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A B S T R A C T 

 

Extreme vertex design (EVD) provides an efficient approach to mixture experiment design whereby the factor level possesses multiple 
dependencies expressed through component constraints formulation. Consequently, the derived experimental points are within the center 
edges and vertices of the feasible constrained region. EVD was deployed for the modeling of the mechanical properties of the problematic 
clayey soil-geogrid blends. Geogrids are geosynthetic materials that possess an open mesh-like structure and are mostly used for soil 
stabilization. The geotextile materials present a geosynthetic and permeable layer to support the soil and foundation by improvement of its 
stiffness characteristics and at a cheaper cost to procure compared to other construction materials and possess unique lightweight properties 
with greater strength improvement on the soil layer when used. Minitab 18 and Design Expert statistical software was utilized for the mixture 
design experiment computation; to fully explore the constrained region of the simplex, I-optimal designs with a special cubic design model 
were utilized to formulate the mixture component ratios at ten experimental runs. I-optimality and D-optimality of 0.39093 and 1747.474, 
respectively, were obtained with a G-efficiency of 64.8%. The generated laboratory responses were taken together with the mixture ingredients’ 
ratio and taken as the system database for the model development. Statistical influence and diagnostics tests carried out on the generated 
EVD model indicate a good correlation with the experimental results. Graphical and numerical optimizations were incorporated using a 
desirability function that ranged from 0 to 1, which helped to arrive at the optimal combination of the mixture components. 0.2% of geogrid, 
9.8% of water, and 90 % of soil yielded the optimal solution with a response of 41.270kN/m2 and a desirability score of 1.0. The model 
simulation was further carried out to test the model’s applicability with the results compared with the actual results using student’s t-test and 
analysis of variance. The statistical results showed a p-value>0.05 which indicates a good correlation. 
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1. Introduction 

Construction of flexible road pavement with expansive subgrade soil 
most times requires higher thickness for constituting cross-section 
materials to safely carry the intending traffic loads without excessive and 
differential settlement of the subgrade [1]. Moreover, the flexible 
pavement could also deteriorate rapidly due to aggregated cross-section 
layers sinking into the expansive subgrade under traffic loads with 
increased moisture content. However, the introduction of a geosynthetic 
layer between the problematic clayey subgrade materials and the 
aggregate layer (base and sub-base) can prevent the dreadful 
intermixing of the soft subgrade with the sub-base and base layer which 
results in road failure [2]. The incorporation of geosynthetic materials 
can also provide significant gains in terms of thickness reduction of the 
pavement cross-section layers due to improved strength performance. 
Geogrid is a special type of geosynthetic material produced by stretching 
and extrusion of a high polymeric molecule (polyester, propylene, or 
high-density polyethylene (HDPE)). It possesses a number of apertures 
that are uniformly distributed between the transverse and longitudinal 
sections. Through the apertures, there is direct contact and bonding 

between the sheets of the geosynthetic materials and the soil particle [3-
4].  

Geosynthetics are non-natural materials often used to improve soil’s 
mechanical properties. They are obtained from petro-chemical polymer-
based plastics (polymeric materials) which are inert biologically and 
would not decompose due to the actions of fungal, bacteria, and 
microorganisms [5]. However, their chemical properties vary as most 
are totally inert while some are affected by sunlight and petrochemicals. 
They are incorporated with soil to achieve confinement, separation, and 
distribution of loads such as reinforcement for water pressure control 
and prevent soil movement while allowing water to pass through the 
material. It can also be effectively utilized to prevent or reduce base 
coarse aggregates horizontal deformation and to resist asphalt reflective 
cracking [6]. A pictorial illustration of the membrane tension effect of 
the geosynthetic materials when integrated as an ingredient in flexible 
road pavement construction is shown in Fig. 1 [7].    

In line with the foregoing, utilization of geosynthetic materials in the 
construction of flexible road pavement has been a subject of rigorous 
research studies recently [7-8]; Wang et al. [9]; studied the creep 
behavior of geosynthetic-sand under varying loading levels in the 
construction and design of reinforced structures using a series of tests 
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to derive the creep properties under varying loading levels through a 
self-developed experiment device. The obtained results indicate that 
under nonconstraint conditions, the creep rate of about 1.1 times 
contrary to the results obtained for the constraint condition. However, 
deformation due to creep was mainly observed at the endpoint pull-out 
of the geogrid, each strain zone measurement in terms of deformation 
is reduced to the fixed end of the geogrid from the tensile end.  

 
Fig. 1: Function of Geogrids in Flexible Road Pavement [7] 

 

Furthermore, with the need to enhance the engineering properties of 
problematic subgrade soils using geosynthetic material to evaluate the 
relationships between the factor levels and their corresponding 
responses, advanced mixture design methods have been employed by 
several researchers [10-12]. Irving et al. [13]; research on the sphericity 
and roundness computation for particles using the extreme vertices 
model, the shape is a property studied for many kinds of particles. 
Among the shape parameters, sphericity and roundness indices have 
been largely studied to understand several processes. We have computed 
the relative difference respecting the model in the 512 × 512 × 512 space 
resolution. Note that the sphericity index is almost invariant in the worst 
tested case; the relative difference is less than 1%. Regarding the 
roundness index, in the worst tested case, the relative difference is less 
than 12%, this difference is bigger than that of the sphericity index due 
to EVM-roundness being highly dependent on the number of points. In 
addition, Faula Arina et al. [14] researched on Split Plot Mixture Process 
Variable Experiment on Steel Slag Concrete. The constraints of the 
mixture component affect the experimental region make it an irregular 
shape. XVERT algorithm was deployed to generate the required design 
points of the mixture experiment. A new split-plot design of mixture 
experiments with process variables was developed in this research with 
the investigation on the cementitious mixture components for steel slag 
concrete blend in five mixture components, namely; cement, aggregate 
fine, aggregate coarse, and percentage steel slag replacing aggregate fine 
and water. The process variable was the size of steel slag and the steel 
slag concrete experiment was run using a split-plot mixture process 
variable design with 23 whole plots of three observations.  

The extreme vertex design (EVD) method is a mixture design 
technique, which occupies a sub-portion or smaller space within the 
simplex.  The technique is essential when the design factor space 
selected is not L-simplex design. This limitation is imposed by both 
lower and upper bound constraints in the factor levels when there is a 
high level of interdependencies between the mixture components [15]. 
The major objective of the EVD method is to choose design points that 
appropriately cover the design space; this occurs as a result of additional 
constraints imposition of upper and lower boundary conditions on the 
mixture components which causes the design points to occupy some 
portion of the simplex known as the constrained region. The extreme 
vertex design technique permits the imposition of additional boundary 
limits on the mixture component values by specifying upper bounds on 
components and defining linear constraints for blends. The goal of using 
an extreme vertex design is to choose design points that adequately 
cover the design space [16]. 

For q-component mixtures where the ith component proportion is 
present in the mixture by xi, the factor space takes the shape of a regular 
(q-1) dimensional simplex due to the sum of one constraint presented 
in Eqn. 1. EVD method is flexible enough to deal with the imposition of 
additional constraints on the mixture components due to multiple 

dependencies between them. The lower and upper limit is denoted by Li 
and Ui respectively. as shown in Eqn. 2 and the sum of the mixture 
component ratios must be unity [17]. 

  
∑ 𝑥𝑖
𝑞
𝑖=1 = 1, i = 1, 2, 3… q 0 ≤ 𝑥𝑖 ≤ 1 (1) 

0 ≤ 𝐿𝑖 ≤ 𝑥𝑖 ≤ 𝑈𝑖 ≤ 1 (2) 
The mixture experiments objective is to develop mathematical model 

adequate where the factor levels (𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑞) relates the desired 
response parameters. Commonly used Scheffe’s method for data fitting 
which is expressed in Eqn. 3 for quadratic polynomial function [18]  

𝐸(𝑌) =∑𝛽𝑖

𝑞

𝑖=1

𝑥𝑖 +∑∑𝛽𝑖𝑗

𝑞

𝑖<𝑗

𝑥𝑖𝑥𝑗 (3) 

and represented in matrix form as shown in Eqn. 4. 
𝑌 = 𝑋𝛽 + 𝜀 (4) 
Where 𝑋 is 𝑛 × 𝑘(≥ 𝑞) matrix and 𝑘 is the number of model terms;  

𝑌  is 𝑛 × 1  vector for the response parameter observations; 𝜀  is 𝑛 × 1 
vector for the error function, and 𝛽 is a 𝑘 × 1 vector for the predicted 
parameters [19-20]. 

The error properties were assumed to possess the property expressed 
in Eqn. 5 
𝐸(𝜀) = 0;𝐸(𝜀𝜀′) = 𝜎2𝐼𝑛 (5) 
Where 𝜎2= the variance of the error function; 𝐼𝑛 is an identity matrix. 
The least-square estimator for the predicted variables 𝛽 is presented 

in Eqn. 6. 
𝑏 = (𝑋′𝑋)−1𝑋′𝑌 (6) 
The variance-covariance matrix of the least-squares estimator 

solution (b) is further expressed in Eqn. 7. 
 𝑉𝑎𝑟(𝑏) = (𝑋′𝑋)−1𝜎2 (7) 
This research study aims to investigate the utilization of geosynthetic 

materials for the improvement of the strength properties of weak 
subgrade soil. The problematic clayey soil-geogrid mixture experiment 
is carried out using the extreme vertex design method, which provides 
the flexibility to deal with multiple constraints associated with soil-
geosynthetic combination to achieve improved durability and 
mechanical properties [20]. Moreover, the optimal mixture ingredients 
proportion is derived which produces the maximum mechanical 
strength response through desirability function using multiple criteria 
optimization which properly deals with the complex nature and 
multiple constraints of soil-geosynthetic blends. This research will 
contribute to existing knowledge on geosynthetic utilization for 
expansive soil stabilization for durable road pavement with better 
economic benefits [21].  

2. Materials and Methods 

2.1. Materials for Laboratory Methods 

The experimental programs for the investigative study were carried 
out upon the guiding requirements stipulated in BS 1924 [22] and BS 
1377 [23] for the problematic clayey soil mechanical properties 
improvement using geosynthetic materials. Classification and general 
engineering properties derivation of the test soil were first achieved 
through specific gravity test, consistency limit, compaction test, sieve 
analysis, and unconfined compressive strength (UCS) test. This mixture 
experiment problem, which involves three component materials, 
namely; geogrid, water, and clayey soil, and because of the component 
constraint imposition at the lower and upper boundary limits, the 
simplex is consequently constrained whereby the experimental points 
are situated at the vertices, interior and edges of the constrained region 
instead of the whole of the simplex [24]. Using I-optimal design 
computation with quadratic model design, the constrained 
experimental portion was adequately explored to generate the mixture 
components ratios and the number of experimental runs required. UCS 
tests were carried out with respect to the formulated ingredients 
proportions and the corresponding responses derived were utilized for 
the mechanical behavior modeling of the soil-geogrid blend. Statistical 
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influences and diagnostic tests were carried out to validate the 
developed EVD model. Furthermore, graphical and numerical 
optimization is conducted using desirability function computation to 
maximize the output variable criteria with respect to the factor levels. 
The optimal combinations of the soil-geogrid blend for maximum 
mechanical response were determined in this process followed by 
simulation of the EVD model [25-26]. The research program flowchart 
is presented in Fig. 2. 

 

 
Fig. 2: Program Flowchart 

 

2.1.1 Unconfined Compressive Strength 
The unconfined compressive strength (UCS) is the maximum axial 

compressive stress that a right-cylindrical sample of material can 
withstand under unconfined conditions. The purpose of this laboratory 
is to determine the unconfined compressive strength of a cohesive soil 
sample. In this test, a cylinder of soil without lateral support is tested to 
failure in simple compression at a constant rate of the stream. The 
compressive load per unit area required to fail the specimen is called 
unconfirmed compressive strength of the soil in accordance with 
B.S.1377 (1975) [22] with a setup presented in Fig. 3. 

 

 
 

Fig. 3: Unconfined compressive strength experimental setup 

2.2. Test Materials 

The materials and experimental steps that were undertaken towards 
achieving the objectives of this research were the focus. Expansive soil 
samples were collected at Edem Ekpenyong Street Anantigha, Calabar 
South Local Government Area of Cross River State, Nigeria. The geogrid 
(as presented in Fig. 4) was also obtained from Sermatech Construction 
Company in Calabar, Cross River State, Nigeria. Geogrids are spaced 
grid or open mesh-like synthetic materials constituting polymers 
cemented integrally as shown in Fig. 4.  They have mechanical strength 
characteristics than common geosynthetic materials and can only 
stretch to a limit of about 2% - 5% under loading conditions [27-28]. 
The properties of the geogrid material used are shown in Table 3. 

 

 
Fig. 4: Geogrid material 

 

Table 1: Test Geogrid Properties 

Descriptions Units Value 

Aperture Size of Mesh mm 10 x 10 

Shape of Aperture mm Square 

Tensile Strength kN/m 12.5 

Color  Black 

Structure  Bi-directional 

Elongation at maximum load % 20.5 

Unit Weight N/m3 7.35 

Thickness of Sheet mm 4 

Raw Material  Polypropylene 

2.3. Formulation of Geotextile Soil Specimen Mix Proportions  

The determination of the actual proportion of the mixture 
ingredients to be mixed for each particular experimental run and the 
total number of experimental runs were carried out here. The effective 
ratios obtained here form the fundamental base for the EVD model 
development to derive the optimal combination ratio for the soil-
geogrid blend and achieve improvement in the problematic clayey soil 
engineering properties for flexible pavement construction. The mixture 
formulation computation was carried out with Design Expert 11 and 
Minitab 18 statistical software [29-30]. 

2.3.1 Formulation of constraints 
The mixture components are imposed with lower and upper bounds 

established through the properties of the ingredient materials which 
constitute the experimental soil-geogrid blend. In most cases, practical 
and environmental, economic, or physical considerations impose most 
of these boundary conditions. The three-component mixture 
investigated in this research study, constituting of geogrid, water, and 
problematic clayey soil to enhance its mechanical properties. From the 
relevant literature [31-33], the component constraints were formulated 
using single component constraints (SCC) are shown in Table 2.  

2.3.2 Design of Simplex and Factor Space 
The developed constraints, which defined the upper and lower limits 

of the single component constraints imposed on the factor levels, cause 
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the factor space to take a hyper-polyhedron simplex shape. The feasible 
experimental region within the simplex, termed the constrained space, 
is then obtained through the component constraints evaluation [34]. 

 

Table 2: Design Constraints 

Mixture Coding: Actual  

Low Constraint High 

0.001 A:geogrid 0.002 

0.098 B:water 0.150 

0.848 C:soil 0.900 
 A+B+C 1.000 

 

The degree of freedom evaluation is also conducted through design 
matrix computation for the design mixture using a quadratic model with 
U_pseudo mixture component coding as presented in Table 3. A 
minimum of 3 lack of fit degrees of freedom (df) is required. This 
ensures a valid lack of fit test. Less df will result in a test that will not 
detect a lack of fit [29-30]. 

 

Table 3: Design Matrix Evaluation for Mixture Quadratic Model 3 Factors: A, B, 
C with U_Pseudo Mixture 

Degrees of Freedom for Evaluation 

Model 5 

Residuals 4 

Lack of Fit 3 

Pure Error 1 

Corr Total 9 
 

Power calculation test was also conducted on the developed 
component constraints using design expert and Minitab statistical 
software to determine the standard deviations and variances of the 
design planes, interior vertexes, and edges contained in the simplex on 
the 5% alpha level shown in Table 4. 

 

Table 4: Power at 5 % alpha level to detect signal/noise ratio 

Term StdErr1 VIF Ri-Squared 2 Std. Dev. 

A 3376.29 33791.62 1.0000 5.0 % 

B 0.90 2.99 0.6658 5.0 % 

C 0.90 3.40 0.7063 5.0 % 

AB 3468.84 13432.33 0.9999 5.0 % 

AC 3468.52 16104.96 0.9999 5.0 % 

BC 3.04 1.96 0.4908 51.6 % 

^1 Basis Std. Dev. = 1.0 

• Standard errors should be similar within the type of coefficients. 
Smaller is better. 

• The ideal VIF value is 1.0. VIFs above 10 are a cause for concern. 
VIFs above 100 are a cause for alarm, indicating the coefficients 
are poorly estimated due to multi-co linearity.  

• Ideal Ri-squared is 0.0. High Ri-squared means terms are 
correlated with each other, possibly leading to poor models. 

• For mixture designs, the proportions of components must sum to 
one. This is a constraint on the system and causes 
multicollinearity to exist, thus increasing the VIFs and the Ri-
squares, rendering these statistics useless; use a fraction of design 
space (FDS) instead.  

• Power is inappropriate for determining the usefulness of a design 
involving mixture components. Use precision-based metrics 
provided in this program via FDS statistics [31-32]. 

The software further developed the contour plot of the 3- component 
simplex shown in Figs. 5-6, which diagrammatically displays the actual 
experimental points positioned within the constrained region. The 
information matrix measures showing the space type leverage, and build 
types are presented in Table 5. Ten (10) runs were generated to improve 

the optimality or efficiency of the model operation. Lack of fit was 
recorded on axialCB while the replicate point is situated at the center 
space of the feasible design space. The model build type was thus 
situated at the vertex and center-edge space type. Average leverage of 
0.6 was calculated; this in effect raises concern for more design points to 
be located on these spaces of the simplex to reduce the lack of fit effect 
on the entire experimental space [35]. 

 

Table 5: Measures derived from the information matrix 

Run Leverage Space Type Build Type 

1 0.8134 Vertex Model 

2 0.9129 Vertex Model 

3 0.5467 CentEdge Model 

4 0.8063 Vertex Model 

5 0.8335 Vertex Model 

6 0.3274 Center Center 

7 0.2710 AxialCB Lack of Fit 

8 0.5982 CentEdge Model 

9 0.5630 CentEdge Model 

10 0.3274 Center Replicate 

Average = 0.6000   

 
 
 

 
Fig. 5: Factor space simplex of a 3- component mixture experiment of water, soil, 

and geogrids. 

 

The relevant data statistics for the design of experiments, 
multicollinearity design, scaled D-optimality, and I-optimal design 
computations were carried out using design expert software. D-
optimality produces a design that best estimates the effects of the 
factors, which is particularly suited for screening studies. The algorithm 
picks points that minimize the volume of the confidence ellipsoid for 
the coefficients. I.e., it minimizes the determinant of the inverse matrix 
X’X, while I-optimal designs, also known as IV (integrated variance), 
provides a minimum average estimation of the variance across the 
experimental regions [36-37]. 

Condition Number of Coefficient Matrix = 2.16E+005 
• If this value is 100-1000, there is moderate to strong 

multicollinearity. 
• Values above 1000 indicate severe multicollinearity. 

Maximum Variance Mean = 0.926 
Average Variance Mean = 0.392 
Minimum Variance Mean = 0.247 
G Efficiency = 64.8 % 
• G Efficiency is inversely related to the maximum variance. 
• Lack of fit runs and replicates tend to reduce the G Efficiency of 

a design. 
Scaled D-optimality Criterion = 1747.474 
When comparing designs, a smaller value is better. 
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Determinant of (X'X)-1= 2.848E+13 
Trace of (X'X)-1= 3.55E+007 
I = 0.39093 
• These can only be used when comparing designs with the same 

number of runs, a smaller value is better. 
 From the computation results, the design summary is thus presented 

in Table 6. 
 

 
Fig. 6: Experimental factor space of the components in a 3- component mixture 

space 

Table 6: Design Summary 

File Version 10.0.0.3 
   

Study Type Mixture 
 

Subtype Randomized 
Design Type I-optimal Point Exchange Runs 10 

Design Model Quadratic 
 

Blocks No Blocks    

Component Name Units Type Minimum Maximum Mean Std. Dev. 

A geogrid  Mixture 0.0005 0.002 0.0012875 0.000571456 
B water  Mixture 0.098 0.15 0.125619 0.0213172 
C soil  Mixture 0.848 0.9 0.873094 0.02129 

    Total = 1.00 
U 

Pseudo Coding 
 

 

2.3.3 Design of Experimental Mix Proportions 
The number of experimental runs and the proportions of the 

ingredients were derived from the information matrix. Ten runs of 
experiments were derived in the process based on the imposed 
component constraints. Table 7 presents the mixes and runs for the 3- 
component multiconstraints experimental design. These mixes guide 
the preparation of specimens to be tested in the laboratory to achieve 
the responses [38-39]. 

3. Result Discussion and Analysis 

3.1. Test Materials Characterization 

The general classification and engineering behavior of the soil is 
presented in Table 8. The results indicate that it possesses high plasticity 
and swelling potential; it is also poorly graded and exhibits expansive 
properties of soft materials. The classification by AASHTO [40] and 
USCS [41] produced A-7 and CH, respectively, which indicates an 
unsuitable soil for engineering work with a low CBR of 5 %, MDD of 

1.28 Mg/m3, and OMC of 17 %. The studied soil has a specific gravity of 
2.38 and from the grain size distribution of the unaltered soil, 38.24 % 
were passed through BS No. 200 sieve (75 μm aperture). The plastic 
limit, liquid limit, and plasticity index results of 20.53%, 54.23%, and 33.7. 
According to the Federal Ministry of Works and Housing specification 
[42], the soils not suitable for subgrade materials possess liquid limit 
and plasticity index values =< 30% and =< 13% respectively which 
implies that samples fall outside the required specification. However, a 
stabilization process is required to improve its properties to make it 
suitable for civil works [43]. 

 

Table 7: Component experimental mix proportions for soil treatment with 
geogrids 

 Component-1 Component-2 Component-3 Response Pseudo- 1 Pseudo-2 Pseudo-3 

Run A:geogrid B:water C:soil UCS A:geogrid B:water C:soil 
1 0.002 0.15 0.848  0.000 0.000 1.000 
2 0.0005 0.0995 0.9  0.029 0.971 0.000 
3 0.00125 0.15 0.84875  0.014 0.000 0.986 
4 0.002 0.098 0.9  0.000 1.000 0.000 
5 0.0005 0.15 0.8495  0.029 0.000 0.971 
6 0.00125 0.124375 0.874375  0.014 0.493 0.493 
7 0.000875 0.137187 0.861938  0.022 0.246 0.732 
8 0.002 0.124 0.874  0.000 0.500 0.500 
9 0.00125 0.09875 0.9  0.014 0.986 0.000 
10 0.00125 0.1244 0.8743  0.014 0.493 0.492 

 
Table 8: Basic properties of the test soil 

 

3.1.1 Particle Size Distribution Results 
The sieve analysis result presents the size range of the particle present 

in the soil sample. According to the Federal Ministry of Work and 
Housing [42] specification requirement, for a sample to be used for road 
construction, the percentage of weight passing the No. 200 sieve shall 
be less than but not greater than 35%. The result shows 38.24% passing 
0.075mm sieve size as shown in Table 9 and the plot in Fig. 7 which 
indicate highly plastic soil unsuitable for pavement subgrade materials. 
The gradation coefficients were then calculated using Eqns.  8 – 9. 

 
Table 9: Sieve Analysis Results 

Descriptions Values 

Grain Size 
(mm) 4.75 3.18 2.4 1.2 0.6 0.42 0.3 0.21 0.15 0.075 0.053 

Percent Finer 
(%) 99.32 98.63 97.6 73.55 69.2 67.2 65.25 60.22 52.15 38.24 2.5 

 
 
 

Coefficient of Uniformity (Cu) = D60
D10

 
(8) 

From the plotted semi-log graph: D60  = 0.21mm; D10 =0.073mm; D30 = 0.074mm 

Cu =  0.21
0.073 

 = 2.88 

Coefficient of curvature (Cc) = (D30)
2

D60 × D10
 (9) 

Cc =  
(0.074)2

0.21× 0.073
 = 0.36 

Since Cu < 4 and Cc < 1, it showed that the soil sample according to 
the classification scale is a poorly graded fine silty clay sample [44].  

Descriptions Units Value 

Percentage Passing BS No. 200 Sieve (75 μm aperture) % 38.24 
Natural Moisture Content % 36.45 
Dry Unit Weight (𝛾𝑑) kN/m3 17.69 
Specific Gravity - 2.38 
Liquid Limit % 54.23 
Plastic Limit % 20.53 
Plasticity Index % 33.7 
OMC % 17 
MDD g/cm3 1.28 
AASHTO  A-7 
USCS  CH 
CBR % 5 
Unconfined Compressive Strength (UCS) kN/m2 12.287 
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3.2. Unconfined Compressive Strength (UCS) Test Results  

The experimental parameters utilized for the Unconfined 
Compressive Strength (UCS) test of the soil-geogrid blend with a 
proven ring factor of 0.0009kN are presented below. The strain reading, 
corrected area, and stress values were then derived for each 
experimental run as shown in Table 10. 

 

 
Fig. 7: Particle Size Distribution Graph 

 

The soils were further blended with geogrid at varying ratios 
according to the mixture ratio formulated and the results computations 
carried out with the derived dimension and cross-sectional area of the 
mold are presented below [45-46]; 

Diameter of Mold = 5cm 
Height of Mold (L) = 9.5cm 
Proving Ring Factor = 0.0009kN  

Area of mold (A) = 𝜋𝑑2
4

 

A = 22𝑥5𝑥5
7𝑋4

= 19.64 cm2 

Volume of mold (V) = πd
2H

4
 

V =  22x5x5x9.5

7X4
 = 186.61 cm3 

The major parameters’ the formula utilized for this laboratory 
computation are presented in Eqns. 10-12, with the strain reading results 
and the actual length of the sample (L);  

 

Strain∈ (%) = Δ𝐿

𝐿
 (10) 

Corrected Area 𝐴𝑐 =
𝐴0

1−∈
 (11) 

Stress = 
𝐴𝑥𝑖𝑎𝑙𝐹𝑜𝑟𝑐𝑒

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑𝐴𝑟𝑒𝑎
 (12) 

 

Table 10: UCS results summary 

Experimental Runs UCS Results Summary (kN/m2) 
1 13.312 
2 30.904 
3 14.945 
4 37.967 
5 15.633 
6 31.347 
7 19.432 
8 36.476 
9 37.321 
10 22.376 

 

From the computed values, the maximum result of 37.97 kN/m2 was 
obtained for the test (run 4) while the minimum of 13.312 kN/m2 was 
obtained for the test (run 1) which indicates a significant improvement 
in the soil’s compressive strength properties in line with the Federal 
Ministry of Works specification for subgrade materials. The result 
summary using percentage frequency statistics computation shows that 
0.2% of geogrid, 9.8% of water, and 90% of soil by weight produced the 
maximum response of 37.97kN/m2 for UCS target variable while 0.2% of 
geogrid, 15% of water, and 84.8% of soil by weight produced the 
minimum response of 13.312 kN/m2 for UCS [47]. The stress-strain plot 
is presented in Fig. 8 

4. Model Development and Validation 

For the analysis after experimental reports were obtained, the 
appropriate transformation which is quadratic (square root) and the 
response ranges from 5.13527 to 18.9128 with a ratio of max to min of 
3.683 for CBR response. Scheffe’s models with intercepts built into the 
model coefficients are utilized for this mixture design. The 
transformation is required when the residual (error) is a function of the 
response magnitude (predicted results) and the transformation would 
be impactful unless the maximum to minimum ratio of the response 
parameter is very large [48-49]. 

 

 
Fig. 8: UCS Stress vs. strain Plot 

 

The fit summary, diagnostic tests, graphical and numerical 
optimization were carried out to determine the optimal combination 
proportion of the soil-geogrid blend to maximize the mechanical 
strength response. Post analysis, confirmation coefficient tables, and 
EVD model simulation were then executed to validate the model results 
using Design Expert 11 and Minitab 18 software [29-30]. 

4.1. Fit Summary 

Fit summary brings together relevant statistics which were utilized 
for correction of the final model starting point through the Whitcomb 
score. The suggested models are selected and are considered a good 
starting point for model fitting. The fit summary presents the summary 
table with sequential and lack of fit P-value, the lack of fit tests, and 
model summary statistics which focuses on maximizing the adjusted 
and the Predicted R-squared [50]. The predicted residual error sum of 
squares (PRESS) is the measure of how much the model fits each of the 
experimental design points and is computed first of all by estimating 
where each point should be from a model which contains all points 
except the one under investigation shown in Eqn. 13. 

𝑃𝑅𝐸𝑆𝑆 =∑(𝑒 − 𝑖)2
𝑛

𝑖=1

 (13) 

Where 𝑒 − 𝑖  is the computed deletion residual by fitting a model 
without the ith run, then trying the estimate the ith observation of the 
model [31-32]. 

 

4.1.2 Fit Summary for UCS Response 
The model fit summary statistics results is shown in Tables 11-13 

indicated a preference for a quadratic model for CBR response with R-
squared, predicted, adjusted and R-squared of 0.8367, 0.6417, and 0.79 
respectively. The lack of fit test results presented a sum of squares of 
1.09, a mean square of 0.18, and a lack of fit p-value (Prob > F) of 0.8010. 

4.2. Analysis of Variance (ANOVA) Test Result 

ANOVA statistics were carried out by using the linear model which 
was prescribed for the target variables to determine the statistical 
significance of the mixture factor levels using pseudo coding with 
respect to UCS response parameters [51]. The partial sum of squares 
result is presented for the corresponding model coefficients using p-
values (Prob > F) for statistical significant determination criteria, which 
is computed using the mean square and F-value as shown in Tables 14-
15. 
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Table 11: Model Summary Statistics for UCS response 

Source Std.Dev. R-Squared Adjusted 
R-Squared 

Predicted 
R-Squared PRESS  

Linear 0.46 0.8367 0.7900 0.6417 3.21 Suggested 
Quadratic 0.45 0.9105 0.7987 0.4003 5.37  

Special Cubic 0.37 0.9548 0.8643 0.8129 1.68  

Cubic 0.61 0.9579 0.6211  + Aliased 
+ Case(s) with leverage of 1.0000: PRESS statistics was not defined 

Table 12: Lack of Fit Test for UCS response 

Source Sum of 
Squares df Mean 

Square F Value p-value 
Prob > F 

 

Linear 1.09 6 0.18 0.48 0.8010 Suggested 
Quadratic 0.42 3 0.14 0.38 0.7990  

Special Cubic 0.028 2 0.014 0.037 0.9646  

Cubic 0.000 0    Aliased 
Pure Error 0.38 1 0.38    

"Lack of Fit Tests": Want the selected model to have insignificant lack-of-fit. 
 

Table 13: Sequential Model Sum of Squares [Type I] for UCS response 

Source Sum of 
Squares df Mean 

Square F Value p-value 
Prob > F 

 

Mean vs Total 250.75 1 250.75    

Linear vs Mean 7.50 2 3.75 17.93 0.0018 Suggested 
Quadratic vs 
Linear 0.66 3 0.22 1.10 0.4459  

Sp Cubic vs 
Quadratic 0.40 1 0.40 2.93 0.1854  

Cubic vs Sp 
Cubic 

0.028 2 0.014 0.037 0.9646 Aliased 

Residual 0.38 1 0.38    

Total 259.71 10 25.97    
 

 

4.2.1 R-squared Calculation 
R-squared is the measure of the variation around the mean explained 

by the model in Eqn. 13   

𝑅2 = 1 − [
𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 − 𝑆𝑆𝑚𝑜𝑑 𝑒𝑙
] (13) 

R-squared is a measure of the variation around the model explained 
mean, which is adjusted for the model number of terms. The adjusted 
R-squared decreases as the model number of terms increases, which do 
not add an additional value to the model results. Predicted R-square is 
the measure of the variation in the new result explained by the model, 
the difference between the predicted R-square and R-square will be less 
than or equal to 0.2, else this will result in the data fitting problem. 
However, factor transformation or outliers would be carried out to 
remedy the situation [52].  

 

Table 14: ANOVA Results for UCS response 

Response 2 UCS  

Transform: Square Root Constant: 0 
 

ANOVA for Quadratic Mixture model 
*** Mixture Component Coding is U_Pseudo. *** 

Analysis of variance table [Partial sum of squares - Type III] 

Source Sum of 
Squares df Mean 

Square 
F 

Value 
p-value 
Prob > F 

 

Model 8.16 5 1.63 8.14 0.0319 significant 
1Linear 
Mixture 7.50 2 3.75 18.71 0.0093  

AB 0.037 1 0.037 0.18 0.6913  

AC 0.034 1 0.034 0.17 0.7033  

BC 0.48 1 0.48 2.39 0.1970  

Residual 0.80 4 0.20    

Lack of 
Fit 0.42 3 0.14 0.38 0.7990 not 

significant 
Pure 
Error 0.38 1 0.38    

Cor 
Total 8.96 9     

^1 inference for linear mixtures uses Type I sums of squares. 
 

• The Model F-value of 8.14 implies the model is significant. There 

is only a 3.19% chance that an F-value this large could occur due to 
noise. 

• Values of "Prob > F" less than 0.0500 indicate the model terms are 
significant. In this case, B, C is significant model terms. Values 
greater than 0.1000 indicate the model terms are not significant. 

• If there are many insignificant model terms (not counting those 
required to support hierarchy), model reduction may improve 
your model. 

• The "Lack of Fit F-value" of 0.38 implies the lack of Fit is not 
significant relative to the pure error. There is a 79.90% chance that 
a "Lack of Fit F-value" this large could occur due to noise. Non-
significant lack of fit is good -- we want the model to fit [31-32]. 

Tables 15:  R-squared Calculations for UCS response 

Std. Dev. 0.45 R-Squared 0.9105 
Mean 5.01 Adj R-Squared 0.7987 
C.V. % 8.94 Pred R-Squared 0.4003 
PRESS 5.37 Adeq Precision 7.791 
-2 Log Likelihood 3.14 BIC 14.65 
  AICc 28.14 

The "Pred R-Squared" of 0.4003 is not as close to the "Adj R-Squared" 
of 0.7987 as one might normally expect; i.e. the difference is more than 
0.2. This may indicate a large block effect or a possible problem with 
your model and/or data. Things to consider are model reduction, 
response transformation, outliers, etc. All empirical models should be 
tested by doing confirmation runs. "Adeq Precision" measures the signal-
to-noise ratio. A ratio greater than 4 is desirable. Your ratio of 7.791 
indicates an adequate signal. This model can be used to navigate the 
design space (Akhnazarova et al. 1982) [53]. 

4.3. Coefficient estimates and model equations for UCS 

The estimates of components’ coefficient, standard error, degrees of 
freedom, variance inflation factor (VIF), and final equation in terms of 
L_pseudo component computation results are presented in Tables 16-18. 
VIF measures the extent to which the variance of the coefficient 
estimate (predictor) is inflated by a lack of orthogonality in the design 
points. If the factor is orthogonal with respect to all other factors in the 
model, then VIF = 1 [54].  

Table 16: Model Coefficients Calculation Results for UCS response 

Table 17: Final Equation in Terms of U_Pseudo Components 

 *A *B *C *AB *AC *BC 
Sqrt(UCS) = 621.935 64.085 11.82484 -663.296 6315.46 3.10192 

The equation in terms of coded factors can be used to make 
predictions about the response for given levels of each factor. By default, 
the high levels of the factors are coded as +1 and the low levels of the 
factors are coded as -1. The coded equation is useful for identifying the 
relative impact of the factors by comparing the factor coefficients [29-
30]. 

 

Table 18: Final Equation in Terms of U_Pseudo Components 

  *Geogrid *Water *Soils Geogrid* 
Water 

Geogrid* 
Soil Water*Soil 

Sqrt(UCS) = 2.36E+05 -615.29836 -3.1977 -2.45E+05 -2.35E+05 777.336 

The equation in terms of actual factors can be used to make 
predictions about the response for given levels of each factor. Here, the 

Component Coefficient 
Estimate df Standard 

Error 
95% CI 

Low 
95% CI 
High VIF 

A-geogrid 621.93 1 1511.45 -3574.53 4818.40 33791.62 

B-water 6.41 1 0.40 5.29 7.52 2.99 

C-soil 3.82 1 0.40 2.70 4.95 3.40 

AB -663.30 1 1552.89 -4974.80 3648.21 13432.33 

AC -635.46 1 1552.74 -4946.56 3675.64 16104.96 

BC 2.10 1 1.36 -1.67 5.88 1.96 
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levels should be specified in the original units for each factor. This 
equation should not be used to determine the relative impact of each 
factor because the coefficients are scaled to accommodate the units of 
each factor and the intercept is not at the center of the design space [18]. 

4.4. Diagnostics Plots 

The model statistical diagnostics computations were deployed for the 
verification of regression model assumptions depending on 
observations with undue or substantial influence on the statistical 
analysis using the studentized residual which is the quotient of the 
residual and its predicted standard deviation. Externally Studentized 
residuals are the default with Internally Studentized and raw residuals 
as options. Unless the leverages of all runs in a design are identical, the 
standard errors of the residuals are different. This means that each raw 
residual belongs to different populations (one for each different 
standard error). Therefore, raw residuals should not be used for 
checking the regression assumptions. Studentizing the residuals maps 
all different normal distributions to a single standard normal 
distribution. Externally Studentized residuals based on a deletion 
method are the default due to being more sensitive for finding problems 
with the analysis. Internally Studentized residuals are also available but 
are less sensitive to finding such problems [55-56]. 

 

4.4.1. Normal probability plot 
The normal probability plot certifies that the error functions are 

normally roughly distributed, which implies that the residuals are 
positioned near the line of fit and not far away. It has essential 
significance for the model prediction performance. Definite shape 
patterns are searched for like an “S-shaped” curve, which indicates that 
a response transformation may provide a better analysis [57]. Normal 
probability plots for UCS responses are presented in Fig. 9 

 

 
 Fig. 9: Normal Plot of Residuals for UCS response 

 

4.4.2 Residual vs. predicted plot 
This statistical diagnostic test verifies the constant variance 

assumption using externally studentized residuals on the y-axis and the 
predicted values on the x-axis as shown in Fig. 10. The result implies the 
need for a transformation due to the observed expanding variance. The 
scattered plot was very close to the zero studentized residual points with 
the minimum and maximum of -7.45332 and 7.45332 for UCS target 
response [58]. 

 

4.4.3 Residuals vs. Run  
This is a plot of the residuals or error versus the experimental run 

order. It checks for lurking variables that may have influenced the 
output response during the experiment as shown in Fig. 11. The plotted 
result should show a randomly scattered path and the studentized 
residuals with respect to the experimental runs are close to the line. 
Trends indicate a time-related variable lurking in the background. 
Blocking and randomization provide insurance against trends ruining 
the analysis (Schwartz et al. 1981) [59].  

 
Fig. 10: Residuals vs. Predicted for UCS response 

 

 
Fig. 11: Residuals vs. Run for UCS Response 

 

4.4.4 Predicted vs. Actual 
This diagnostic plot shows the predicted EVD model response values 

on the y-axis against the actual values on the x-axis. This plot could also 
help to determine the value or a group of values that are not estimated 
easily by the EVD model in terms of accuracy as presented in Fig. 12. 
The result deduced from the plotted results indicates a strong 
correlation between the experimental and the model predicted values 
with the plotted datasets ranging from about 3.5-6.5 [60]. 

 

 
Fig. 12: Predicted vs. Actual UCS response 

 

4.4.5 Box-Cox plot for power transforms 
This diagnostic plot test provides guidelines for power-law 

transformation selection. Based on the derived best value for lambda, a 
recommended transformation is then listed which is situated at the 
lowest point of the curve generated by the natural log of the sum of 
squares of the residuals as presented in Fig. 13. The result presents the 
best point of 5.02197 for the sum of the residuals of squares which 
showed the best and current lambda, at -1.53 and 0.5 respectively at low 
and high confidence intervals (C.I.) of -4.15 and 2.66 respectively [61]. 
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Fig. 13: Box-Cox Plot for Power Transformation 

4.5. Influence Plots 

These computational results provide measures of the influence, 
potential or actual, of individual runs. The graphical plots provide a 
clearer perspective on whether a case or two stick out from the others 
group sets. The statistical influences were assessed through cook’s 
distance, leverage vs. the experimental run, and DFFITS statistics vs. 
experimental run [62].  

4.5.1 Cook’s distance 
The Cook’s distance is utilized for the determination of the statistical 

data points influenced in an ordinary least squares regression analysis 
problem. The influential points are worth particularly for validity 
confirmation and to present planes of the feasible experimental design 
space where better performance can be achieved. A measure of how 
much the entire regression function changes when the ith point is used 
is not included in fitting the model. It is essentially the sum of 
differences in predictions at every point caused by leaving a point out 
for fitting the model [63]. The Cook’s distance plots for the UCS 
responses are shown in Fig. 14. The presented result indicates that the 
Cook distance scores are mostly within the 0 - 1 limit while experimental 
run no. 4 were observed to fall outside the limit to be positioned between 
1.2 and 1.0. 

 

 
Fig. 14: Cook’s distance for UCS response 

4.5.2 Leverage vs. Run 
Leverage evaluates how much each of the experimental points 

influences the fitness of the model. If the experimental point produces a 
leverage of 1.0, then the model performance exactly fits the observation 
at that point which controls the model output. A run with leverage 
greater than 2 times the average is generally regarded as having high 
leverage. Such runs have few other runs near them in the factor space as 
shown in Fig. 15. The plotted results indicated a straight leverage line at 
0.6 which divided the scattered plot of the results into two [64]. 

4.5.3 DFFITS vs. Runs 
DFFITS is a diagnostics statistical technique that shows the behavior 

of the influential experimental points in a regression analysis 
computation. A measure of how much the prediction changes at the ith 

point when the ith point is not included for fitting the model as shown 
in Fig. 16. 

 
Fig. 15: Leverage vs. Run 

The plotted results indicate DFFITS points with respect to the 
experimental runs lie very close to the zero points within the regions of 
±2.32379 for the output responses. Experimental run no. 4 was also 
observed to be positioned outside the boundaries at about DFFITS of 
about -3 [65]. 

 
Fig. 16: DFFITS vs. Run for UCS Response 

 

4.5.4 Diagnostic Plots and Influence Statistics Summary Report 
The statistical diagnostic plots and influence summary report present 

the predicted and actual values, lambda values, leverage, internally and 
externally studentized residuals with respect to the generated standard 
order for the two response cases as shown in Table 19. The box-cox 
power transformation computation results show the best lambda values 
of -1.53, 95% CI Low and high values of -4.15 and 1.53, respectively, for 
the UCS response [29-30].  

 
Box-Cox Power Transformation 

Constant 
k 

95% CI 
Low 

95% CI 
High 

Best 
Lambda 

Rec. 
Transform 

0.000 -4.15 2.66 -1.53 None 

4.6. Numerical Optimization Computation 

In addition to the model validation in terms of numerical application 
of the solution variability, an overall desirability function (D) is 
incorporated and utilized as a metric for multicriteria optimization. For 
each criterion fixed values ranging from 0 and 1 are defined such that 
the desirability function scale satisfies the following conditions 0 ≤
𝑑(𝑦𝑖) ≤ 1 . If 0 is obtained, it implies that one or more criteria are 
situated outside their acceptable limit values; then if 1 is obtained; it 
signifies that the obtained solutions lay exactly at the acceptable 
response limits and the acceptability or rejection conditions depend 
generally on the objective function which is defined as the optimization 
direction through the minimization and maximization of the target 
through the reference equations [66]. 

Where the minimized response indicates that a minimum or lesser 
value is desired and thus the desirability function is represented in Eqn. 
14.         
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Table 19: Summary Report on the Influence and Diagnostic Plots for 

Response  UCS   Transform: Square Root Constant: 0.000  

Diagnostics Case Statistics 

Run 
Order 

Actual 
Value 

Predicted 
Value Residual Leverage 

Internally 
Studentized 

Residual 

Externally 
Studentized 

Residual 

Cook's 
Distance 

Influence on 
Fitted Value 

DFFITS 

Standard 
Order 

1 3.65 3.82 -0.18 0.813 -0.912 -0.887 0.604 -1.852 10 

3 3.87 3.71 0.16 0.547 0.528 0.474 0.056 0.521 9 

5 3.95 3.85 0.10 0.833 0.551 0.497 0.254 1.111 8 

7 4.41 4.61 -0.21 0.271 -0.539 -0.485 0.018 -0.296 7 

8 6.04 5.64 0.40 0.598 1.400 1.699 0.487 2.073 6 

10 4.73 5.29 -0.56 0.327 -1.532 -2.063 0.190 -1.439 5 

6 5.60 5.29 0.31 0.327 0.834 0.795 0.056 0.555 4 

4 6.16 6.41 -0.25 0.806 -1.253 -1.392 1.0891 -2.8401 3 

9 6.11 5.86 0.25 0.563 0.850 0.813 0.155 0.923 2 

2 5.56 5.58 -0.023 0.913 -0.177 -0.154 0.055 -0.499 1 
^1 Exceeds limits. 

 

𝑑(𝑦𝑖) = {

0 𝑦𝑖 < 𝑇

(
𝑈 − 𝑦𝑖
𝑈 − 𝑇

)
𝑟𝑖

𝑇 ≤ 𝑦𝑖 ≤ 𝑈

0 𝑦𝑖 > 𝑈

} (14) 

 
For the second condition, a maximized response indicates that a 

larger value is derived and thus the desirability functions are 
represented in Eqn. 15.    

𝑑(𝑦𝑖) = {

0 𝑦𝑖 < 𝐿

(
𝑦 − 𝐿

𝑇 − 𝐿
)
𝑟𝑖

𝐿 ≤ 𝑦𝑖 ≤ 𝑇

1 𝑦𝑖 > 𝑇

} (15) 

Finally, for this condition, the target response which indicates the best 
value (response) and the desirability function for this case is presented 
in Eqn. 16.     

𝑑(𝑦𝑖) =

{
 
 

 
 

0 𝑦𝑖 < 𝐿
0 𝑦𝑖 < 𝑈

(
𝑈 − 𝑦𝑖
𝑈 − 𝑇

)
𝑟𝑖

𝑇 ≤ 𝑦𝑖 ≤ 𝑈

(
𝑦 − 𝐿

𝑇 − 𝐿
)
𝑟𝑖

𝐿 ≤ 𝑦𝑖 ≤ 𝑇}
 
 

 
 

 (16) 

 

Where; T is the target or actual (experimental) value, 𝑦𝑖 is the model 
predicted value of the ith response, L is the lower limit or lowest 
acceptable results or values, 𝑟𝑖 is the weighted function of the ith 
desirability function and U is the maximum or highest acceptable results 
or values. Based on the given conditions presented in the equations 
above, a multi-response numerical optimization is executed through 
which the optimum mix combination is maximized through the 
weighted geometric mean of individual desirability function 𝑑(𝑦𝑖)  from 
the feasible composite space [67]. Through this optimization process, a 
model with equal weight is then adopted through the composite 
desirability by using the mathematical equation of the form, where n is 
the total individual number of responses in Eqn. 17.    
𝐷 = [𝑑(𝑦1) × 𝑑(𝑦2) × 𝑑(𝑦3). . .× 𝑑(𝑦𝑛)]

1/𝑛 (17) 

4.6.1 Optimization Overview 
Numerical optimization uses the model to search the factor space for 

the best trade-offs to achieve multiple goals. The optimization module 
searches for a combination of factor levels that simultaneously satisfy 
the criteria placed on each of the responses and factors. The goals that 
apply to both responses and factors were set to be in the range for the 
factors and maximize for the response where the lower limit is the 
lowest acceptable outcome and the upper limit is the desired best result 
as shown in Table.  

The mixture optimization solution is presented in Table 21. In the 

desirability function computation, the solution with the highest score is 
preferentially taken as the optimal solution. 

 
Table 20: Optimization Criteria Definition 

Name Goal Lower 
Limit 

Upper 
Limit 

Lower 
Weight 

Upper 
Weight Importance 

A:geogrid is in range 0.0005 0.002 1 1 3 
B:water is in range 0.098 0.15 1 1 3 
C:soil is in range 0.848 0.9 1 1 3 
UCS maximize 13.3119 37.9672 1 1 3 

A desirability criterium score of 1.0 and optimal ratio 0.002:0.098:0.9 
for the fraction of geogrid, water, and soil, respectively [29-30]. 

Table 21: Optimization Solutions 

Number geogrid water soil CBR Desirability  

1 0.002 0.098 0.900 19.546 1.000 Selected 
2 0.002 0.105 0.893 19.112 1.000  

3 0.002 0.103 0.895 19.244 1.000  

4 0.002 0.100 0.898 19.429 1.000  

5 0.002 0.107 0.891 18.933 1.000  

6 0.002 0.099 0.899 19.480 1.000  

7 0.002 0.106 0.892 19.005 1.000  

8 0.001 0.118 0.881 6.039 0.207  

4.6.2 Optimization Ramps and Bar Graph 
The numerical optimization ramps show the optimal solution 

graphical view with the optimal predictor parameter factor settings in 
red and the optimal response parameter factor in blue. This tool helps 
to make the required selection of the optimal solution in a graphical 
view presentation as shown in Fig. 17. Desirability value of 1.0 was 
calculated for the mixture component variables and the response 
variables, which indicate a robust model prediction of the mechanical 
behavior of soil-geogrid blend [35-37]. 

  
Fig. 17: Optimization Ramps 
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4.6.3 Optimization Trace Plot 
Trace plots as presented in Fig. 18 are used to assess all mixture 

components effects in the factor space and its essence is to determine 
the response function sensitivity compared to the deviation from the 
formulation of the reference blend in U_pseudo coding. The results 
indicate that mixture component ‘B’ which is geogrid produces the 
dominant effect in the mixture due to the low mass ratio of component 
‘A’ (geogrid) with the high/low limit values inverted by U_pseudo 
coding [68]. 

4.6.4 Optimization Contour Plot 
A contour plot is an important tool for the visualization of the feasible 

experimental region’s functional points in the iteration solution of 
mixture optimization [69]. The contour plot for the optimal solution for 
the design points for UCS are ranging from 13.3119 to 37.9672 and the 
desirability points from 0 to 1. It is a graphical tool for the representation 
of 3-D surfaces by contour plotting in terms of constant slices in 2-D 
form as shown in Fig. 19. 

 

   

 
Fig. 18: Trace Cox Plot 

 

 

 
Fig. 19: Contour Plots for the Optimal Solution 

 

 

4.6.5 3D Surface Plots 
3D surface plot is the presentation of the factor levels’ relationship 

with the response functions and for the desirability function shown in 
Fig. 20 showing an optimal response of 41.270 kN/m2 and a desirability 
score of 1 which indicated excellent performance (Goos et al. 2007) [70]. 

 
  

 
Fig. 20: 3D Plot for the Optimal Solution 

4.7. Post Analysis and Model Simulation 

The post-analysis result presents the confirmation report at the 
confidence interval of 95 %, the descriptive statistical computation of 
the EVD model predicted results, and with the imposition of the sum to 
one constraint [29-30].  

 

4.7.1 Point Prediction  
Point Prediction uses the models fit during analysis and the factor 

settings specified on the factors tool to compute the point predictions 
and interval estimates. The predicted values are updated as the levels are 
changed. Prediction intervals (PI) are found under the confirmation 
node presented in Table 22 below. 

 

4.7.2 Coefficients Table 
The coefficient table shows the factor level combination optimization 

coefficients of the soil-geogrid blend. This is a table containing one row 
for each response. If one or more responses have been analyzed, there 
will be a column for every term from all models. Each column contains 
the coefficient estimate for the coded model term and the p-value for 
that coefficient [71]. The quadratic and linear models were adapted 
simultaneously for the mixture optimization computation. p-values less 
than 0.01 are very significant and color-coded red; p-values less than 0.05 
but greater than 0.01 are significant and color-coded green; p-values less 
than 0.10 but greater than 0.05 are marginally significant and color-
coded blue; p-values greater than or equal to 0.10 are considered 
insignificant and color-coded black. The coefficient table is presented in 
Table 23 [29-30]. 

4.8. EVD Model Simulation  

The model simulation stage is the final phase of the model validation 
process whereby a real-life situation is replicated through what we have 
modeled to guide contractors, designers, and operators on how the 
developed EVD model will perform. Furthermore, the essence of model 
simulation is to show that the validation achieved during statistical 
inference and diagnostics can be achieved in real-life applicability or 
situation. Student’s t-test and analysis of variance (ANOVA) statistical 
methods were further deployed to determine if there is a significant 
difference between the actual experimental values and the generated 
simulated EVD model results. The computations were carried out by 
substitution of the developed model coefficients to the factor levels for 
the mixture design formulation; the computed simulated EVD model 
results and the actual laboratory results are presented in the plotted 
graph in Fig. 21. 
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Table 22: Point Prediction 

Response Predicted 
Mean 

Predicted 
1Median Observed Std Dev SE Mean CI for 

95% CI low 
Mean 

95% CI high 
99% of 

95% TI low 
Population 

95% TI high 
2UCS 41.2703 41.0699 - 5.74482 N/A 28.2109 56.8211 7.92995 100.023 

 

 
Table 23: Coefficient Table 

Response A B C AB AC BC 

UCS 621.935 64.085 11.82484 -663.296 6315.46 3.10192 

p = 0.0093 0.0093 0.0093 0.6913 0.7033 0.1973 

Legend  P <.01 .01<= P <.05 0.5<= p <.10 p >=.10  

The results of the statistical computation utilized to compare the two 
sets of means at the confidence interval of 95% are presented in Tables 
24-25.  From the student t-test computation results, P(T<=t) two-tail of 
0.842281, t-Stat of 0.204805, t Critical two-tail of 2.262157 and Pearson 
correlation score of 79.5% while ANOVA computation results produced, 
P-value of 0.8412, F critical of 4.413873 and F value of 0.04132 which 
indicates that there is no significant difference between the actual and 
EVD model results because obtained p-value or P(T<=t) two-tail were 
higher than the critical value (0.05); this shows robust performance for 
the developed EVD model [72-73]. 

 

 
Fig. 21: Simulated EVD Model Results 

 

Table 24: t-Test: Paired Two Sample Means 

 MODEL-UCS EXP-UCS 

Mean 26.64599 25.97127 

Variance 12.32933 97.85609 

Observations 10 10 

Pearson Correlation 0.795  

df 9  

t Stat 0.204805  

P(T<=t) one-tail 0.421141  

t Critical one-tail 1.833113  

P(T<=t) two-tail 0.842281  

t Critical two-tail 2.262157  

  

 Table 25: ANOVA Test Results 

Groups Count Sum Average Variance   

MODEL-UCS 10 266.4599 26.64599 12.3293   

EXP-UCS 10 259.7127 25.97127 97.8561   

ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 2.276209 1 2.276209 0.04132 0.841209 4.413873 
Within Groups 991.6688 18 55.09271    

Total 993.945 19     
 

5. Conclusion 

In this research study, geogrids were utilized for engineering 
properties and modification of soil properties for civil engineering 
construction purposes. The research process involved the general 

engineering characteristics determination of the test soil through 
experimental and laboratory processes to obtain the test soil’s general 
engineering behavior and classification. The results obtained indicated 
high swelling potential and plasticity behavior with AASHTO 
classification of A-7 and unsuitable for engineering work. 

The I-optimal design was utilized to explore the constrained factor 
space for the derivation of the run of experiments and mixture 
proportions formulation at the edges, center, interior, and vertex of the 
simplex. The mixture of experiment components is constrained by 
imposed restrictions on the sign of inequalities at the upper and lower 
region of the factor space to a subregion of the equilateral triangle 
formed as a result of three-component mixture simplex through the q-
vertices with regular sides of (q-1) dimension where q is the total 
number of mixture ingredients. I-optimality and D-optimality of 0.39093 
and 1747.474, respectively, were obtained with a G-efficiency of 64.8%. 

The responses were derived from the experimental runs were utilized 
for the statistical fit test, analysis of variance influence and diagnostic 
test computation using Design expert and Minitab 18 statistical software 
which provides an analytical toolbox for the simulation and analysis of 
mixture experiments for test soil stabilization using geogrids; 
incorporated in the toolbox are statistical tools and techniques like fit 
summary, analysis of variance (ANOVA), model equations formulation 
with coefficients estimation, diagnostic plots utilizing externally 
studentized residuals for regression model assumptions validation, Box-
cox for power transformation, influence plots expressing the cook’s 
distance and leverages vs. Run evaluation, trace plots using cox plot and 
contour plots. 

The numerical and graphical optimization process which locates the 
factor levels combinations which satisfy the criteria placed on the 
mixture components and the corresponding response parameters based 
on the model fitness evaluation through statistical analysis and equation 
simulation using desirability function was further conducted. A 
desirability score of 1 was calculated as the optimal solution with the 
optimal combination ratio of 0.002:0.0.98:0.9 for geogrid, water, and soil, 
respectively; and an optimal response of 41.270kN/m2 for UCS property. 

The results obtained from this research study on geotextile 
application for expansive soil mechanical properties improvement 
indicated an improvement in the soil property at 0.2% by volume of 
geogrid, the generated strength value was greater than the minimum 
value specified by the American Association of State Highway and 
Transport Officials (AASHTO) for the mechanical properties of soil.  

Finally, the developed EVD model was simulated using the generated 
model coefficients and compared with the corresponding experimental 
results using ANOVA and Student’s t-test. However, the statistical 
results showed that there is no significant difference between the 
compared groups with a p-value of 0.841209 and P(T<=t) two-tail 
0.842281 which is greater than a critical value (𝛼). 
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