تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,123,148 |
تعداد دریافت فایل اصل مقاله | 97,231,202 |
بررسی تنوع باکتریهای همراه ریزگردها در استان خوزستان | ||
محیط شناسی | ||
مقاله 5، دوره 47، شماره 3، آذر 1400، صفحه 341-360 اصل مقاله (3.02 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jes.2021.316192.1008107 | ||
نویسندگان | ||
مریم صرخه1؛ حسین محمدعسگری* 2؛ اسحاق زمانی3؛ فرشید قنبری4 | ||
1کارشناس ارشد محیطزیست دریا، دانشکده منابع طبیعی دریا، دانشگاه علوم و فنون دریایی خرمشهر، خرمشهر، ایران | ||
2استادیار دانشکده منابع طبیعی دریا، دانشگاه علوم و فنون دریایی خرمشهر، خرمشهر، ایران | ||
3استادیار دانشکده علوم دریایی و اقیانوسی، دانشگاه علوم و فنون دریایی خرمشهر، خرمشهر، ایران | ||
4استادیار مرکز تحقیقات آلایندههای محیطی، دانشگاه علوم پزشکی آبادان، آبادان، ایران | ||
چکیده | ||
در سالهای اخیر افزایش طوفانهای گردوغبار باعث نگرانیهایی در خصوص مشکلات بهداشتی شهرستانهای آبادان و خرمشهر شده است. این پژوهش باهدف منشاءیابی طوفان گردوغبار جنوب غربی ایران در سال 1398-1397 با استفاده از بیوآئروسل (باکتری) و تأثیر پارامترهای محیطی بر غلظت باکتریها با نمونهبرداری از خاک تالاب هورالعظیم، شادگان بهعنوان منشاء احتمال انجام گرفت. نمونهبرداری از بیوآئروسلها و ذرات معلق به ترتیب با استفاده از دستگاه نمونهبرداری Quick take30 و ذرات سنج محیطی AEROCET531S انجام گردید. برای ردیابی مسیر توده گردوغبار واردشده به هوای شهرستان آبادان و خرمشهر از تصاویر ماهواره مادیس و مدل های اسپلیت استفاده شد. پس از کشت و جداسازی باکتریها از نمونههای خاک و هوا شناسایی آنها با استفاده از روش تعیین توالی ژن RNA ریبوزومی16 سوودبرگ انجام شد. نتایج بهدستآمده از تعیین توالی نشان داد ایزولههای ژانگژوئنسیس، باسیلوس ائریوس، باسیلوس سوبتیلیس، پنی باسیلوس، باسیلوس موژآونسیس، لیزینی باسیلوس ماکرولیدس بهعنوان باکتریهای مشترک در خاک تالاب هورالعظیم، شادگان و هوای آبادان و خرمشهر شناسایی شدند. طوفانهای گردوغبار با منشاء داخلی در مقایسه با گردوغبار خارجی تأثیر بیشتری در تراکم باکتریهای هوای آبادان و خرمشهر داشتند. این نتایج نشان میدهد طوفانهای گردوغبار میتوانند در انتقال باکتریها از منبع خود به نقاط دوردست نقش مهمی داشته باشند. باکتریهای باسیلوس (36جنس) به دلیل گرم مثبت بودن (91%) و خاصیت اسپورزایی بهعنوان شایعترین باکتری در هوای آبادان و خرمشهر در روزهای گردوغباری و غیر گردوغباری شناخته شدند. | ||
کلیدواژهها | ||
تالاب؛ طوفان گردوغبار؛ بیوآئروسل؛ PCR | ||
عنوان مقاله [English] | ||
Investigation of Bacteria Diversity Associated With Dust in Khuzestan Province | ||
نویسندگان [English] | ||
maryam sorkheh1؛ hossein mohammad asgari2؛ Isaac zamani3؛ Farshid ghanbari4 | ||
1Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran | ||
2Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran | ||
3Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran | ||
4Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran | ||
چکیده [English] | ||
Abstract In recent years, dust storms have been increased health problems in Abadan and Khorramshahr. The purpose of this study was to investigate the origin of dust storms in Southwestern Iran from December 2018 to January 2020 using bio-aerosols and studied the effects of environmental parameters on bacterial concentrations by sampling soil of Hoor-Al-Azim and Shadegan wetlands as probable sources. A sampling of bio-aerosols and particulate matters was performed using Quick take30 sampler and environmental particle meter AEROCET531S, respectively. The images of the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite and HYSPLIT model tracked the dust mass entering the air of Abadan and Khorramshahr. After the cultivation and isolation of bacteria from soil and air samples, their identification was conducted by the 16S rRNA gene sequencing method. Based on the results, Bacillus zhangzhouensis, Bacillus aerius, Bacillus subtilis, Paenibacillus, Bacillus mojavensis, Lysinibacillus macrolides were common bacteria identified in both the soil of Hoor-Al-Azim and Shadegan wetlands and the air of Abadan and Khorramshahr. Dust storms with domestic origins had more affect than foreign dust origin on bacteria concentration of Abadan and Khorramshahr. These results showed that dust storms could play an essential role in transmitting bacteria from their sources to remote locations. Bacillus bacteria (36genus) was known as the most common bacteria in Abadan and Khorramshahr air on dusty and non-dusty days due to their gram-positive (92%) and sporulating properties. 1- Introduction One of the phenomena that have caused air pollution in recent years and have had adverse environmental and health consequences is the dust storm. Iran is affected continuously by local dust systems due to its geographical location and location on arid and semi-arid belts. Most of Iran's dust activity comes from high-pressure intrusions from southern Iraq and northern Saudi Arabia. Drought, reduced rainfall, and relative humidity have caused to dry up some wetlands, lakes, and deserts in Iraq and Syria, which are strongly correlated with dust production areas. One of the essential functions of a wetland is to prevent dust storms. Vast volumes of dust from dry land and deserts carry biological agents at great distances. Dust storms increase the concentration of (PM 2.5, PM10) and opportunistic pathogens on a large scale, thus affecting the population and downstream ecosystems of the dust stream and increasing a wide range of diseases. Bio-aerosols are airborne particles containing bacteria, fungi, viruses, protozoa, algae, plant pollen and microorganisms that originate from natural and artificial sources. Their natural source; Soil, lakes, oceans, animals, humans (sneezing, coughing, and other activities), are plants and dust particles that absorb bio-aerosol on their surfaces. Several artificial sources that originate from bio-aerosols include wastewater treatment, fermentation processes, and agricultural activities that disperse the soil. Studies in Iran on bio-aerosols have been primarily on indoor environments and based on morphological methods. Few studies in outdoor environments, mainly wetlands, have used molecular approaches to study bio-aerosols. Our studies, for the first time, using molecular techniques show the similarity between the bacteria in the soil of Hoor-Al-Azim and Shadegan wetlands with the bacteria in the air of Abadan and Khorramshahr. A variety of approaches for dust storm monitoring have been proposed and evaluated. Remote sensing, compared with other procedures, is becoming one of the most popular methods to detect dust storms at large scales due to its ability of efficient global coverage. Sensors installed on satellites detect different types of Earth's surface radiation that are effective in monitoring, and identifying the origin of dust, obtaining the required parameters for dust modeling and obtaining quantitative dust-related relationships such as optical depth particle size. Therefore, in this study, remote sensing was used to determine the source of dust. Also, the HYSPLIT model was used to identify the origin and trace the entry of dust into the air of Abadan and Khorramshahr. 2. Materials and Methods 2.1 Detection of Abadan and Khorramshahr Air Dust In the present study, satellite information, Khuzestan Environment Department, and Abadan Meteorological Station were used to determine the dust days of Abadan and Khorramshahr. Daily Images of the Terra and Aqua satellites were downloaded from http://ladsweb.modaps.eosdis.nasa.gov/search and reviewed with classic ENVI software and MCTK plugin used for pre-processing (geometric correction, radiometric, atmospheric) images. 2-2. Sampling stations and sample collection Sampling of surface soil carried out in Hoor Al-Azim (31º33ʹ44ʺN, 47º39ʹ38ʺE) and Shadegan (30º38ʹ58ʺN, 48º39ʹ52ʺE) wetland randomly. The sampling sites were selected to measure airborne particulate matter, bacteria, moisture, temperature, and ultraviolet radiation under USEPA standards. According to these standards, the Abadan College of Medical Sciences (ACMS), Khorramshahr Fire Department (KFD), Khorramshahr Fisheries and Aquatic Office (KFAO), Farzanegan School Abadan (FSA) and Eight Station (ES) were selected as sampling sites for ten days. 2.3. Morphological and microscopic identification Bacteria isolated from the surface soil of Hoor AL-Azim and Shadegan Wetlands were serially diluted. Samples collected from the air of the study area were incubated on the Nutrient agar medium for 24 to 72 h. Different colonies grew on the nutrient agar medium. Bacterial concentrations were also evaluated according to Colony (CFU/m3) and morphological characteristics. Gram staining was used for the microscopic study of the desired isolates. 2.4. DNA Extraction The phenol/chloroform method was used as the DNA extraction method in this study. 3. Results and Discussion 3.1. Results of the MODIS Satellite Images According to the data obtained from satellite information, the General Department of Environment of Khuzestan Province and Abadan Meteorological Station dates of 2019/5/8, 2019/5/19, and 2019/6/13 were identified as dusty days. The results of dust detection by MODIS image showed that the BTD (23-31)>5.5 threshold had a high ability to detect dust, compared to other thresholds used. Therefore, the BTD index was capable of detecting dust, but varied from image to image due to differences in cloud properties, reflecting surface, changes in dust mass characteristics (height and mineral structure particle). The results of HYSPLIT model showed that the air masses originated from Syria and Iraq (on the day with the northern wind), Saudi Arabia (on the day with the southeastern wind), and Syria (on the day northwest wind). The results obtained from the present study showed that the images of MODIS satellite and HYSPLIT model can complement to each other and are very suitable to tracking the movement of dust mass entering the aquatic and terrestrial ecosystems and the bacteria transmitted with them. 3.2 Comparison of sampling stations The results showed that the highest mean concentration 127.94 CFU/m3 of airborne bacteria was observed in (ACMS) station and lowest mean concentration 30.98 CFU/m3 of airborne bacteria was observed in (FSA) station. According to the result of ANOVA, there was a significant difference between the mean of stations (p-value <0.05). The significance level of ANOVA is less than 0.05 and indicates differences between groups. The results of T-test analysis showed that there was a significant difference between bacterial concentration in the (KFD) compared to the two (ES) and (ACMS) (p-value <0.05). The average (KFD) was significantly lower than the two groups of (ES) and (ACMS). The mean bacterial density in (KFAO) was significantly lower than the average bacterial concentration in the two stations of (ES) and (ACMS) (p-value<0.05). The mean bacterial concentration in (FSA) was significantly lower than the average bacterial concentration in the Eight station (ES) and (ACMS) (P<0.05). In summary, the results showed that the mean bacterial concentration in the two (ACMS) and (ES) was no difference, but was significantly higher than the mean of the other three stations. Several factors contributed to the increase of bacterial concentration in the (ACMS) Abadan College of Medical Sciences. The occurrence of local dust at the sampling time may be the most critical factor in increasing bacterial concentration at the station. Also, the (ACMS) is one of the educational sites, and due to its proximity to Abadan International Airport, it resulted in increased bacterial concentration at the station compared to other stations | ||
کلیدواژهها [English] | ||
Wetland, Dust Storm, Bio-aerosol, PCR | ||
مراجع | ||
بینام، (1398). سازمان هواشناسی ایران، www.irimo.ir.
ندافی، ک؛ رضایی، س، نبی زاده، ر، یونسیان، م، جباری، ح. (1387). بررسی دانسیته باکتری های هوابرد در هوای داخل بیمارستان مرکز طبی کودکان تهران. مجله سلامت و محیط، فصلنامه ی علمی و پژوهشی انجمن علمیی بهداشت محیط ایران، دوره 1(2) زمستان 1387، صص 75-80
Anonymous, (2008). Ladsweb.modaps.eosdis.nass.gov/search.
Anonymous, (2020). www.ready.noaa.gov.
Cheng, H.R. & Jiang, N. (2005). Extremely rapid extraction of DNA from bacteria and yeasts. Biotechnology letters, 28(1), pp.55-59.
Environmental Protection Agency. (1998). SLAMS/ NAMS/ PAMS network review guidance. Office of Air Quality Planning and standards Research. Report No: 454/R-98-003.
Ghosh, J. (2005). Bioaerosols generated from biosolids applied farm fields in Wood County, Ohio (Doctoral dissertation, Bowling Green State University).
Griffin, D. W., Garrison, V. H., Herman, J. R., & Shinn, E. A. (2001). African desert dust in the Caribbean atmosphere: microbiology and public health. Aerobiologia, 17(3), 203-213.
Griffin, D. W. (2007). Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clinical microbiology reviews, 20(3), 459-477.
Ghermandi, A., Van den Bergh, J. C., Brander, L. M., De Groot, H. L., & Nunes, P. A. (2008). The economic value of wetland conservation and creation: A meta-analysis. https://dx.doi.org/10.2139/ssrn.1273002.
Hara, K., & Zhang, D. (2012). Bacterial abundance and viability in long-range transported dust. Atmospheric Environment, 47, 20-25.
Keramat, A., Marivani, B., & Samsami, M. (2011). Climatic change, drought and dust crisis in Iran. International Journal of Geological and Environmental Engineering, 5(9), 472-475.
Lu, R., Li, Y., Li, W., Xie, Z., Fan, C., Liu, P., & Deng, S. (2018). Bacterial community structure in atmospheric particulate matters of different sizes during the haze days in Xi'an, China. Science of the Total Environment, 637, 244-252.
Mei, D., Xiushan, L., Lin, S., & Ping, W. A. N. G. (2008). A dust-storm process dynamic monitoring with multi-temporal MODIS data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37, 965-970.
Mirhoseini, S. H., Nikaeen, M., Satoh, K., & Makimur, K. (2016). Assessment of airborne particles in indoor environments: Applicability of particle counting for prediction of bioaerosol concentrations. Aerosol and Air Quality Research, 16(8), 1903-1910.
Maki, T., Puspitasari, F., Hara, K., Yamada, M., Kobayashi, F., Hasegawa, H., & Iwasaka, Y. (2014). Variations in the structure of airborne bacterial communities in a downwind area during an Asian dust (Kosa) event. Science of the total environment, 488, 75-84.
Maki, T., Furumoto, S., Asahi, Y., Lee, K. C., Watanabe, K., Aoki, K., & Iwasaka, Y. (2018). Long-range-transported bioaerosols captured in snow cover on Mount Tateyama, Japan: impacts of Asian-dust events on airborne bacterial dynamics relating to ice-nucleation activities. Atmospheric Chemistry and Physics, 18(11), 8155-8171.
Mu, F., Li, Y., Lu, R., Qi, Y., Xie, W., & Bai, W. (2020). Source identification of airborne bacteria in the mountainous area and the urban areas. Atmospheric Research, 231, 104676.
Park, J., Li, P. F., Ichijo, T., Nasu, M., & Yamaguchi, N. (2018). Effects of Asian dust events on atmospheric bacterial communities at different distances downwind of the source region. Journal of Environmental Sciences, 72, 133-139.
Pargar, F., Biet Saeed, K., Ebadi, A., Ghobadian, S., & Adineh, M. (2018). Assessment of the preparedness of all ahwaz medical centers in the face of the crisis in 2017. Indo American Journal of Pharmaceutical Sciences, 5(1), 161-168
Rosenfeld, D., Rudich, Y., & Lahav, R. (2001). Desert dust suppressing precipitation: A possible desertification feedback loop. Proceedings of the National Academy of Sciences, 98(11), 5975-5980.
Sassen, K., DeMott, P. J., Prospero, J. M., & Poellot, M. R. (2003). Saharan dust storms and indirect aerosol effects on clouds: CRYSTAL‐FACE results. Geophysical Research Letters, 30(12).
Shao, Y., Wyrwoll, K. H., Chappell, A., Huang, J., Lin, Z., McTainsh, G. H., & Yoon, S. (2011). Dust cycle: An emerging core theme in Earth system science. Aeolian Research, 2(4), 181-204.
Shahsavani, A., Naddafi, K., Haghighifard, N. J., Mesdaghinia, A., Yunesian, M., Nabizadeh, R., & Goudarzi, G. (2012). The evaluation of PM10, PM2.5, and PM1 concentrations during the Middle Eastern Dust (MED) events in Ahvaz, Iran, from april through september 2010. Journal of arid environments, 77, 72-83.
Soleimani, Z., Goudarzi, G., Naddafi, K., Sadeghinejad, B., Latifi, S. M., Parhizgari, N., & Shahsavani, A. (2013). Determination of culturable indoor airborne fungi during normal and dust event days in Ahvaz, Iran. Aerobiologia, 29(2), 279-290.
Soleimani, Z., Goudarzi, G., Sorooshian, A., Marzouni, M. B., & Maleki, H. (2016). Impact of Middle Eastern dust storms on indoor and outdoor composition of bioaerosol. Atmospheric environment, 138, 135-143.
Sissakian, V., Al-Ansari, N., & Knutsson, S. (2013). Sand and dust storm events in Iraq. Journal of Natural Science, 5(10), 1084-1094.
Serrano-Silva, N., & Calderon-Ezquerro, M. C. (2018). Metagenomic survey of bacterial diversity in the atmosphere of Mexico City using different sampling methods. Environmental Pollution, 235, 20-29.
Schepanski, K. (2018). Transport of mineral dust and its impact on climate. Geosciences, 8(5), 151.
Tolabi, Z., Alimohammadi, M., Hassanvand, M. S., Nabizadeh, R., Soleimani, H., & Zarei, A. (2019). The investigation of type and concentration of bio-aerosols in the air of surgical rooms: A case study in Shariati hospital, Karaj. MethodsX, 6, 641-650.
WHO. (2008). Air quality guidelines for Europe. World Health Organization Regional Office for Europe.
Li, Y., Huang, G. H., Veawab, A., Nie, X., & Liu, L. (2006). Two-stage fuzzy-stochastic robust programming: a hybrid model for regional air quality management. Journal of the Air & Waste Management Association, 56(8), 1070-1082.
Yoo, K., Han, I., Ko, K. S., Lee, T. K., Yoo, H., Khan, M. I., & Park, J. (2019). Bacillus-dominant airborne bacterial communities identified during Asian dust events. Microbial ecology, 78(3), 677-687.
Yue, H., He, C., Zhao, Y., Ma, Q., & Zhang, Q. (2017). The brightness temperature adjusted dust index: An improved approach to detect dust storms using MODIS imagery. International journal of applied earth observation and geo information, 57, 166-176.
Zhang, S., Li, G., Tian, L., Guo, Q., & Pan, X. (2016). Short-term exposure to air pollution and morbidity of COPD and asthma in East Asian area: A systematic review and meta-analysis. Environmental research, 148, 15-23.
Zhang, Y., Wu, D., Kong, Q., Li, A., Li, Y., Geng, S., & Chen, P. (2020). Exposure level and distribution of airborne bacteria and fungi in an urban utility tunnel: A case study. Tunnelling and Underground Space Technology, 96, 103215.
Zhou, H., Wang, X., Li, Z., Kuang, Y., Mao, D., & Luo, Y. (2018). Occurrence and distribution of urban dust-associated bacterial antibiotic resistance in Northern China. Environmental Science & Technology Letters, 5(2), 50-55.
Zhai, Y., Li, X., Wang, T., Wang, B., Li, C., & Zeng, G. (2018). A review on airborne microorganisms in particulate matters: composition, characteristics and influence factors. Environment international, 113, 74-90. | ||
آمار تعداد مشاهده مقاله: 276 تعداد دریافت فایل اصل مقاله: 337 |