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A B S T R A C T 

In this research, a support vector machine (SVM) as a supervised classification method has been used to explore the relationship between the 
geochemical anomaly and the surface alterations quantitatively in the Tanurcheh mineralization area. The Tanurcheh area has been located 
in the Khorasan Razavi province, Iran. This area has been considered as a high potential region for Cu and Au mineralization. The different 
mineralization processes of Au and Cu have unclearly been intertwined in this area and have created extreme surface alterations. 
Determination of the major origin of mineralization that has created strong alterations in this area is an important issue that can be addressed 
using a new proposed scenario. The relationship between the geochemical distribution map and the alteration zone was mathematically 
calculated using the proposed approach and then the geochemical anomaly map was predicted based on the alteration zones as an innovative 
achievement. 
In this paper, the Au and Cu geochemical data were divided into three classes, namely background, regional anomaly, and local anomaly using 
the probability plot method. Two threshold values for Cu (70 and 300 PPM) and Au (0.13 and 0.4 PPM) were obtained by the probability plot 
method. Then the SVM was utilized to classify the geochemical samples using the ASTER images based on these obtained thresholds. The 
ASTER 14-band images were used as features in this classification. Using this novel scenario, the relationships between the Au and Cu 
mineralization processes with the intensity of alterations were determined and therefore the origin of these alteration zones was clarified. The 
SVM classification indices of correct classification rate (CCR) and confusion matrix demonstrate the main origin of alterations is related to 
the Cu mineralization process in this area. The CCR indices obtained based on the Au and Cu thresholds are 0.66 and 0.85 respectively. It 
demonstrates the intensity of alterations has more been affected by the Cu mineralization process and there is a relatively good relationship 
between the alteration zone and the Cu geochemical distribution map. Finally, the geochemical anomaly and background maps were properly 
predicted using the SVM and the ASTER bands. This paper shows the new application of SVM as a powerful tool for the interpretation of 
geochemical anomalies and the intensity of alteration. 
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1. Introduction

The geochemical anomalies and alteration zones can have a high 
relationship together in the hydrothermal mineralization areas. The 
major aim of this research is to evaluate the relationship between the 
geochemical distribution map and ASTER satellite images 
mathematically using the SVM. Using this scenario, the geochemical 
anomaly map can be predicted by the ASTER images and alteration 
intensity. Up to now, the geochemical mapping has been just performed 
using common geochemical methods such as fractal and statistical 
techniques, and the relationship between the geochemical anomaly map 
and alteration intensity has not been studied mathematically. The 
application of machine learning in the interpretation of geochemical 
data is an important topic in mining geochemistry. Zuo (2017) 
investigated the advantages and disadvantages of machine learning for 
geochemical purposes.  Machine learning can be used for interpreting 
the complicated geochemical distribution maps and detecting the 
meaningful geochemical associations in mining exploration and 

environmental pollutions. Machine learning can play an important role 
in this way shortly. Machine learning as a powerful technique has not 
been widely used for geochemical mapping [1]. Various machine 
learning methods have been performed for interpreting the geochemical 
data and identifying the geochemical anomaly [2-9]. 

The SVM as a supervised classification approach is one of the best 
techniques due to its ability in minimizing the prediction error and the 
model complexity, simultaneously [10, 11], and has recently been used 
for mineral prospectively mapping [1]. The SVM can be trained and 
then predict the complicated patterns concealed in the dataset and 
extract useful information without considering the data distribution. 
Therefore, SVM has been widely applied for various aims in mining 
exploration such as classification and pattern recognition [1]. 

Twarakavi et al. (2006) performed the SVM for mapping of arsenic 
concentration using gold concentration [12]. Chen and Wu (2017) 
applied the SVM as a useful tool for determining the multivariate 
geochemical anomalies in the stream sediment data [8]. 

The geochemical mapping as valuable progress in mineral 
exploration is commonly performed using the spatial interpolation of 
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element concentrations. The past applications of SVM for geochemical 
mapping have only been based on geochemical data. In this research, a 
novel approach was proposed based on the SVM for identifying the 
relationship between the geochemical anomaly and ASTER images in 
the Tanurcheh mineralization area.  

In this study, the SVM has been applied for the identification of the 
genesis of mineralization and determination of the role of Au and Cu 
mineralizations on the intensity of alterations. In continuation, the 
mineralization processes that create the alteration zones have been 
discussed based on the results of SVM and the geochemical map has 
been delineated based on the ASTER images.  

2. Case study 

The studied area covers the ASTER edge of the 1:100,000 scale 
geological map of Feyzabad, which is located on the Khaf-Daruneh 
geological belt. At the north of the Daruneh fault, the Taknar zone has 
been uplifted in the form of a wedge-shaped block consisting of various 
lithological units. The Tertiary volcanic activities between the Daruneh 
and Taknar faults consist of the dark-gray tuffs and in some places 
ignimbrite at the beginning with black lava flows that have an andesitic 
composition in their continuance. Thick units of white brecciated tuffs, 
volcanic breccias, sandy tuffs, ignimbrite, and lapilli-tuff cover the first 
sequence. The Post-Eocene magmatism in the north and central parts of 
the Feyzabad area is observed in the form of granodiorite and diorite 
intrusions within the Neocene volcanic and pyroclastic rocks [13]. The 
geological map and the location of the Tanurcheh area are shown in 
Figure 1. 

There is some important mineralogical evidence of gold and copper 
in the Tanurcheh exploration area. The hydrothermal alteration system 
has been extended in an area with 4km² within the volcanic host rocks 

and has been covered with alluvial sediments at the northern part. The 
oxidizing and leaching intensity in the surface rocks is recognized by 
weathering of finely disseminated pyrite crystals and the remainders of 
other sulfide minerals that can be observed in different parts of the 
exploration area. The strong quartz-sericite alteration that is mostly 
within the outcrops of intrusive porphyry bodies contains the quartz in 
their texture and is located at the central part of the exploration area. 
Local evidence of hydrothermal breccia and veinlets having silica and 
box-works of iron oxides are the result of the weathering of primary iron 
and copper sulfides [13]. 

The majority of rocks in the alteration zone are volcanic with various 
textures and chemical compositions that are massive or layered, dipping 
northward. The most significant intrusive body in the area recognized 
through field studies is the stock quartz-porphyry mass. These masses 
are the first targets for gold-copper mineralization. These rocks have 
been composed of rounded and large-sized quartz, altered biotite 
(primary), and tabular feldspar in a fine-grained silica matrix, also with 
evidence of demolished pyrite in the texture. The texture of sulfide 
mineralization is mainly disseminated and in some places is in the form 
of veinlets within intrusive porphyry stocks and their surrounding rocks. 
The sulfide mineralization appears in most cases as pyrite and in some 
cases as chalcopyrite at the southeast parts and also the western edge of 
the alteration system. Pyrite has usually been oxidized to secondary 
limonite and rarely to Jarosite. At the central part of the alteration 
system, the acid leaching zone can be recognized by box-work textures 
related to the complete leaching of sulfide minerals such as pyrite. The 
veinlets of stock-work, semi-parallel veinlets with secondary iron oxides 
at the margins, have been located within the phyllic alteration zone. 
Secondary iron oxides such as hematite, goethite, and limonite that have 
been distributed over the altered area can result from the oxidization of 
sulfide minerals such as pyrite and chalcopyrite [13]. 
 

 

 
 

Figure. 1: The geological map of Tanurcheh mineralization area
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3. Material and methods 

3.1.  Geochemical sampling and ASTER images 

93 scattered rock and soil samples from mineralization outcrops of 
sulfide, secondary iron oxides, silica ± iron oxides veinlets, and alteration 
zones as the main part of Tanurcheh area were selected and analyzed 
using inductively coupled plasma mass spectrometry (ICP-MS) method 
for detecting 45 elements such as Au, Cu, Ag, As, Mo, etc. The locations 
of these samples and the ASTER image in the study area have been 
illustrated in Figure 2. 

The ASTER images provide remote sensing data in the 14 
spectral bands. The detailed descriptions of any pixels in the 14 bands of 
ASTER images are achievable. In this mineralization area, the 14 bands 
of ASTER were used as features for the geochemical samples in the SVM 
classification. Data acquisition (detailed descriptions of pixels in the 
locations of geochemical samples) from these bands was performed by 
MATLAB and GIS software. These achieved data were stored in a 
matrix. A sample of the dataset matrix is shown in Table1. The SVM 
classification was applied to this matrix. This matrix provides the 
geochemical samples and their features in the 14 bands of ASTER. 

 

 
 

Figure. 2: The location of geochemical samples and ASTER satellite imagery in 
the study area 

3.2. Support vector machine (SVM) 

SVM, as a supervised non-parametric statistical classifier, is useful for 
the classification of remote sensing data [14]. SVM applies a cloud to 
split the data of two groups from each other so that the hyperplane has 

the maximum distance from each side to both groups. The closest 
examples to this page are called vectors, as shown in Figure 3. These 
specimens specify some sort of boundary of their group [15]. SVM in 
the simplest form, the linear SVM, consists of a hyperplane that 
separates the set of positive and negative samples with maximum 
distance (figure3). 

 

 
 

Figure. 3: An illustration of the classification of SVM that divides the samples into 
superficial groups. The support pages are specified as a dashed line and the 
distance between the two screens is |W|/2 [15] 
 

Table 1: A sample of data set: the geochemical samples and their features 
obtained from the ASTER images were used for the SVM classification  

Geochemical data 
Features for SVM classification 

(Data acquisition from the ASTER 
image) 

samples Cu 
assay 

Geochemical 
class Band1 Band2 Band13 Band14 

1 65 B 160 23 42 200 
2 38 B 20 99 40 110 
3 120 RA 140 210 179 28 
4 410 LA 200 140 45 67 
5 320 LA 12 55 37 120 

 
Assume that for the classification of data with m training sample {(x1, 

y1 ),(xm, ym )}  with the label of the group yi∈{-1,+1}, the aim is to find the 
linear differentiation function w ∙ Φ (x) + b = 0, which separates the two 
groups based on the mapping of the input space, where Φ is the linear 
mapping operator. The following problem is defined for the production 
of optimal hyperplanes with the maximum possible margin and 
minimum error in the training of linear SVM: 

 

min 
w,b

1

2
‖ w ‖2+C ∑  ξ i

m 
i=1  min

w,b

1

2
‖ w ‖2+C ∑ ξi

m
i=1                                           (1) 

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑡𝑜𝑦𝑖  (𝑤 ∙ 𝛷 (𝑥)  +  𝑏)  ≥  1 − 𝜉𝑖  , 𝜉𝑖 ≥ 0                                            (2) 
 

Considering the increase of the hyperplane margin for the least error 
in network learning by data, variable C is included in the relationship 
that creates the compromises between margin increase and the least 
error in network learning. For this reason, when a linear mapping cannot 
prevent the collision of samples, coefficient C is determined to increase 
the edge of the margin by decreasing the network learning error [16]. 
The following equation can be solved using Lagrange coefficients: 

 

max
α

∑  αi-
1
2

m 
i=1 ∑ αi αj yi yj k (xi,xj)

m
i,j=1                                                                             (3) 

w = ∑  αi yi ϕ(xi),   ∑  αi yi = 0,    0 ≤ αi ≤ C        m
i=1

m
i=1                                         (4) 

 

In the training step, each pixel of a learning set is assigned by a class 
tag. The training algorithm tries to find the optimal separation 
hyperplane that maximizes the margin between the nearest pixels [17]. 
The boundary pixels, called support vectors, are used to create a decision 
surface. In the prediction step, each unlabeled pixel receives a label 
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based on the relative distance to the hyperplane. The kernel function 
can separate the datasets that are nonlinear to be detected in the feature 
space [18]. The decision function is given by: 

 

Lbl (x) = sign ( ∑ ( ai * bi*K (xi, x) + b))N
i=1                                                                 (5) 

 

Where x is the input pixel vector, xi is the ith support vector, N is the 
number of support vectors, ai and yi is the ith coefficients of Lagrange 
and the corresponding classification tag, respectively, and finally, b is 
the decision shift coefficient. K is a kernel function used to convert the 
original data to the feature space [19]. Different kernels can be used in 
the SVM such as linear, polynomial, and Gaussian (RBF). The RBF 
kernel can be defined as: 

 

K(xi, x) =  exp  ( - γ* ‖ x _ i - x ‖ 2)                                                                                  (6) 
 

Where 𝜸 is the RBF coefficient, determined after scanning the data, x 
is the input pixel vector, and xi is the ith support-vector. In this study, 
the ASTER pixels have been considered as test and train data based on 
the location of geochemical background, anomaly, and high anomaly. 

4. Results and Discussion 

The interpretation of geochemical data is an important subject in 
mining exploration. The descriptive statistical characteristics of original 
geochemical data in this mineralization area are shown in Table 2. 

The geochemical migration of elements and alteration of host or 
country rocks can occur during the mineralization process. There is an 
interesting relationship between the geochemical anomaly map and 
alteration zone in most mineralization areas. Until now, this relationship 
has not been studied mathematically. In this paper, the relationship 
between the geochemical background (B), regional anomaly (RA), and 
local anomaly (LA) classes and alteration zone has mathematically been 
studied using the SVM. The meaningful relationship between the 
anomaly map and alteration map demonstrates that their genesis and 
origins are similar together. There are two different mineralization 
processes of Cu porphyry and Au veiny mineralization in the Tanurcheh 
area that have unclearly been intertwined and have created extreme 
surface alterations [20, 21]. Determination of the major mineralization 
origin of these strong alterations is an important issue in this area. For 
this aim, the below steps for the new proposed scenario have been 
performed. The schematic map of these steps has been illustrated in 
Figure 4. 

The applied steps in this new approach are as bellow: 
1- Determining the thresholds of geochemical anomaly and 

background for Cu and Au geochemical data using probability plot 
method:  

Three classes consisting of B, RA, and LA were extracted from the 
geochemical data. The thresholds of 70 and 300 (PPM) divided the Cu 

grades into B, RA, and LA classes. Three classes of B, RA and LA for Au 
elements were also obtained based on the thresholds of 0.13 and 0.4 
(PPM). The statistical characteristics of these classes are shown in 
Table3. 

2- Plotting the geochemical samples on the ASTER image in the GIS 
environment and acquiring the data in MATLAB:  

The surface geochemical samples were plotted on the ASTER image 
in the GIS and the characteristics of 14 ASTER bands for any 
geochemical samples were extracted using GIS and MATLAB software. 
These features are reflection values of these pixels in the 14 bands. 
Therefore, after this step, 14 features for any geochemical samples are 
obtained from the ASTER images. We applied image processing 
methods on the ASTER images for data mining and a matrix consisting 
of 93 rows (geochemical samples) and 14 columns (the features of 14 
bands) was obtained. The geochemical samples in these rows were 
divided into three classes of B, RA, and LA-based on the obtained 
thresholds in step1. 

3- Classifying the geochemical samples based on the 14 obtained 
features using the SVM:  

The 93 geochemical samples containing 14 features were considered 
as test and train data. The SVM method was applied for the classification 
of these geochemical samples based on the three classes of geochemical 
B, RA, and LA. Therefore, the ASTER 14-bands images that cover this 
area were applied as features for the SVM classification. The 
classification process of SVM was accomplished for Au and Cu 
separately.  

The SVM classified the geochemical samples in three classes of B, RA, 
and LA for Cu and Au separately based on the 14 features of ASTER 
images. Tables 4 and 5 show the obtained confusion matrixes using the 
SVM based on the Au and Cu geochemical classes. These matrixes 
illustrate that 94%, 39%, and 67% of B, RA, and LA geochemical samples 
have been correctly classified based on the Au thresholds. The 
classification of geochemical samples based on the 14 bands using Cu 
thresholds provides better results (Table 5). The accuracy values based 
on the Cu geochemical B, RA, and LA classes are 96%, 62%, and 97%, 
respectively. It means that 96.6% of Cu local geochemical anomaly 
samples were correctly classified and distinguished using the 14 features 
of ASTER images and 96% of samples that are in the background area 
were properly detected. This scenario mathematically demonstrates the 
geochemical anomaly and background can be predicted using the 
ASTER images and alteration zone and there is an interesting 
relationship between the geochemical distribution map and alteration 
zone. It is a new achievement in mathematical geosciences 

5- Determination of the major origin of alterations using quantitative 
indices and prediction of Cu geochemical anomaly map based on the 
ASTER images: 

 

Table 2: The descriptive statistical analysis of original geochemical data 
 

mean median max min standard deviation variance skewness kurtosis 

Cu 80.7 44 561 5 106 11241 2.92 9.949 

Au 0.19 0.07 1.1 0.007 0.25 0.065 1.977 3.408 

Mo 16.99 9 196 1 25.35 642.7814 4.261 24.053 

Pb 537.63 58.5 7354 4 1175 1380882 3.446 13.47 

Zn 106.4 38 1070 1.67 170 28938 2.8774 10.081 

 
Table 3: The statistical characteristics of background (B), regional anomaly (RA), and local anomaly (LA) classes 

 class average Standard deviation minimum maxi
mum 

Cu 

B (Assay<70ppm) 28 17 5 68 

RA (70ppm<Assay<300ppm) 137 47 70 234 

LA (300 ppm<Assay) 488 104 336 561 

Au 

B (Assay<0.13ppm) 0.45 0.032 0 0.13 

RA (0.13ppm< Assay<0.4ppm) 0.2 0.063 0.14 0.39 

LA (0.4 ppm<Assay) 0.66 0.23 0.41 1.1 
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Figure. 4: The schematic map of various steps in the proposed approach 

 
 

 

Table 4: The confusion matrix obtained from the SVM classification of 
geochemical samples based on the ASTER images and Au background (B), 
regional anomaly (RA), and local anomaly (LA) classes 

  predicted classes 

Real Classes 

 B RA LA 

B 0.939103 0.022436 0.038462 

RA 0.551323 0.392328 0.056349 

LA 0.325 0 0.675 

 
Table 5: The confusion matrix obtained from the SVM classification of 
geochemical samples using ASTER images and Cu background (B), regional 
anomaly (RA), and local anomaly (LA) classes 

  predicted classes 

Real 
Classes 

 B RA LA 

B 0.960402 0.037111 0.002488 

RA 0.374074 0.625926 0 

LA 0 0.033333 0.966667 

 
In this step, the accuracy indices of SVM classification on Au and Cu 

elements are evaluated. Fawcett (2003) discussed some accuracy indices 
for the evaluation of classifier performance [22]. The accuracy indices 
of SVM classifications were derived from the obtained confusion 
matrixes. The indices of true positive rate (TP), false positive rate (FP), 
predictive power (PP), and correct classification rate (CCR) are 
calculated as bellow equations [22, 23]: 

 

True positive rate =  positives correctly classified
total positives                                   (7) 

 

False positive rate =  negatives  incorrectly  classified
total negatives                                   (8) 

 

 pp =  (True positive classified)

(False positive classified)
                                                                         (9) 

 

CCR =
sumatio𝑛 of odiagonal elements (Correctly classified)

(numbers of classes)
                                   (10) 

 

The samples that are correctly classified are named "positive correctly 
classified samples" and the samples that are incorrectly classified in the 
other classes are named "negative incorrectly classified samples". These 
obtained indices are shown in Table 6.  

The classification performance indices for two SVM classifiers based 
on the Au and Cu elements have been delineated and compared 
together in Figure 5. The CCR as an important criterion is calculated by 
the average of diagonal elements in the confusion matrix. The 
performance indices of the Cu element generally show more high values 
than the Au element. The CCR values of Cu and Au elements as 
important indices are 0.85 and 0.66, respectively. The SVM method 
based on the Cu thresholds shows a relatively high CCR. 

 
Table 6: The classification performance indices have been calculated based on 

the confusion matrixes 

Index 
Cu Au 

B RA LA B RA LA 
True Positive Rate 0.72 0.9 0.99 0.52 0.95 0.88 
False Positive rate 0.02 0.16 0.016 0.05 0.235 0.146 
Correct Classification Rate 0.85 0.66 

 
One of the performance criteria is relative operating 

characteristic (ROC). The ROC curve shows the variation of TP and FP 
in a diagram [22]. In this graph, the X and Y axes are related to the FP 
and TP, respectively. The ROC graph for Au and Cu elements has been 
depicted in Figure 6. The upper left corner point with the coordinate of 
(0, 1) shows the best classification. The performance of classification is 
related to the distance of points to this corner. The ROC diagram also 
shows a more performance for Cu rather than Au in this classification. 
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The local geochemical anomaly samples for Cu mineralization (LA-Cu) 
have more perfect performance and the background samples based on 
the Au assay (B-Au) show the least performance in this diagram. 

 

Figure 5: Comparison of predictive power indices of SVM for Au and Cu 
elements 

 

 
Figure 6: The ROC graph for B, RA, and LA in the Au and Cu classification 

 
The obtained performance and accuracy indices of SVM show better 

results for Cu mineralization and the geochemical background and 
anomaly samples based on the Cu assays can be properly predicted by 
the features of ASTER images. Therefore, there is a more effective 
relationship between the Cu mineralization process and the alteration 
zone. The comparison of the performance of SVM classification based 
on the Au and Cu geochemical data demonstrates the Tanurcheh 
alteration zone is more affected by the Cu mineralization process than 
the Au mineralization. The calculated accuracy indices demonstrate 
there is an interesting relationship between the alteration and Cu 
geochemical distribution map in this mineralization area. The geological 
information and the alteration types in the study area show a probable 
porphyry Cu mineralization that is associated with the Au veiny 
mineralization. The SVM results are properly confirmed by the 
exploratory information and suspected mineralization types in the area. 
This research demonstrates that there are significant relationships 
between the surface geochemical anomaly and alteration zones in 
mineralization and non-mineralization areas that are achievable using 
advanced pattern recognition methods. 

In the next step, the Cu geochemical map consisting of B, RA, and LA 
areas were predicted using the ASTER14 bands' data (Figure 7). The 
96.7% of local anomaly samples, 62% of regional anomaly samples, and 
96% of background samples have been correctly predicted using the 
ASTER images. In this Fgure, the locations of samples and 
mineralization veins have also been illustrated. There is interesting 
conformity between the anomaly areas and the mineralization veins that 
shows the high potential of this classification method for Cu anomaly 
separation.  

The SVM classification on the ASTER images distinguished an NW-

SE trend for Cu anomaly that is associated with mineralization veins. 
The Cu geochemical distribution map obtained from the original 
geochemical data has also been depicted in Figures 8 and 9. These maps 
also show a high resemblance to the Cu distribution map of the SVM 
classifier. 

 

 
 

Figure 7: The predicted Cu geochemical anomaly map using the SVM and 
ASTER images 

 

 
Figure 8: The Cu geochemical distribution map obtained from the original 

geochemical data  

 
 

Figure 9: The Cu classified geochemical distribution map obtained from the 
original geochemical data  
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Identification of various mineralization processes and their effects on 
alteration zones is an important achievement in mining exploration. The 
results of this study indicate the capability of SVM for the determination 
of the original genesis of alteration zones mathematically. The 
application of SVM and ASTER images is a useful idea for geochemical 
prospectivity mapping.  

5. Conclusion 

This research presents the novel application of the SVM classifier for 
anomaly mapping and detecting the relationship between the Au and 
Cu geochemical distribution map and alteration zones in the Tanurcheh 
Cu-Au mineralization area. In this area, detecting the major origin of the 
large and strong alterations is an important issue especially since we are 
faced with two different mineralization processes of Cu porphyry and 
Au veiny mineralizations. In this study, the SVM was used to classify the 
93 geochemical samples as a testing and training dataset to three classes 
of background, regional anomaly, and local anomaly that were obtained 
using the probability plot method for Cu and Au elements, separately. 
In these classifications, the ASTER 14-band images were applied as 
features for these samples. The SVM computationally detected the 
relationship between the Cu and Au geochemical classes and the 
alteration zones. The CCR values of SVM classifiers for Cu and Au 
elements are 0.85 and 0.66, respectively. The geochemical samples in the 
local anomaly, regional anomaly, and background were classified with 
accuracy values of 97%, 62%, and 96%for Cu and 67%, 39%, and 94% for 
Au, respectively. The performance indices of SVM showed better results 
for Cu porphyry than Au veiny mineralization type. The SVM showed 
the alteration zones are properly related to the Cu geochemical 
distribution map and have more been affected by the Cu porphyry 
mineralization type than the Au veiny mineralization. Finally, the Cu 
anomaly map was properly predicted using the ASTER images and SVM 
classifier. 
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