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A B S T R A C T 

 

Bearing capacity plays a significant role in evaluating the safety of the foundations rest on the slope. Many solutions have been proposed to 
assess the ultimate bearing capacity of the foundation adjacent to the slope, however, the available analytical and empirical methods are 
associated with some shortcomings in view of slope material properties and geometry. Also, numerical methods suffer from rigorous 
computational effort, and the accuracy of the outcome depends on the mesh and boundary effect. Therefore, a new analysis is employed in 
this research work that is able to consider all the effective parameters on the evaluation of ultimate bearing capacity. The results are compared 
with the existing numerical one in the literature and show good agreements. Also, in order to facilitate the use of the proposed method a 
Mathematica package code has been proposed to help the researcher to evaluate the bearing capacity of a shallow foundation that rests on 
the slope. 
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1. Introduction 

Bearing capacity plays a significant role in evaluating the safety of the 
foundations rest on the slope. Terzaghi's investigation on the foundation 
resulted in the first approach to evaluate the ultimate bearing capacity 
[1]. After this study, an equation has been proposed by Meyerhof (1957) 
to evaluate the bearing capacity by introducing the depth, shape, and 
inclination factor [2, 3]. The Terzaghi (1943) and Meyerhof (1957) 
theories focused on the bearing capacity of the footing placed on the 
horizontal ground surface, and there is no exact solution exists to 
evaluate the bearing capacity of the foundations rested adjacent to the 
sloping grounds [4]. In many cases, especially in the mountainous 
environment, the foundation should be built on or near to the slope 
crest, and therefore, to increase the safety of such structures it is 
necessary to study the ultimate bearing capacity. Accordingly, empirical 
factors for sloping grounds have been proposed by Hansen [5] and Vesic 
[6] for the estimation of ultimate bearing capacity. However, the 
proposed methods are limited to considering the footing exactly on the 
crest and the spacing between the crest and foundation was ignored. 
Also, the slope height is not involved in their equations. Another 
limitation is that the equation proposed by Hansen (1961) is 
independent of the slope’s material properties. The shortcoming of the 
spacing between the foundation and the slope crest has been covered by 
Bowles [7] empirical equation. However, the limitations of considering 
the slope height and material properties have remained. The bearing 
capacity of foundation placed on the purely frictional or purely cohesive 
soil slopes has been investigated by Meyerhof [2] and some design 
charts were introduced which are the basis of many design manuals [4]. 
Also, by employing the upper bound method, Kusakabe et al. [8] 
presented some design charts to study the bearing capacity of a footing 
rested on an infinite soil slope.  

Numerical methods have been gradually used to evaluate the ultimate 
bearing capacity. Accordingly, Georgiadis [4], using the finite element 
method, investigated the undrained bearing capacity of the shallow 
foundations adjacent to the slopes by considering the footing placement, 
slope height, and the size of the footing. By means of the upper-bound 
limit state plasticity failure discretization scheme, and taking the slope 
angle, footing size, and slope material properties into account, 
Leshchinsky [9] investigated the bearing capacity of a footing placed 
near the slope. This method was also used by Zhou et al. [10] to study 
the ultimate bearing capacity of a vertically loaded footing placed on a 
slope. 

From the mentioned literature it is clear that the existing analytical 
and empirical approaches have some shortcomings in considering the 
slope material properties, as well as footing and slope geometry. 
Although numerical methods do have not the aforementioned 
limitations, they need more computational effort and they should be 
verified with experimental or analytical methods [11]. To tackle the 
above-mentioned limitations, the authors presented a semi-analytical 
solution and studied the ultimate bearing capacity of a shallow 
foundation rest on a cohesionless or frictionless soil slope [12]. In the 
current research work, based on the author’s previous research [12-14], 
an attempt will be made to evaluate the ultimate bearing capacity of a 
foundation rest on a slope by considering all the effective parameters.  

2. Details of the study 

The stress distribution within the slope due to foundation load is 
examined in order to investigate the bearing capacity of a foundation 
rest near the slope. For this purpose, a newly proposed method by 
authors [13] has been employed. In this method, by considering the Airy 
stress function, the stress state within the slope will be investigated. 
Then, by employing the limit equilibrium method the ultimate bearing 
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capacity of the foundation will be studied. The proposed method proved 
its accuracy in evaluating the ultimate bearing capacity of shallow 
foundation rest on the cohesionless or frictionless slope by considering 
Mohr-Coulomb criterion for slope material [12]. In this research, an 
attempt will be made to extend the previous research work in order to 
investigate the ultimate bearing capacity resting on a   slope. Also, the 
Hoek-Brown and Drucker-Prager failure criterion will be incorporated 
into the proposed method. Finally, in order to facilitate the use of the 
proposed method, a Mathematica package code will be introduced. This 
package code can be used to find the bearing capacity of the footing (the 
package is available free for interested researchers on 
http://www.inscribe.ir/bearing-capacity). It should be noted that in this 
study, the slope’s material was considered as a homogeneous linear 
elastic. Also, the footing was considered as a shallow foundation with no 
embedment, and the interface between the foundation and the slope was 
assumed to be rough.  

3. Proposed Analytical Method 

One of the best approaches to solving the two-dimensional problem 
in geotechnical engineering is to use the Airy stress function. The 
corresponding governing equation in Airy stress function depends on a 
single unknown variable and mathematical methods should be used in 
order to solve the equation [15]. The well-known bi-harmonic equation, 
which satisfies both compatibility and equilibrium equation, would be 
expressed as equation (1). In Equation (1), ϕ denotes the Airy stress 
function.                                                                                 
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Based on the given Airy stress function, the components of stress can 
be derived by equation (2).                                                    
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Considering a footing rested adjacent to the crest of a slope as shown 
in Fig. 1. The authors proposed an analytical solution [13] based on the 

Mellin transformation scheme and Airy stress function in order to 
compute the stress state in the slope due to footing load [12]. Definition 
of Mellin transformation rule and its inversion equation are presented 
in Equations (3) and (4) respectively. 
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In equations (3) and (4), 𝛷(𝑧, 𝜃) is the transformed form of 𝜙(𝑟, 𝜃).  
By considering the equations (2) and (4), the stress components can 

be represented by Equation (5) as follows, 
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The transformed Airy stress function in Mellin space could also be 

found as Equation (6) [13]. 
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The foundation load may be considered as a step function, s, and 
represented in Equation (7), 
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Where 𝑟0  and 𝑟1 are the coordinate of the foundation edge, z 
represents the complex number and F(z) is transformed surcharge 
loading function in Mellin space. The variables θ, a, α, and r are shown 
in Fig. 1. 

By considering the equations (5) to (7) and doing some algebra, the 
stress components are achieved as Equation (8).                                                                                                                                                  
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By taking the line integration along z=-1 imaginary path and considering the residue of the function, stress components can be obtained as Equation 
(9), 
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The functions 𝑓1 to 𝑓8, as well as residue, are introduced in Appendix 
A. For more elaborate details on deriving the transformed Airy stress 
function and the way of evaluating the stress components within the 
slope due to footing load, the interested readers are referred to a related 
article [12, 13].  

Since there is no exact solution exists to compute the high oscillating 
integrals of Equations (4), here Fillon’s numerical integration method is 

employed [16]. Moreover, it is amply clear that gravitational loading 
plays a significant role in slope stability, and to taking the unit weight of 
the slope’s material into account, the gravitational loading suggested by 
Goodman and Brown included in the current method based on the 
superposition scheme. The Goodman and Brown gravitation stress 
components are presented in Equation (10) [17].  
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Where,  

 𝛽 = 𝑇𝑎𝑛−1
𝑌

𝑋
 

Fig. 2 shows the accuracy of the proposed method in evaluating the 
stress distribution in the slope. As can be seen, the outcome of the 
proposed solution is in good agreement with the FEM results. 

 

 
Fig. 1:  Schematic representation of slopes under loading on the upper surface. 

 

 

(a) 

 

(b) 

 Fig. 2: Stress distribution within a 45o slope and λ=0.5 at (a) Y=-0.5 (b)  

In order to study the ultimate bearing capacity of a shallow 
foundation rest near the slope, the failure criterion should be assigned 
to the slope’s material. Equations (11) to (13) denote the Mohr-
Coulomb, Hoek-Brown, and Drucker-Prager constitutive models based 
on invariants of the stress tensor, respectively [18, 19].  
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Where, 
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In these equations, the first, second, and third invariant of stress 

tensor represents by 𝐼1 , 𝐼2 , and 𝐼3  respectively. Also, 𝐽2  and 𝐽3  are the 
second and third invariant of the deviatoric stress tensor respectively. 
Moreover, 𝜃 represents the Lode angle, C and φ are the cohesion and 
friction angle of slope’s material; m and s are the Hoek-Brown failure 
criterion parameters, 𝜎𝑐  is the uniaxial compressive strength of slop’s 
material; k and q are the Drucker-Prager failure criterion parameters. 
Based on the plain strain assumption, the normal stress can be 
considered as 𝜈(𝜎1 + 𝜎3). By rearranging the Equations (11) to (13), the 
equations (15) to (17) are obtained.  
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Stress state can be determined based on Equation (5), and therefore, 
at any point Equations (15) to (17) as well as Equation (14-d) can be 
computed based on the slope’s material properties and stress state 
within the slope. In Equation (18), the numerator would be assigned by 
any of Equations (15) to (17), based on the desired failure criterion, and 
Equation (14-d) can be considered as the denominator. The process of 
finding the ultimate bearing capacity is that at each point within a search 
box near the slope, circles with different radius were drawn, and 
Equation (18) was computed throughout the length of these circles 
which overlap with the part of the slope. The minimum foundation load 
that causes the onset of shear failure in the slope can be considered as 
ultimate bearing capacity. Therefore, the footing load resulting in the 
safety factor of 1 was considered as the ultimate bearing capacity of the 
foundation               

𝐹𝑆 =
∑(√𝐽2)𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ

∑(√𝐽2)𝑆𝑡𝑟𝑒𝑠𝑠

 (18) 

It should be noted that due to the need of updating the stress state, 
an iterative process is required to obtain the ultimate bearing capacity. 
In this regard, a Mathematica package code was developed and all of the 
abovementioned failure criteria are considered in this package. The 
process is that, at the first step, Equation (4) will be computed by 
considering Filon’s numerical integration method, and at any point, 
within the slope, the summation of stress due to foundation load and 
gravity will be calculated. Then, Equations (14-a) to (14-f) and Equation 
(18) would be calculated along the predefined curves. Finally, the 
ultimate bearing capacity of the footing would be computed. The 
process of computing the ultimate bearing capacity of the footing is 
provided as a flow chart in Fig. 3. Fig. 4 shows √𝐽2 the distribution and 
the ultimate bearing capacity load obtained by Mathematica package 
code. In this case, the Mohr-Coulomb failure criterion was chosen and 
c=40 kPa, 𝜑 = 20, H/x=5, 𝜆 = 1, 𝜓 = 30, 𝛾 = 20 kN/m3 was considered 
as the slope’s material properties and geometry. The ultimate load was 
obtained 0.492 MPa, and the sliding surface was also reported. 

 
Fig. 3:  Flow chart of computing the ultimate bearing capacity 

 

In this study, elastic stress was assumed, and stress redistribution due 
to developing the plastic zone within the slope was ignored. Although 
considering the elastic-plastic behavior of materials is more realistic, 
Krahn [20] and Stianson et al. [21] proved that when the overall safety 

factor of the slope along the critical failure surface is a matter of concern, 
the outcome of the elastic and plastic analysis is the same. Therefore, in 
engineering practice, it is reasonable to consider just elastic analysis to 
evaluate the safety factor of the slope [21]. 

 

   
(a) (b) 

 (c) 

Fig. 4: The outcome of developed Mathematica package (a) Contour of √𝐽2 
computed by Equation(14-d) (b) Contour of √𝐽2 computed by Equation (15) (c) 

Ultimate bearing capacity and the slip surface at 30-degree slope, c=40Kpa, 
φ=20°, λ=1, H/x=5 and γ=20 KN/m3 

 

4. Comparison of the proposed solution with available 
results  

To examine the accuracy of the suggested method in evaluating the 
ultimate bearing capacity of a foundation, the outcome of the proposed 
approach was compared with the available published results. Zhou et al. 
(2018) provided a complete set of design charts to evaluate the ultimate 
bearing capacity of a shallow foundation rest on a c-φ slope by assigning 
the Mohr-Coulomb behavior model to the materials [10]. The outcome 
of the proposed method was compared with the numerical results of 
Zhou et al. (2018) and the comparison was illustrated in Figures 5 and 
6.  

As can be seen, good agreement is evident between the outcome of 
the proposed solution and those published by Zhou et al. (2018). Figures 
5-a and 6-a, which denote the lower material properties, indicate that by 
increasing the distance of the footing from the crest, all the curves tend 
to converge. Indeed, by increasing the distance of the footing from the 
crest, the effect of the slope geometry on ultimate bearing capacity will 
decrease and the Prandtl-type failure, occurred on half-plane, and 
therefore, independent of λ, will be dominant. Therefore, it can be 
concluded that, in a slope consisting of a weak material, the well-known 
Prandtl-type failure will occur at lower λ.  

Since different slopes material and geometry, as well as foundation 
width and placement, were considered in these graphs, it can be 
concluded that the proposed method is able to consider all the effective 
parameters in evaluating the ultimate bearing capacity. It should be 
noted that the authors' attempts to find published results that consider 
Hoek-Brown failure criterion for materials was unsuccessful. However, 
the proposed method is able to evaluate the bearing capacity of a footing 
rested on a homogenous rock slope as well. 
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Fig. 5: Variation of P/xγ with λ for different slope’s angle and normalized slope’s height and c/xγ=1 (a) φ=10o (b) φ=20o (c) φ=30o (d) φ=40o

 
Fig. 6: Variation of P/xγ with λ for different slope’s angle and normalized slope’s height and c/xγ=2 (a) φ=10o (b) φ=20o (c) φ=30o (d) φ=40o 

 

5. Conclusion 

In many cases, especially in a mountainous environment, the 
foundation should be built on or near to the slope crest, and therefore, 
to increase the safety of such structures it is necessary to study the 
ultimate bearing capacity. Since the available analytical and empirical 
methods are associated with some shortcomings in view of slope 
material properties and geometry, and numerical methods suffer from 
the rigorous computational effort, a new analysis is proposed in this 
research work. The suggested approach is able to consider all the 
effective parameters that play role in the evaluation of ultimate bearing 
capacity. Different failure criteria were included in the proposed 
method, and researchers are able to use this method in order to evaluate 
the ultimate bearing capacity of a shallow foundation rest on a rock mass 
or soil slope based on the chosen failure criterion (i.e. Mohr-Coulomb 

and Drucker-Prager for soil, or Hoek-Brown for the rock case). The 
results are compared with the existing numerical one in the literature 
and show good agreements. Also, in order to facilitate the use of the 
proposed method a Mathematica package code has been proposed to 
help the researcher evaluate the bearing capacity of shallow foundations 
rest on the slope. The results indicated that by increasing the distance 
between the footing and the slope crest or decreasing the slope angle the 
ultimate bearing capacity will increase.  

Appendix A 
 

 𝑓1 =
𝑠𝑖𝑛(𝛼+𝜃) 𝑐𝑜𝑠ℎ(𝛼−𝜃)𝑦−𝑠𝑖𝑛(𝛼−𝜃) 𝑐𝑜𝑠ℎ(𝛼+𝜃)𝑦

(𝑦 𝑠𝑖𝑛 2𝛼−𝑠𝑖𝑛ℎ(2𝛼𝑦))
 

(A-1) 𝑓2

=
𝑠𝑖𝑛(𝛼 − 𝜃) 𝑐𝑜𝑠ℎ(𝛼 + 𝜃) 𝑦 + 𝑠𝑖𝑛(𝛼 + 𝜃) 𝑐𝑜𝑠ℎ(𝛼 − 𝜃) 𝑦

(𝑦 𝑠𝑖𝑛 2𝛼 + 𝑠𝑖𝑛ℎ(2𝛼𝑦))
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𝑓3

=
𝑐𝑜𝑠(𝛼 + 𝜃) 𝑠𝑖𝑛ℎ(𝛼 − 𝜃)𝑦 − 𝑐𝑜𝑠(𝛼 − 𝜃) 𝑠𝑖𝑛ℎ(𝛼 + 𝜃) 𝑦

(𝑦 𝑠𝑖𝑛 2𝛼 − 𝑠𝑖𝑛ℎ(2𝛼𝑦))
 

𝑓4

=
𝑐𝑜𝑠(𝛼 − 𝜃) 𝑠𝑖𝑛ℎ(𝛼 + 𝜃)𝑦 + 𝑐𝑜𝑠(𝛼 + 𝜃) 𝑠𝑖𝑛ℎ(𝛼 − 𝜃) 𝑦

(𝑦 𝑠𝑖𝑛 2𝛼 + 𝑠𝑖𝑛ℎ(2𝛼𝑦))
 

𝑓5

=
𝑠𝑖𝑛(𝛼 + 𝜃) 𝑐𝑜𝑠ℎ(𝛼 − 𝜃) 𝑦 − 𝑠𝑖𝑛(𝛼 − 𝜃) 𝑐𝑜𝑠ℎ(𝛼 + 𝜃) 𝑦

(𝑦 𝑠𝑖𝑛 2𝛼 − 𝑠𝑖𝑛ℎ(2𝛼𝑦))
 

𝑓6

=
𝑠𝑖𝑛(𝛼 − 𝜃) 𝑐𝑜𝑠ℎ(𝛼 + 𝜃) 𝑦 + 𝑠𝑖𝑛(𝛼 + 𝜃) 𝑐𝑜𝑠ℎ(𝛼 − 𝜃) 𝑦

(𝑦 𝑠𝑖𝑛 2𝛼 + 𝑠𝑖𝑛ℎ(2𝛼𝑦))
 

𝑓7 =
𝑠𝑖𝑛(𝛼 − 𝜃) 𝑠𝑖𝑛ℎ(𝛼 + 𝜃) 𝑦 + 𝑠𝑖𝑛(𝛼 + 𝜃) 𝑠𝑖𝑛ℎ(𝛼 − 𝜃) 𝑦

𝑦 𝑠𝑖𝑛(2𝛼) − 𝑠𝑖𝑛ℎ(2𝛼𝑦)
 

𝑓8 =
𝑠𝑖𝑛(𝛼 − 𝜃) 𝑠𝑖𝑛ℎ(𝛼 + 𝜃) 𝑦 − 𝑠𝑖𝑛(𝛼 + 𝜃) 𝑠𝑖𝑛ℎ(𝛼 − 𝜃) 𝑦

𝑦 𝑠𝑖𝑛(2𝛼) + 𝑠𝑖𝑛ℎ(2𝛼𝑦)
 

𝑅𝑒𝑠𝑖𝑑𝑢𝑒 = [
𝜋 𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝜃

𝑠𝑖𝑛2𝛼 − 2𝛼
+
𝜋 𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝜃

𝑠𝑖𝑛2𝛼 + 2𝛼
] 
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