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A B S T R A C T 

 

Reserve evaluation is a very difficult and complex process. The most important and yet most challenging part of this process is grade 
estimation. Its difficulty derived from challenges in obtaining required data from the deposit by drilling boreholes, which is a very time-
consuming and costly act itself. Classic methods which are used to model the deposit are based on some preliminary assumptions about 
reserve continuity and grade spatial distribution which are not true about all kind of reserves. In this paper, a multilayer perceptron (MLP) 
artificial neural network (ANN) is applied to solve the problem of ore grade estimation of highly sparse data from Zarshouran gold deposits 
in Iran. The network is trained using four metaheuristic algorithms in separate stages for each algorithm. These algorithms are artificial bee 
colony (ABC), genetic algorithm (GA), imperialist competitive algorithm (ICA), and particle swarm optimization (PSO). The accuracy of 
predictions obtained from each algorithm in each stage of experiments was compared with real gold grade values. We used unskillful value to 
check the accuracy and stability of each network. Results showed that the network trained with the ABC algorithm outperforms other 
networks that trained with other algorithms in all stages having the least unskillful value of 13.91 for validation data. Therefore, it can be more 
suitable for solving the problem of predicting ore grade values using highly sparse data. 
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1. Introduction 

Ore grade estimation is a very complicated, time-consuming, and 
costly process. The complexity of this process derives from scientific 
uncertainty and the necessity for human intervention. Also, in almost all 
grade estimation cases, drilling is the major method to obtain samples 
from ore bodies and constructing a database for use in the estimation 
process. Drilling is one of the most expensive operations in the mining 
industry since more than 80 percent of the exploration costs are related 
to the drilling activities (Edwards and Atkinson, 1986) and it makes the 
grade estimation a very costly act (Kapageridis, 1999). However, it is very 
important to do this phase with the maximum possible accuracy, since 
it can have a significant role in the mining future planning and 
furthermore, it is applied as the major tool to distinguish the borders 
between economic and non-economic deposits (Journel and Huijbregts, 
1978). 

For the past forty years, geostatistical-based methods have been the 
main approach for solving the problem of grade estimation. These 
methods have been based on certain assumptions about the spatial 
distribution of ore grades within the deposit (Bárdossy and Fodor, 
2004). Negative effects of these assumptions made researchers establish 
more complicated methods for reducing the role of assumptions. 
However, these newer established methods require a large amount of 
knowledge and expertise in order to be effectively applied (Bárdossy and 
Fodor, 2004). Geostatistical methods such as kriging are indeed robust 
and powerful tools, but in some cases in which spatial patterns 
relationships and the grade distribution among ore body are 
complicated, Geostatistics are not always able to give the most optimum 

answer (Strebelle, 2002). Therefore, using nonlinear estimators like 
artificial neural networks (ANN) may be a proper resolution to 
overcome the problem of finding a complex spatial relationship among 
ore body. 

Many researchers have employed ANN and its various types for grade 
estimation in recent years. For example, a wavelet neural network 
(WNN) has been used successfully for grade estimation of a porphyry 
copper deposit (Li, 2010). In another case, a radial basis function 
network (RBF) has been employed for grade estimation in an iron 
deposit and its results have been compared to geostatistics (Kapageridis 
and Denby, 1999). Comparison between a multilayer perceptron (MLP) 
ANN results and geostatistics has been reported for a limestone deposit 
in another paper (Chatterjee, 2006). In another case, one of the newer 
kriging methods which are called median indicator kriging has been 
compared with an ANN for grade estimation in an iron ore deposit 
(Badel et al, 2011). Grade estimation results of a placer gold deposit 
obtained from a feedforward ANN network have been compared to 
estimation results from a support vector machine (SVM) in another 
paper (Dutta, 2010). A similar comparison has been made for an iron 
mine in another study (Maleki et al, 2014). In one research, a method 
called ANNMG is presented to integrate ANNs and geostatistics for 
optimum mineral reserve evaluation. The results are very promising 
(Jalloh, 2016). Several studies which are more or less similar to discussed 
ones, published in recent years (Koike, 2002; Samanta, 2004; Samanta 
et al 2005; Samanta et al, 2006; Samanta and Bandopadhyay, 2009; 
Tahmasebi and Hezarkhani, 2011). All of these researches are showing 
that the ANN can be used as a reliable approach to obtain mostly 
accurate grade estimations. 
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Metaheuristic algorithms are often nature-inspired, and they are now 
among the most widely used algorithms for optimization. Metaheuristic 
algorithms are very diverse, including but not limited to, simulated 
annealing, ant and bee algorithms, genetic algorithms, harmony search, 
differential evolution, particle swarm optimization, imperialist 
competitive algorithm, firefly algorithm, cuckoo search, etc. (Yang, 
2013). 

In this paper, in order to solve the problem of grade estimation for a 
Carlin-type gold deposit (Alimoradi et al, 2020), four metaheuristic 
algorithms which are artificial bee colony (ABC), genetic algorithm 
(GA), imperialist competitive algorithm (ICA) and particle swarm 
optimization (PSO), have been used as the training algorithm for an 
MLP neural network to find the unknown nonlinear relations between 
known and unknown gold grade values in the boreholes. A more 
detailed explanation of these metaheuristics and also the method of 
training an MLP with these algorithms have been discussed in the third 
chapter.  

 

2. Zarshouran Gold deposit  

Zarshouran is a Gold-Arsenic deposit located 42 km north of the 
town of Takab in the Province of West Azerbaijan, northwest Iran 
(Alimoradi et al, 2020). Zarshouran belongs to a group of sedimentary-
rock-hosted gold deposits which are very similar to Carlin-type 
sediment-hosted gold deposits (Paar, 2009). Both deposits are located 
within the active geothermal field of the Northern Takab region where 
thermal springs locally precipitate high amounts of gold and silver 
(Daliran, 2002). Figure 1 shows the location of the Zarshouran gold 
deposit. 

 

3. Methodology 

For a better understanding of the method that has been used in this 
paper for grade estimation, first, it is necessary to explain some theorems  
 

that are relevant to the design of the integrated algorithm. Figure 2. 
Shows the workflow of the machine learning procedure. 

3.1. Multilayer Perceptron neural network  

ANNs are some sort of computing system that contain processing 
elements in an interrelated network structural form. ANNs are the 
mathematical simulation of human neural systems and use the process 
of learning from available examples for gaining the ability to recognize 
the patterns among them. In an ANN, the neurons are placed in layers, 
where neurons of each layer are linked to neurons of the adjacent layer. 
The transfer function (TF) is the processing tool for neurons to work on 
signals (data) they receive. Usually, the integration of linear and non-
linear TFs is used to assist the network in solving non-linear and 
complex problems. The whole process of learning can be defined as the 
operation of setting the synaptic weights of the links between neurons 
of different layers. Details of basic and advanced mechanisms of ANNs 
have been described at length in the literature (Daliran, 2003). There are 
various types of ANNs such as multilayer perceptron (MLP), general 
regression, RBF and time delay networks, etc. in this paper an MLP 
network has been used for grade estimation in the Zarshouran gold 
deposit. 

The multilayer perceptron neural network is considered one of the 
best approximation methods for the prediction of the nonlinear 
relationship between inputs and outputs of a given dataset. In MLP, in 
order to gain the network output, elements in the input and hidden layer 
are manipulated by a weighting function. In addition, constant values, 
which are called biases of each layer, allows the network to shift the 
activation function to the left or right, which is so critical for better 
learning. The process of determining the weights and biases is called 
training which is done by using learning or training algorithms. In most 
cases, gradient-based learning algorithms have been used to do this task. 
But in this paper, in order to alleviate some disadvantages of gradient-
based training algorithms, such as becoming trapped in local minima, 
the network has been trained with four metaheuristic algorithms. The 
theory of these algorithms will be discussed in continue.  

 
 

 
Figure 1. Zarshouran location and simplified lithological map [31] 
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Figure 2. Workflow chart 

3.2. ABC algorithm  

Karaboga developed an Artificial Bee Colony (ABC) algorithm based 
on the behavior of bees in searching for flowers, which is called waggle 
dancing, and proposed it for solving optimization problems (Paravarzar, 
2014). In recent years, the ABC algorithm has been efficiently used for 
solving a vast spectrum of engineering optimization problems. It can be 
used as the training algorithm for better and more optimum learning in 
neural networks (Haykin, 1999).  

Like in nature, there are three groups of bees in the ABC algorithm: 
employed bees, onlookers, and scouts. In most cases, half of the colony 
population are considered as the employed bees and obviously, the other 
half will be onlookers. Each food source is occupied by one and only one 
employed bee. Therefore, the numbers of employed bees and food 
sources are equal. Each food source position corresponds to a potential 
solution to the optimization problem. The position of each food source 
is generated randomly by using the following equation: 

 

𝑥𝑖,𝑗 = 𝑥𝑗
𝑚𝑖𝑛 + 𝛷(𝑥𝑗

𝑚𝑎𝑥 − 𝑥𝑗
𝑚𝑖𝑛) (1) 

 

where i = 1, 2…, NP, D is the optimization problem dimension and ϕ 
is a random number uniformly distributed in the interval [0,1]. 𝑥𝑗

𝑚𝑖𝑛 and 
𝑥𝑗

𝑚𝑎𝑥  denote the lower bound and upper bound of the optimization 
problem, respectively. After the generating of initial positions, each 
position is updated according to: 

 

𝑣𝑖,𝑗 = 𝑥𝑖,𝑗 + 𝛿(𝑥𝑖,𝑗 − 𝑥𝑘,𝑗) (2) 
 

where k ∈ 1, 2…, NP and δ is a random number uniformly distributed 
in the interval [−1,1]. If the current position is beyond the lower or upper 
bounds of the optimization problem, boundary value would be 
considered for it. After that, the quality of each food source is evaluated 
using a fitness function or a cost function. Then, the onlooker bees start 
their working process and choose a food source based on its probability 
of selection which is calculated as follows: 

 

𝑝𝑖 =
𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑖
𝑁𝑃
𝑖=1

 
(3) 

 

In this equation, 𝑓𝑖𝑡𝑖 is the fitness (or cost) value of the selected food 
source, which is corresponding to the quality of the ith food source. Each 
food source is used to generate a candidate position by Eq. (2). If the 
candidate has better quality, the old food source is replaced by it. The 
maximum number of updates for each food source is controlled by a 
parameter, which is called “limit. If the number of updates for a source 
position reaches the limit value, that source is rejected, and scout bees 
generate a new food source randomly by Eq. (1). ABC algorithm is very 
flexible to solve both continuous and discrete optimization problems. 

Therefore, it can be a great and suitable substitute for gradient-based 
training algorithms. 

3.3. GA  

Ga is a nature-based computation method for solving a wide range of 
real-world optimization problems. GA can be used for various types of 
optimization problems that cannot be solved easily by other standard 
optimization algorithms; such as problems with discontinuous objective 
function, stochastic, highly nonlinear, or non-differentiable 
optimization problems (Karaboga, 2005). GA major tools to find a 
proper and optimum solution are crossover and mutation processes. GA 
algorithms use a crossover operator to mix two initial solutions, which 
are called parents, to produce offsprings. Then mutation operator is 
applied randomly on offsprings in order to make them more unique in 
comparison to their parents. After that, if the offsprings have better 
fitness values based on the type of optimization problem, the parents are 
replaced by their offsprings in a process which is called survivor 
selection (Karaboga, 2007). Advantageous features of GA and the reason 
behind choosing it for training an MLP for grade estimation are that it 
can be used with both continuous or discrete parameters, does not need 
any assumptions about the problem, and, unlike gradient methods, it 
does not require computation of derivative information to reach to an 
optimum result. 

3.4. ICA 

Atashpaz-Gargari and Lucas proposed the ICA as the proper method 
for solving various optimization problems in 2007 (Goldberg and 
Holland, 1988). Like other population-based algorithms, ICA starts with 
an initial population. Each individual of the population is called a 
country in which some having the least cost are considered imperialist 
and the rest are the colonies of these imperialists. The division of the 
colonies of initial countries is based upon the power of the imperialist. 
so, at first, an imperialist’s normalized cost is defined by Eq. (4): 

 

𝐶𝑛 = 𝑚𝑎𝑥𝑖{𝑐𝑖} − 𝑐𝑛 (4) 
 

In this equation, Cn is the cost of nth imperialist and cn is the 
normalized cost of that imperialist. After the normalized cost of all 
imperialists is calculated, the normalized power of each imperialist 
would be: 

𝑝𝑛 = |
𝑐𝑛

∑ 𝑐𝑖
𝑛𝑖𝑚𝑝

𝑖=1

| 
(5) 

 

The normalized power of an imperialist is the number of colonies that 
are dominated and controlled by that imperialist. the initial number of 
colonies of an empire would be determined by the following equation: 

 

𝑁. 𝐶𝑛 = 𝑟𝑜𝑢𝑛𝑑{𝑝𝑛 . (𝑁𝑐𝑜𝑙)} (6) 
 

𝑁. 𝐶𝑛is the initial number of lesser countries or colonies of nth empire 
and 𝑁𝑐𝑜𝑙 is the number of all colonies. 𝑁. 𝐶𝑛is chosen randomly to divide 
the colonies for each imperialist (Goldberg and Holland, 1988).  

The colonies in each of the empires start moving towards their 
imperialist, based on the assimilation policy. Figure 3 shows this 
movement. In this movement, θ and x are arbitrary numbers that are 
generated based on 𝑥~𝑈(0, 𝛽 × 𝑑) , 𝜃~𝑈(−𝛾, 𝛾) . d is the notion of 
distance between imperialist and its colony and β must be greater than 
1. This constraint causes the colonies to get closer to the imperialist state 
from both sides. Moreover, γ is a parameter that adopts the deviation 
from the main direction. Although β and γ are random numbers, most 
of the times the best-fitted value of β and γ are approximately 2 and π/4 
(Rad).  

The total power of an empire is defined by the imperialist's power and 
the percentage of the colony's power. Therefore, the total cost defines 
by: 

 

𝑇. 𝐶𝑛 = 𝐶𝑜𝑠𝑡(𝑖𝑚𝑝𝑒𝑟𝑖𝑎𝑙𝑖𝑠𝑡𝑛) + 𝜉 𝑚𝑒𝑎𝑛 {𝐶𝑜𝑠𝑡(𝑐𝑜𝑙𝑜𝑛𝑖𝑒𝑠 𝑜𝑓 𝑒𝑚𝑝𝑖𝑟𝑒𝑛)} (7) 
 

𝑇. 𝐶𝑛 is the total cost of nth empire and ξ is a positive number, which 
is considered to be less than 1. 
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Figure 3.  Movement of colonies toward their relevant imperialist [38] 

 
The process of ICA begins after defining the above equations. Like 

real-world superpower competition for controlling the smaller 
countries, in ICA empires try to get the colonies of other empires into 
their domain. When the ICA gets to its next iterations, the power of 
more powerful empires will increase and therefore will end up in the 
reduction of the power of weaker empires. At the beginning of the 
competition, first one must find the probability of possessions for each 
empire based on its total power. The normalized total cost is simply 
obtained by: 

𝑁. 𝑇. 𝐶𝑛 = 𝑚𝑎𝑥𝑖(𝑇. 𝐶𝑖) − 𝑇. 𝐶𝑛       (8) 
𝑁. 𝑇. 𝐶𝑛 is the normalized cost of the nth empire. Having the 

normalized total cost, the possession probability of each empire would 
be: 

𝑃𝑝𝑛
= |

𝑁. 𝑇. 𝐶𝑛

∑ 𝑁. 𝑇. 𝐶𝑖
𝑁𝑖𝑚𝑝

𝑖=1

| (9) 

Finally, these processes will successfully cause all the countries to 
converge to a situation in which only one empire exists in the world and 
all the other countries are colonies of that empire and they have the 
same position and power as the imperialist (Goldberg and Holland, 
1988). ICA is not tested before for training a neural network on the 
problem of grade estimation in any available published papers. So, its 
ability in this field can be evaluated and compared with the other three 
algorithms in this paper for the first time.   

3.5. PSO 

Eberhart and Kennedy (Talbi, 2009) introduced the PSO as an 
optimization algorithm that derives its inspiration from the social 
behavior of birds and fishes. PSO can be used to solve a wide range of 
optimization problems, from nonlinear continuous functions to the 
most complex engineering problems. (Atashpaz-Gargari and Lucas, 
2007).  

In this paper, the global PSO algorithm has been used, which is 
described as follows. If the search space of optimization is considered as 
a D-dimensional space, then a D-dimensional vector (Xi) can be the 
representative of the ith particle of the swarm, Xi = (xi1, xi2, . . ., xiD)T. 
Another D-dimensional vector can be considered as the velocity or 
position change vector for each particle, Vi = (vi1, vi2, . . ., viD)T. Parameter 
g is defined as the best particle of the swarm index and the superscripts 
will show the iteration number. After each iteration, the position of 
every particle is updated based on that particle best exploration, best 
exploration among all the swarm, and also the previous velocity vector 
of the particle by using the following two equations (Talbi, 2009):  

 

𝑣𝑖𝑑
𝑛+1 = 𝑣𝑖𝑑

𝑛 + 𝑐𝑟1
𝑛(𝑃𝑖𝑑

𝑛 − 𝑥𝑖𝑑
𝑛 ) + 𝑐𝑟2

𝑛(𝑃𝑔𝑑
𝑛 − 𝑥𝑖𝑑

𝑛 ) (10) 

𝑥𝑖𝑑
𝑛+1 = 𝑥𝑖

𝑑 + 𝑣𝑖𝑑
𝑛+1 (11) 

 

In these equations, d = 1, 2, . . .,D; i = 1, 2,. . .,N and N is the swarm size; 
a constant value which is called acceleration constant is noted by c; r1 
and r2 are random numbers. A fitness or objective function which is 
suitable for the defined problem is used to evaluate the performance of 
each particle. 

Shi proposed using a parameter which is called maximum velocity 
(Vmax), which would improve the precision of the algorithm. It can make 
the particle continue the search in the region. based on this proposition, 
Eqs. (11) and (12) were modified as following equations in the later 

versions of the PSO (Eberhart and Kennedy, 2015): 

𝑣𝑖𝑑
𝑛+1 =  𝜒(𝑤𝑣𝑖𝑑

𝑛 + 𝑐1𝑟1
𝑛(𝑝𝑖𝑑

𝑛 − 𝑥𝑖𝑑
𝑛 ) + 𝑐2𝑟2

𝑛(𝑝𝑔𝑑
𝑛 − 𝑥𝑖𝑑

𝑛 )) (12) 

𝑥𝑖𝑑
𝑛+1 = 𝑥𝑖

𝑑 + 𝑣𝑖𝑑
𝑛+1 (13) 

w is called inertia weight; c1 and c2 are constant values called cognitive 
and social parameters, respectively; and χ is a constriction factor. 

PSO is extremely computationally inexpensive in terms of both 
memory requirements and speed. It also has the flexibility to be 
integrated with other optimization and soft-computing techniques to 
form hybrid tools (Gopalakrishnan, 2013). In addition to these 
advantages, it was never coded as the training algorithm of a neural 
network to be used for grade estimation before. So, the performance of 
this optimizer in these kinds of operations can be tested for the first time 
in this research. 

3.6. Training MLP network by Metaheuristic algorithms for Grade 
Estimation 

Applying the metaheuristic algorithms to train neural networks is 
relatively straightforward. The goal of metaheuristic optimizers is 
minimizing a cost function or maximizing a fitness function. So, if the 
process of defining the weights and biases be determined as an 
optimizing problem, then metaheuristic algorithms can be used to solve 
this problem and in other words, train the neural network. 

To do this, first, we need to extract the weights and biases from an 
initial network. Then the process of defining these parameters should be 
coded as the cost function of metaheuristics. After that, the whole 
process of the metaheuristics should be considered as a function which 
would be the training function for the network.  

In this paper, the ending criteria is to stop training and optimizing the 
network after some fixed number of iterations [32]. This method helps 
better understanding the results change with the different number of 
iterations. Also, the hyperbolic tangent sigmoid transfer function was set 
as the network’s TF. 

To compare the performance of each metaheuristic algorithm in 
training the MLP network for grade estimation, it is needed to use some 
criteria such as mean absolute error (MAE) and route mean square error 
(RMSE). Unskillful value (Dutta, 2010) is a quantity that shows the 
inability of the methods in their task. it is obvious that lower values are 
better and showing that the respective algorithm is more suitable for 
doing the estimation. It is defined as follows: 

𝑢𝑛𝑠𝑘𝑖𝑙𝑙𝑓𝑢𝑙 𝑣𝑎𝑙𝑢𝑒 = 𝑀𝐴𝐸 + 𝑅𝑀𝑆𝐸 + ((1 − 𝑅2) × 100) (14) 
where MAE is mean absolute error, RMSE is Root Mean Square Error 

and R2 is the coefficient of determination. 

3.7. Data Statistics 

Usually, the grade estimation computations are done with borehole 
log data which are taken directly from the deposit. The borehole data 
represent assay and surveying values of 49 boreholes of varying depth 
intervals from 60 to 230 m. Assay and surveying files typically contain 
information on the sample coordinates (easting, northing, and 
elevation), length and ore grades. Unfortunately, the boreholes were 
drilled at irregular intervals which can make many problems in the way 
of reaching an optimal grade estimation. The assay value for each 
borehole was collected at intervals of 1 m depth. Figure 4 shows the 
histogram of the distribution of gold grades from the assay data of drill 
holes, composited into 5 m samples, together with brief descriptive 
statistics. 

 
Figure 4. Histogram and the summary of descriptive statistics (using MINITAB) 
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The highly positive skewed shape is seen in the histogram graph. This 
feature of gold grade distribution is a norm as most of the gold deposits 
in nature typically occur sporadically in a few small patches with a high 
gold concentration in the region of the low-grade zone. Deeper studies 
of the drill holes demonstrate that high-grade values don't show any 
regular trend and occasionally appear amid low values. Therefore, 
modeling such data is difficult and the accuracy of predictive models is 
reduced due to the nature of data. The kurtosis of this dataset is 198.8 
which is far away from the kurtosis of a normally distributed dataset ( = 
3 ). In addition, the high variance value of the dataset showing the 
sparseness of grade distribution around the mean value. 

However, it is discernible that the available gold data are statistically 
sparse and of course because of the random nature of gold, the spatial 
modeling of this dataset is a very complex operation.  

3.8. Data Preparation 

In order to evaluate the performance of the proposed method on ore 
grade estimation, at first, data are divided into training and test subsets 
randomly. unfortunately, there is no geological information available in 
the dataset. Therefore, northing, easting, and elevation are considered as 
inputs for the networks and Au value is the outputs (Pyrcz et al, 2006). 
Data are normalized to the range between −1 and 1 by using the 
following equation: 

 

𝑋𝑛𝑜𝑟𝑚 =
(𝑋𝑜𝑙𝑑 −

1
2

(𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛))

1
2

(𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)
 (15) 

where 𝑋𝑛𝑜𝑟𝑚 is the normalized value, 𝑋𝑜𝑙𝑑 denotes the original value, 
and 𝑋𝑚𝑖𝑛, 𝑋𝑚𝑎𝑥 are the minimum and maximum of the original values, 
respectively. 

As it said before, reaching a completely accurate estimation for a 
random nature metal like gold is so hard and it is almost impossible in 
a vast area. So, if the aim of estimation reduced to finding the spatial 
correlation between grades of smaller sections of the area of study, it is 
possible to gain better and more accurate estimations in these parts and 
after that, with the integration of obtained results, reaching to reliable 
estimation of the whole area will be attainable. Therefore, in addition to 
using the whole area dataset for training the neural network, a clustering 
method named Self-organizing map (SOM) was applied to data in order 
to divide the boreholes into three sections of more compacted ones in 
each group to train network with them separately. The explanation of 
this method has been discussed in the literature (Abraham et al, 2006). 
The first cluster is in the west part of the area and consists of 16 
boreholes and 311 composites. The second one is in the center of the 
area and consists of 24 boreholes and 404 composites. The last one is on 
the east side of the area and consists of 9 boreholes and 239 composites. 
Figure 5 shows these clusters.  

4. Results 

Table 1 shows the parameter settings for each algorithm. These values 
have been set according to the best results obtained from trial and error 
in 40 executions of each algorithm.  

 
 

Table 1. Control parameters of algorithms, using whole data 

Algorithm Parameters 

MLP/ABC 11 neurons in 1 hidden layer, iterations = 130, employed 
= 350, onlookers = colony size  

MLP/GA  16 and 9 neurons in 2 hidden layers, 
generations(iterations) = 80, population = 300 

MLP/ICA 12 neurons in 1 hidden layer, total countries = 400, initial 
imperialists: 40, decades = 40, revolution rate = 0.3 

MLP/PSO 20 neurons in 1 hidden layer, swarm size = 350, 
iterations = 100 

 

Figures 5, 6, 7 and 8 show outputs vs. targets comparison and 
regression graphs of test subset which related to ABC, GA, ICA, and 
PSO algorithms, respectively.  

 

 
Figure 5. Clustered boreholes: 1. west part, 2. center part, 3. east part 

 

 
Figure 6. MLP/ABC results, using whole data: a) outputs vs. targets   b) regression 

 

Table 2 shows unskillful values of training algorithms. Based on 
results obtained from all methods, it can be said that none of the 
estimations are completely reliable.  

The random nature of gold and lack of proper data, especially the fact 
that geological and lithological analyses were not available, must be the 
reasons behind not desirable results. However, the results are 
considerably more accurate in comparison to studies that implemented 
the A.I. approach for gold grade estimation) Samanta and 
Bandopadhyay, 2009; Dutta, 2010). In this stage, the network which was 
trained with the ABC algorithm has been shown a better performance. 
Although the PSO results are very close to being the best. So, it can be 
said these two algorithms outperform others in this phase of estimation. 
For further investigation, clustered data were used. In this stage, only 
outputs vs. targets graphs for the first cluster are reported and for other 
clusters, just control parameters and unskillful values are appended, 
because for comparison it would be sufficient. 
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Figure 7. MLP/GA results, using whole data: a) outputs vs. targets  b) regression 

 

Table 2. Unskillful values of algorithms, using whole data  

(* sign shows the best result) 

Training algorithm ABC GA ICA PSO 

Unskillful value 64.69* 72.54 76.62 66.56 

 

 
Figure 8. MLP/ICA results, using whole data: a) outputs vs. targets   b) regression 

 

Table 3 and Table 4 show control parameters and unskillful values of 
algorithms for doing the estimations with first cluster data, respectively. 

 

Table 3. Control parameters of algorithms, using 1st cluster data 

Algorithm Parameters 

MLP/ABC 9 neurons in 1 hidden layer, iterations = 100, employed = 
300, onlookers = colony size 

MLP/GA 20 neurons in 1 hidden layer, generations(iterations) = 80, 
population = 260 

MLP/ICA 22 neurons in 1 hidden layer, total countries = 300, initial 
imperialists: 50, decades = 40, revolution rate = 0.3 

MLP/PSO 18 neurons in 1 hidden layer, swarm size = 350, iterations = 
100 

Table 4. Unskillful values of algorithms, using 1st cluster data  

(* sign shows the best result) 

Training algorithm ABC GA ICA PSO 

Unskillful value 17.7* 39.02 39.04 28.03 
 

Figures 9, 10, 11, 12 and 13 show outputs vs. targets comparison graphs 
obtained from each algorithm estimation with first cluster data. In these 
figures, sample numbers are the number of output data that has been 
selected randomly as Train, Test, and Validation samples.  

Table 5 and Table 6 are control parameters and unskillful values of 
algorithms using second cluster data, respectively.  

In the same way, Table 7 and Table 8 are reporting the same 
information about the third cluster. 

 
Table 5. Control parameters of algorithms, using 2nd cluster data 

Algorithm Parameters 

MLP/ABC 14 neurons in 1 hidden layer, iterations = 180, employed 
= 350, onlookers = colony size 

MLP/GA 16 neurons in each one of 2 hidden layers, 
generations(iterations) = 100, population = 500 

MLP/ICA 16 neurons in 1 hidden layer, total countries = 500, 
initial imperialists: 55, decades = 38, revolution rate = 0.3 

MLP/PSO 15 neurons in 1 hidden layer, swarm size = 380, 
iterations = 100 

 

Table 6. Unskillful values of algorithms, using 2nd cluster data  

(* sign shows the best result) 

Training algorithm ABC GA ICA PSO 

Unskillful value 48.82* 65.78 57.08 54.27 

 

 
Figure 9. MLP/PSO results, using whole data: a) outputs vs. targets   b) regression 

 

 
Figure 10. MLP/ABC results, using 1st cluster data 

 
 

The analysis of results demonstrates that by dividing a gold-rich area 
into smaller parts, it would be possible to reach a more precise 
estimation for each section despite all complexities. Improvements in 
the accuracy of estimations can be seen clearly in all three clusters, but 
the results obtained from the first cluster in the west part of the area of 
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study are the most accurate ones and therefore are so promising. It 
seems the boreholes' intervals play a major role in this issue because in 
the first cluster the boreholes are more compact and were drilled in a 
more regular pattern. It is just a hypothesis that should be tested. 

 

 
Figure 11. MLP/GA results, using 1st cluster data 

 

 
Figure 12. MLP/ICA results, using 1st cluster data 

 

 
Figure 13. MLP/PSO results, using 1st cluster data 

  
Table 7. Control parameters of algorithms, using 3rd cluster data 

Algorithm Parameters 

MLP/ABC 11 and 13 neurons in 2 hidden layers, iterations = 100, 
employed = 150, onlookers = colony size 

MLP/GA 25 neurons in 1 hidden layer, generations(iterations) = 
100, population = 250 

MLP/ICA 20 neurons in 1 hidden layer, total countries = 300, 
initial imperialists: 50, decades = 33, revolution rate = 0.3 

MLP/PSO 
9 neurons in 1 hidden layer, swarm size = 200, iterations 
= 100 

 

Table 8. Unskillful values of algorithms, using 3rd cluster data 

 (* sign shows the best result) 

Training algorithm ABC GA ICA PSO 

Unskillful value 57.19* 67.06 65.77 60.94 
 

In order to evaluate this probability, the data that belong to the most 
compact part of the first cluster boreholes, as can be seen in Fig 14, were 
considered as the input dataset for grade estimator networks.  

This section contains 8 boreholes and 95 composites. Fig 15 shows 
outputs vs. targets comparison of test subset which obtained by 
implementation of MLP/ABC algorithm. The graphs of other algorithms 
were excluded from the report to prevent the article from being too 
lengthy.  

However, control parameters and unskillful values of all algorithms 
are reported in Tables 9 and 10, respectively.  

 
 

Figure 14. Compact boreholes of 1st cluster 
 

 

 

 
 

Figure 15. MLP/ABC results using compact boreholes data  
 

 
Table 9. control parameters of algorithms, using compact boreholes data 

Algorithm Parameters 

MLP/ABC 8 neurons in 1 hidden layer, iterations = 100, employed 
= 75, onlookers = colony size  

MLP/GA  14 neurons in 1 hidden layer, generations(iterations) = 
100, population = 80 

MLP/ICA 12 neurons in 1 hidden layer, total countries = 35, initial 
imperialists: 7, decades = 40, revolution rate = 0.3 

MLP/PSO 
10 neurons in 1 hidden layer, swarm size = 75, iterations 
= 100 

 

 

Table 10. unskillful values of algorithms, using compact boreholes data 

 (* sign shows the best result) 

Training algorithm ABC GA ICA PSO 

Unskillful value 13.91* 23.08 21.23 19.45 
 

Based on these results, it can be said that all algorithms performed 
very well in this stage and the estimations are very accurate. Like before, 
the network which was trained with the ABC algorithm outperformed 
others. It should be noted the dataset which was used in this stage is very 
small and the results obtained from using such small data for estimation, 
cannot be generalized for the whole area. But if reaching an optimal 
estimation is not possible in a large area, especially when a random 
nature metal like gold is under study, implementing the methods on 
smaller parts and then integrating their high accuracy estimations, may 
allow us to achieve desirable results.  



104 A. Alimoradi et al.  / Int. J. Min. & Geo-Eng. (IJMGE), 56-2 (2022) 97-105 

 

5. Conclusion 

Grade estimation is one of the most crucial steps in mine 
development. It is very hard and almost impossible to achieve a reliable 
grade estimation, despite the method employed or data that has been 
used; but it is getting even more complex when the lack of proper data 
is the issue. 

 The estimations which were reported in this paper were done with 
data that doesn’t have any geological and lithological information. 
However, the proposed method could reach more accurate results in 
comparison to other gold grade estimation researches. In addition to 
doing the estimations with whole data, the clustering area of study to 
three sections based on boreholes intervals proved that regardless of all 
complexities, it is possible to obtain more accurate results for each 
section. For even deeper investigation, the most compacted part in one 
of the clusters was used as the training data to assess the importance of 
the regular drilling. The results of this stage are very precise. It should 
be noted that the network which was trained with the ABC algorithm, 
outperformed other networks in all stages. So, the ABC algorithm is the 
most suitable in comparison to ICA, GA, and PSO, to train a neural 
network for grade estimation by using statistically sparse data. 

One of the most important things that can be realized from this 
research is that regular drilling, even if it is done in low numbers of 
boreholes and even when the element of study has a very random 
nature, can play a major role in the preciseness of grade estimation; 
because it gives the operator the ability to do an accurate estimation in 
smaller parts; then and by integrating all estimations, it would be 
possible to gain to a good and relatively reliable estimation for the whole 
area. 
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