contributing to the increase in concentrations of these elements in the
sediments due to the gold mineral extraction processes in which large volumes of soils are
removed (Zuzolo et al., 2017) releasing sulfide minerals such as pyrite, chalcopyrite and
galena (Alonso et al., 2020). In addition, there are innumerable sedimentation ponds that are
the final discharge point of the removed material and these do not have any type of design to
prevent overflows produced during seasons with intense rainfall (Salas-Avila, 2021).

Moreover, there is also a contribution of these elements through livestock activity due to
the prevalence of ruminant livestock rearing in the area (MINAGRI, 2018). These types of
cattle periodically show vitamin B12 deficiency (Underwood & Suttle, 1999) and because of
this, producers are forced to use different types of agrochemical products with Co (Saiful et
al., 2018) and Zn content to complement their feeding (Wilson, 2018). These products are
given to the livestock through the spraying of agrochemicals in the soil and pastures and this
would suggest that the increase in the concentrations of these elements would come from this
activity as well as from the excreta in grasslands.

Due to its high altitude and extension, the basin of the Suches plays a key role in the
hydrology of the border region between Peru and Bolivia, with its complex interaction in the
atmospheric, geological and environmental processes, having positive effects in the
biodiversity and in the different towns that are supplied by the water that runs in the area
(Donaires, 2017). Due to human activities in the region, the outcome of the study in the
Suches river contribute to the establishment of the necessary baseline for the monitoring and
evaluation of the anthropogenic impacts on the quality of the soil and water in relation to the
presence of elements potentially toxic with spatio-temporal characteristics.

It is worth noting that it is necessary to perform studies in extensive stretches of the river
and its effluents, which could display a broader view to assess whether the results of the
evaluations done with the index of pollution have been influenced mainly by the lithology of
the basin or by the local anthropic activities that influence changes in the use of the soil and
agricultural activities. Additionally, another driving force of environmental change that could
affect and be reflected in the chemical properties of the sediments is climate change. King et
al. (2017) determined that the increase of extreme weather and the rapid melting of glaciers
have had an impact in the hydrology of the rivers. The geochemistry can provide valuable
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information about the changes of these environmental conditions as well as enable a diagnosis
and projections based on chemical transport models of elements in the geographic areas
(Kang et al., 2019).

The water resources of high Andean areas are fragile ecosystems and of great concern,
especially for their contributions to human well-being. Understanding the behavior of its
components through the study of geochemistry in sediments will allow evaluating at large
scale the environmental changes, studies that are insufficient without proper management of
these resources. The design and implementation of environmental regulation standards for
sediment will make it possible to regulate anthropic activities in vulnerable areas and to avoid
the unwanted effects on life in general.

CONCLUSION

As result of the methods applied in the process of evaluation in the presence of chemical
elements in the sediment in a portion of the Suches river, the degree of concentration of the
same, they ascend from moderate to high, where the potentially toxic elements such as Co, Ni,
Al and Zn, would be generating possible ecological risks in the study area and in the towns
downstream.

According to the chemical analysis of the sediments, the accumulation of chemical
elements evaluated are produced at PM3, which have a relation with the dumping transport
that occur upstream due to the small-scale mining that is carried out in PM1 and PM2.

In line with the contamination factor, a very high degree of contamination of Co was found
in sediments, which have a geological origin typical of the mineralogical strata of pyrite and
phyllites chlorite/sericite; similarly, Ni and Zn present a very high degree and considerable
degree of contamination, respectively, which could be related to the weathering and erosion of
the geological materials in the environment because of the transportation of sediment.

The average value of the PLI allowed to identify that the study area is moderately
contaminated. The value of all sampling sites is higher than those similar studies in Andean
areas of Peru.

The IPOLL of the elements Co, Fe, Ni and Zn in sediments indicate that they are within
the classification of moderate to extreme contamination which would imply that there is an
ecological risk in economic-productive activities, mainly agricultural and livestock.

The Spearman’s correlation analysis helped determine that AL, Fe, Mn, P and V share the
natural origin and that their accumulation is due to the effects of weatherization and erosion in
the soils. In addition to the evaluation of the contamination indices, the correlation confirms
that Co, Ni and Zn are toxic elements associated to the extraction of gold minerals and to the
agricultural activities in the area.

Finally, considering that in Peru there are no set standards of quality environment that
allow the evaluation of concentrations of chemical elements in sediments, this study
constitutes a necessary reference as a baseline to monitor and assess the anthropogenic
impacts (mining and agricultural activities) in the quality of the soil and water with regard to
the presence of potentially toxic elements.
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