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A B S T R A C T 

 

In this study, the evolutionary polynomial regression (EPR) method has been employed to develop simple models with reasonable accuracy 
to predict the compressive strength and Young's modulus of the lime/cement stabilized clayey subgrade soil. For this purpose, the different 
specimens with the various cement and lime contents, at three moisture contents (dry side, wet side, and optimum moisture content) were 
fabricated and were cured for 7, 14, 21, 28, and, 60 days to conduct the unconfined compressive strength (UCS) test. According to the test 
results, a dataset consisting of 75 records for each additive was prepared. Results of this study show that the R2 value of the developed model 
for predicting UCS of cement-stabilized clay soil is equal to 0.96 and 0.95 for training and testing sets, respectively. These two values for lime-
stabilized soil are 0.91 and 0.87, respectively. Moreover, the R2 for predicting Young's modulus of cement-stabilized clay soil is equal to 0.90 
and 0.89 for the training and testing set, respectively. These two values for predicting Young's modulus of lime-stabilized soil are 0.88 and 
0.94, respectively. The sensitivity analysis showed that for the Portland cement stabilized clayey subgrade, the percentage of the Portland 
cement and moisture content are the most significant parameters for predicting the UCS and Young's modulus, respectively. In contrast, for 
the lime-stabilized clayey subgrade soil, the most important parameters are the moisture content and the UCS, respectively.  

Keywords: Stabilized clay, Portland cement and lime, Unconfined compressive strength, Young's modulus, Evolutionary polynomial 
regression. 

1. Introduction 

The rising costs of transportation and replacing low-quality materials 
have increased the use of the existing subgrade soils for road 
construction projects. However, the low bearing capacity often leads to 
some problems in using them. A variety of additives, such as lime, 
Portland cement, fly ash, bitumen emulsion, and polymer, may be used 
to improve the soil specifications. Soil stabilization will increase the 
strength and bearing capacity of the subgrade soils and reduces the 
pavement thickness. 

The performance of an additive depends on the soil and field 
conditions. In recent years, many researchers have studied soil 
stabilization using a variety of additives, such as lime, cement, fly ash, 
and industrial wastes [1-10]. 

One of the first projects in which cement was used as a soil stabilizer 
was a construction project in South Carolina in 1935 [11]. The effects of 
cement stabilization with or without any additives on the performance 
of a wide range of soils have been evaluated by prior researchers [1; 12-
18]. Previous research studies have shown that the treatment of clay soils 
with Portland cement decreases the liquid limit, plastic index, and 
swelling potential but increases the shrinkage limit and shear strength 
[19]. 

The cement can be used to stabilize a wide range of soils. However, 
the cement cannot be used for soils with an organic matter content 
greater than 2% or when the pH of the soil is lower than 5.3 [20]. The 

plasticity index of the cement-stabilized clay will decrease if the plastic 
limit increases. The cement content and curing time are two factors that 
affect the plastic limit [21]. The ACI 230 Committee report has stated 
that the cement changes some properties of soils, such as the maximum 
dry density and optimum moisture content. However, the direction of 
this change cannot be predicted. Moreover, cement stabilization leads 
to an immediate decrease in soil moisture [21]. 

Lime is also one of the additives that change soil properties. The soil 
stabilization with the lime reduces the liquid limit and plasticity index. 
The chemical reaction between the soil and lime also reduces the 
moisture content and maximum dry density but increases the optimum 
moisture content and bearing capacity of the soil [22]. Croft showed 
that some engineering properties of soils like the swelling potential, 
liquid limit, plasticity index, and maximum dry density would be 
significantly decreased and the optimum moisture content, shrinkage, 
and bearing capacity will be increased when using the lime as a stabilizer 
[23]. Bell found that the optimum lime content for soil stabilization is 
usually between 1 to 3 percent by weight of the soil, which does not 
change the plastic limit, but increases the strength [24]. However, the 
other studies reported a range of 2 to 8% for the lime stabilization of 
soils [25]. Ola and Gillot said that the stabilizer and soil type, soil 
minerals, and particle shape and size affect the soil stabilization results 
[26, 27]. 

Researchers have developed several models for predicting the 
unconfined compressive strength (UCS) and compaction parameters 
(maximum dry density and optimum moisture content) of the stabilized 
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geomaterials using various machine learning methods [6, 28-31]. Among 
these methods, artificial neural network (ANN), support vector 
machine (SVM), and gene expression programming (GEP) have been 
widely used. 

Das et al. utilized the artificial neural network (ANN) and support 
vector machine (SVM) to predict the maximum dry density, and UCS 
of the cement stabilized soil. The input parameters of their model 
included the liquid limit, clay, sand, and gravel percentages, moisture 
content, and cement percentage. Results of their study showed that the 
accuracy of the SVM was more than the ANN [32]. Suman et al. used 
the functional networks (FN) method and multivariate adaptive 
regression splines (MARS) to predict the UCS and maximum dry 
density of the cement-stabilized soil. Their results showed the suitability 
of these two methods for predicting the UCS and maximum dry density 
[33]. Sathyapriya et al. used the ANN and regression analysis to predict 
the UCS of soil stabilized by industrial wastes. In this study, it was found 
that both methods can predict the UCS based on the soil properties. 
However, the ANN provides a more accurate prediction than the 
regression analysis [34]. Ghorbani and Hasanzadehshooiili applied a 
Back-Propagation Artificial Neural Network (BP-ANN) and 
Evolutionary Polynomial Regression (EPR) to predict the CBR and UCS 
of the lime, and micro-silica stabilized samples. The results showed that 
a BP-ANN method is a suitable tool for predicting the CBR and UCS in 
any condition [6]. 

Mozumder et al. evaluated the performance of the SVM regression 
method for estimating the UCS of a geopolymer stabilized clayey soil. 
The results showed that the SVM regression is suitable for predicting 
the UCS [35]. 

Alavi et al. predicted the optimum moisture content, maximum dry 
density, and UCS of the stabilized soils using an optimized linear genetic 
programming (LGP) method. The results showed that the LGP has 
lower accuracy than the hybrid LGP and simulated annealing LGP/SA 
method [36]. Gullu used genetic programming to predict the UCS, and 
Young's modulus of fly ash stabilized soil. In this study, the inputs were 
considered as the percentages of fly ash, dry unit weight, relative density, 
and energy absorption capacity. The results showed that the genetic 
programming was more accurate than the nonlinear regression to 
predict the UCS and Young's modulus [37]. Motamedi et al. used the 
adaptive neuro-fuzzy inference system (ANFIS) to predict the UCS of 
sandy soil stabilized with the pulverized fuel ash (PFA) and cement [38]. 
In another study, Motamedi et al. used the SVM and ANFIS to predict 
the UCS of the sand stabilized with the cement and cockleshell. The 
results showed the high accuracy of the ANFIS compared to the SVM 
[39]. Soleimani et al. used multi-gene genetic programming (MGGP) to 
predict the UCS of geopolymer-stabilized soils. The model presented in 
this study included several input parameters such as the ash percentage, 
slag furnace slag percentage, liquid limit, plastic limit, plasticity index, 
and molar concentration. The results showed that the proposed model 
could predict the UCS values with high accuracy [40]. 

Despite the high ability of artificial neural networks to record and 
represent the behavior of engineering systems, there are some 
shortcomings in this method and other machine learning methods such 
as support vector machines and adaptive fuzzy neural inference systems. 
For example, in the neural network, the number of hidden layers and 
the number of neurons in the hidden layer must be selected, for which 
the trial and error method is usually used. Another major drawback of 
these methods is related to the nature of the black box and the simple 
and interpretable relationship between inputs and outputs is not 
recognizable. 

Evolutionary Polynomial Regression (EPR) is a new advanced 
regression method, that combines the best features of least square 
regression and the genetic programming regression techniques. The 
significant advantage of the EPR compared to other machine learning 
methods such as the ANN, SVM, and ANFIS is providing a simple and 
transparent equation for the prediction of the unknown parameters. 
Also, the required calculations for the other techniques are relatively 
complex and usually cannot be performed manually. The EPR has been 
successfully applied for modeling several geotechnical problems 
including stress-strain and volume change behavior of unsaturated soils 

[41], stability of soil and rock slopes [42], permeability, compaction 
characteristics of soil [43], flow number of asphalt mixtures [44], 
resilient modulus of fine subgrade soil [45], Hunched Back Quay Wall 
[46], shallow foundations settlement [47], pullout capacity of anchors 
[47], ultimate bearing capacity of piles [47],  UCS of Stabilized sandy 
soil, UCS and CBR of micro-silica-lime stabilized sulfate silty sand [48], 
and UCS of alkali-activated stabilized sandy soils [49]. 

Although extensive research has been conducted on cement and lime 
stabilization less attention has been paid to developing a model for 
predicting the UCS and Young's modulus of stabilized soils. Therefore, 
the main aim of this study is to develop a model to predict these two 
parameters using evolutionary polynomial regression (EPR). In 
addition, the gamma test method was used to determine the degree of 
importance of each input parameter on compressive strength and 
Young's modulus. Parametric analysis was also used to identify the effect 
of each of the input parameters on compressive strength and Young's 
modulus. 

2. Evolutionary Polynomial Regression (EPR) 

The EPR is a data mining hybrid regression method introduced by 
Giustolisi and Savic [50]. The EPR has two main steps. In the first step, 
the exponents of the symbolic model are selected using an evolutionary 
search strategy based on the genetic algorithm [51]. In the second step, 
the regression coefficients of the model (adjustable parameters) are 
determined using the least-squares method. The general form of the 
EPR model can be presented as follows [50]: 

 

𝑦 = ∑ 𝐹(𝑋, 𝑓(𝑋), 𝑎𝑗) + 𝑎𝑜
𝑚
𝑗=1                                                                    (1) 

 

Where y is the estimated output vector, m is the number of 
polynomial terms, F is the extended function, X is the matrix of the 
input variables, f is a user-defined function, aj is a constant, and a0 is a 
bias term. 

In the EPR, the least-squares method is used to determine the 
adjustable parameters. This method evaluates the adjustable parameters 
based on minimizing the sum of squared errors (SSE). Therefore the 
general form of the EPR is as follows: 

 

�̂� = 𝑎0 + ∑ 𝑎𝑖(𝑋1)𝐸𝑆(𝑖,1). . .𝑚
𝑖=1 (𝑋𝑘)𝐸𝑆(𝑘,1)𝑓((𝑋1)𝐸𝑆(𝑖,𝑘+1)). . . 𝑓((𝑋𝑘)𝐸𝑆(𝑖,2𝑘))  (2) 

 

�̂� = 𝑎0 + ∑ 𝑎𝑖𝑓((𝑋1)𝐸𝑆(𝑖,,1). . . (𝑋𝑘)𝐸𝑆(𝑖,𝑘))𝑚
𝑖=1                                                       (3) 

 

�̂� = 𝑎0 + ∑ 𝑎𝑖(𝑋1)𝐸𝑆(𝑖,1). . .𝑚
𝑖=1 (𝑋𝑘)𝐸𝑆(𝑖,𝑘)𝑓((𝑋1)𝐸𝑆(𝑖,𝑘+1). . . (𝑋𝑘)𝐸𝑆(𝑖,2𝑘))           (4) 

 

�̂� = 𝑓(𝑎0 + ∑ 𝑎𝑖(𝑋1)𝐸𝑆(𝑖,,1). . . (𝑋𝑘)𝐸𝑆(𝑖,𝑘)𝑚
𝑖=1 )                                                       (5) 

 

Where Xk is the kth explanatory variable, ŷ is the predicted value, k is 
the number of independent prediction variables (inputs), f is a function 
selected by the user, ES is the matrix of unknown parameters, and m is 
the number of polynomial terms, ai is the model parameter, a0 is a bias 
term. The internal functions of this model can be considered linear or 
nonlinear [52]. Figure 1 shows the EPR modeling process. 

3. Experimental Program 

3.1. Materials 

The clay soil was collected from the northwest of the Markazi 
province of Iran. The soil properties are given in Table 1. The gradation 
curve and compaction test results according to ASTM D1557 are shown 
in Figures 2 and 3, respectively. The physical and chemical properties of 
the hydrated lime and Portland cement are also given in Table 2. 

3.2. Preparing Specimens 

The dry materials (soil and additive) were sufficiently mixed for 2 
minutes to prepare the compacted cylindrical specimens (50 mm in 
diameter, 100 mm in height). Then the calculated amount of water was 
added. Mixed material was molded and compacted immediately into 
five equal layers using a steel hammer to obtain the maximum dry 
density. After the compaction process, the cylindrical specimens were 
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removed from the molds, and after weighing, they were cured at room 
temperature (approximately 25 ° C). It is noted that three specimens 
were prepared for each curing period. In this study, the specimens with 
7, 14, 21, 28, and 60 days curing periods and different moisture contents 
(including the optimum moisture content, 2% more than the optimum 
moisture (wet side) and 2% less than the optimum moisture (dry side)) 
were prepared and cured. 

 

 
Figure 1: The EPR process flowchart [53]. 

3.3. Unconfined Compression Strength Test 

The unconfined compression strength (UCS) test is commonly used 
for the mix design and quality control of stabilized materials and has 
been conducted for different geotechnical aspects by several researchers 
[1, 54- 57]. UCS is often used as an index to evaluate the performance 
(bearing capacity) of stabilized soil. In this study, the UCS test was 
performed under a constant strain rate (2% per minute), and the UCS, 
as well as Young’s modulus (secant modulus), corresponding to the 50% 
of failure strain, were determined. 

 

 
Figure 2. Soil gradation curve. 

4. Datasets 

In this study, two experimental datasets (75 data in each set) were 
used for developing EPR models to predict the UCS and Young’s 
modulus of stabilized clay soil. In these two datasets, the percentage of 
cement or lime (%), moisture content (%), and curing time (days) were 
considered independent variables, and the UCS and Young's modulus 
were considered the dependent variables. The statistical data are 

presented in Tables 3 and 4. To better understanding the data 
distribution, the frequency diagrams of the variables for both datasets 
are shown in Figure 4. 

 

   
Figure 3. Standard proctor compaction Curve. 

 

Table 1. The Geotechnical properties of soil 

parameter value 
Liquid limit (%) 29 
Plastic limit (%) 20 
Plasticity index (%) 9 
Maximum dry density (gr/cm3) 1.7 
Optimum moisture content (%) 18.5 
The specific gravity (Gs) 2.6 
P#200 (%) 98 
Unified Soil Classification CL 
AASHTO Soil classification by AASHTO A4 

 

Table 2. The Chemical and physical properties of Portland cement and hydrated 
lime . 

Properties Hydrated lime Portland cement 
Bulk density (Kg/Cm3) 490 1380 
The specific gravity (Gs) 2.35 3.15 
Specific surface area (cm2/g)  - 2900 
CaO (%)  - 61.3 
Ca (OH)2 (%) 96  - 
SiO2 (%)  - 15.3 
MgO (%)  - 0.9 
Mg (OH)2 (%) 0.5  - 
Al2O3 (%)  - 9.3 
CaCO3 (%) 1.5  - 
CaSO4 (%) 0.03  - 
Fe2O3 (%)  - 4.2 
K2O (%)  - 0.8 
TiO2 (%)  - 0.1 
SO3 (%)  - 6.4 

5. Developing the prediction model of the compressive 
strength and Young's modulus based on the Evolutionary 
Polynomial Regression (EPR) 

In this section, the procedure and details of modeling based on the EPR 
method for predicting the UCS and Young's modulus of cement/lime 
stabilized clay will be described. To this end, the EPR MOGA-XLvr.1 
software was employed [58]. For validating the EPR models, 70% (53 
records) and 30% (22 records) of the data were randomly selected as the 
training and testing sets, respectively. The range of variation and 
statistical limits of these two datasets are presented in Tables 5 and 6 for 
the samples stabilized with the Portland cement and lime, respectively. 
For the prediction of the UCS, the cement/lime percentage (CC or LC), 
moisture content (MC), and curing time (CT) were considered as the 
input variables, and the UCS (kPa) was considered as the output. 
However, for predicting Young's modulus, the cement/lime percentage 
(CC or LC), moisture content (MC), curing time (CT), and UCS were 
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considered as the input variables, and Young's modulus corresponding 
to the 50% of failure strain in kPa (E50) was considered as the output 
variable. To develop the EPR model, different models were developed 

assuming different values for the EPR setting parameters and finally, the 
optimum value of parameters was determined. Table 7 shows the 
optimum value of the EPR parameters. 

 

Table 3. The statistical characteristics of laboratory data for the cement-stabilized clay . 

Variable Maximum Minimum Average Standard deviation  Median 

Cement (%) 9 0 4.8 3.145 5 
Moisture (%) 22.65 16.4 19.37 1.86 19.3 
Curing time (day) 60 7 26 18.509 21 
UCS  (kPa)  5360 295 2113.493 1253.199 2038 
E50 (kPa) 700 3 220.67 185.28 150 

 

Table 4. The statistical characteristics of laboratory data for the lime-stabilized clay. 

Variable Maximum Minimum Average Standard deviation  Median 
Lime (%) 9 0 4.8 3.145 5 
Moisture (%) 22.6 16.5 21.3 2.647 21.2 
Curing time (day) 60 7 26 18.509 21 
UCS  (kPa)  1450 220 685.587 292.546 610 
E50 (kPa) 257 3 41.96 58.07 20.1 

 

Table 5. The statistical parameters related to the cement-stabilized clay dataset. 

Training data set (53 data) 

Variable Maximum Minimum Mean Standard deviation Median 
Cement (%) 9 0 4.91 3.2 5 
Moisture (%) 24.78 14.72 19.27 3.23 18.5 

Curing time (day) 60 7 26.79 19.21 21 
UCS  (kPa) 5360 361 2153.42 1280.32 2067 
E50 (kPa) 700 3 220.57 181.64 130 

Test data set (22 data) 
Variable Maximum Minimum Mean Standard deviation Median 

Cement (%) 9 0 4.55 2.92 5 
Moisture (%) 24.78 14.72 19.62 3.93 19.3 

Curing time (day) 60 7 24.09 16.06 21 
UCS  (kPa) 4500 295 2017.32 1149.12 1840 
E50 (kPa) 700 3.5 220.91 193.78 175.4 

 

Table 6. The statistical parameters related to the lime-stabilized clay dataset . 

Training data set (53 data) 
Variable Maximum Minimum Mean Standard deviation  Median 
Lime (%) 9 0 4.98 3.037 5 

Moisture (%) 29.52 14.8 21.11 4.21 20 
Curing time (day) 60 7 24.72 17.53 21 

UCS  (kPa)  1300 220 703.08 295.24 620 
E50 (kPa) 300 3 50.42 58.89 24.4 

Test data set (22 data) 

Variable Maximum Minimum Mean Standard deviation  Median 
Lime (%) 9 0 4.36 3.283 5 

Moisture (%) 29.52 14.8 21.76 3.62 22.2 
Curing time (day) 60 7 29.09 19.96 21 

UCS  (kPa)  1450 270 643.45 274.527 600 
E50 (kPa) 257 3 50.4 41.55 13.6 

 
Table 7. The optimum value of the EPR parameters. 

Setting of parameters 
Description of parameter 

E50 UCS 

Secant Hyperbolic logarithm Function set 

Statistical Regression Statistical Regression Type of model 

Y= sum(ai*X1*X2*f(X1*X2))+a0 Y= sum(ai*X1*X2*f(X1*X2))+a0 Type of presentation 

[0.5, 1, 1.5, 2, -0.5, -1, -1.5, -2] [0.5, 1, 1.5, 2, -0.5, -1, -1.5, -2] Exponents range 

5 5 Number of mathematical terms 

0 0 Bias (a0) value 
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Figure 4. The frequency histogram for each of the variables. 
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The optimal EPR model for predicting the UCS and Young's modulus 
for the cement-stabilized clay (CUCS and CE50) and lime-stabilized clay 
(LUCS and LE50) were obtained according to equations (6) to (9). 

 

𝐶𝑈𝐶𝑆 =
1869.9003

𝑀𝐶0.5
⋅ 𝐿𝑛(𝑀𝐶1.5) +  1335.2939 ⋅ 𝐿𝑛 (

1

𝑀𝐶0.5) +   

4.0781 ⋅ 𝑀𝐶0.5 ⋅ 𝐿𝑛 (
𝑀𝐶1.5⋅𝐶𝑇

𝐶0.5 ) + 596.8243
𝐶1.5

𝑀𝐶
 𝐿𝑛(𝐶2 ⋅ 𝑀𝐶1.5 ⋅ 𝐶𝑇2) +  

118.1526
𝐶2

𝑀𝐶0.5
 𝐿𝑛 (

𝑀𝐶0.5

𝐶2⋅𝐶𝑇0.5)     (6) 
 

𝐶𝐸50 = 0.0010105
𝑈𝐶𝑆2

𝑀𝐶
⋅ 𝑠𝑒𝑐ℎ (

𝐶2

𝑀𝐶
) +   

16963941737.455 ⋅
𝐶0.5⋅𝑈𝐶𝑆0.5

𝑀𝐶2
𝑠𝑒𝑐ℎ(𝐶𝑇1.5) +   

0.0068308 ⋅ 𝐶0.5 ⋅ 𝑀𝐶2 ⋅ 𝑠𝑒𝑐ℎ (
1

𝑀𝐶1.5) + 45.6824 ⋅
𝐶⋅𝑈𝐶𝑆0.5

𝑀𝐶1.5⋅𝐶𝑇0.5
⋅ 𝑠𝑒𝑐ℎ (

𝑀𝐶1.5

𝐶𝑇1.5 )   (7) 
 

𝐿𝑈𝐶𝑆 =
8773.4167

𝑀𝐶1.5
⋅ 𝐿𝑛(𝐶𝑇2) + 26.2715

𝐶𝑇

𝑀𝐶1.5
𝐿𝑛(𝐿0.5) + 903.9236

𝐿0.5

𝑀𝐶0.5
+

0.99189 ⋅ 𝐿2 ⋅ 𝐿𝑛 (
1

𝐿2⋅𝐶𝑇
)                                                                                          (8) 

 

𝐿𝐸50 = 1.0343 × 10−5 𝑈𝐶𝑆

𝐿0.5⋅𝑀𝐶0.5⋅𝐶𝑇1.5
⋅ 𝑠𝑒𝑐ℎ (

𝑀𝐶2

𝑈𝐶𝑆0.5) +  

0.012654
𝑈𝐶𝑆2

𝑀𝐶1.5⋅𝐶𝑇0.5
⋅ 𝑠𝑒𝑐ℎ (

𝐶𝑇

𝐿1.5) +  0.00021749
𝑈𝐶𝑆2

𝑀𝐶0.5
⋅ 𝑠𝑒𝑐ℎ (

1

𝐿
) +  

9212.6793
𝑈𝐶𝑆2

𝐶𝑇1.5
𝑠𝑒𝑐ℎ(𝑈𝐶𝑆0.5) + 0.008898 ⋅ 𝐿1.5 ⋅ 𝑈𝐶𝑆2 ⋅ 𝑠𝑒𝑐ℎ (

𝑀𝐶2

𝑈𝐶𝑆0.5)              (9) 

5.1. Performance of the developed models  

The following statistical equations were used to compare and evaluate 
the performance of the models : 

 

𝑅𝑀𝑆𝐸 = √
1

𝑀
∑ (ℎ𝑖 − 𝑀

𝑖=1 𝑡𝑖)2                                                                     (10) 
 

𝑅2 = [
∑ (ℎ𝑖−ℎ̄𝑖)(𝑡𝑖−�̄�𝑖)𝑀

𝑖=1

√∑ (ℎ𝑖−ℎ̄𝑖)2𝑀
𝑖=1 ∑ (𝑡𝑖−�̄�𝑖)2𝑀

𝑖=1

]

2

                                                                (11) 

 

𝑀𝐴𝐷 =
∑ |ℎ𝑖−𝑡𝑖|𝑀

𝑖=1

𝑀
                                                                                         (12) 

 

𝑀𝐴𝑃𝐸 =
∑ |ℎ𝑖−𝑡𝑖|𝑀

𝑖=1

∑ ℎ𝑖
𝑀
𝑖=1

× 100                                                                        (13) 

 

Where M is the number of data in each set, hi is the calculated value 
of the ith output, ti is the predicted value of the ith output, ℎ̄𝑖is the mean 
of hi, and �̄�𝑖 is the mean of ti. It was noted that, for an accurate prediction 
with no errors, the expected value of R2 is equal to 1, and the RMSE, 
MAD, and MAPE are equal to zero. Therefore, the RMSE, MAD, and 
MAPE with the lower values show a better performance than the 
developed model. The performance of the EPR models for predicting 
the UCS and Young's modulus of the cement/lime stabilized clay for the 
training, and testing sets are demonstrated in Figures 5 to 8, respectively. 
 

 As can be seen, the R2 of the EPR model for the UCS prediction of the 
cement stabilized clay for training and testing sets are 0.96 and 0.95, 
respectively. Moreover, the R2 of the lime-stabilized UCS for the training 
and testing set are 0.91 and 0.87, respectively. It is also observed that the 
coefficient of determination of Young's Modulus prediction equation in 
the case of cement stabilized clay soil for training and testing set are 0.91 
and 0.89, and in the case of lime stabilized clay soil are 0.88 and 0.94, 
respectively. The statistical results obtained from equations 10 through 
13 are presented in Table 8. 

6. Parametric Analysis 

Time limits and high costs of laboratory experiments are two factors 
that make researchers reluctant to carry out laboratory studies. In most 
cases, evaluating the input variable effects on the output results needs 
fabrication and curing of a considerable number of specimens, which 
increases the required time and cost. By developing the models, in 
addition to evaluating the effects of input variables on the outputs (here, 
UCS and Young’s modulus), the parametric analysis can also be 
conducted. In this study, the effect of the cement/lime percentage, 
optimum moisture content, and curing time on the UCS and Young's 
modulus of the stabilized clay soil have been investigated. For this 
purpose, the desired parameters were considered between the lowest 
and highest value, and other parameters were assumed to be equal to 
the mean values. Then, the UCS and Young's modulus were determined 
according to the variation of the desired parameter. It should be noted 
that in the parametric analysis for Young's modulus, due to the 
dependence of the UCS on the other parameters (the additive 
percentage, moisture content, and curing time), the compressive 
strength value is considered variable. Figures 9 and 10 illustrate the 
effects of the inputs on the UCS of the cement and lime stabilized clay 
oils, respectively. 
As can be seen  from the figures, in the cement-stabilized specimens, with 
increasing the cement percentage, the UCS was increased. In the lime-stabilized 
samples with increasing the lime percentage, the UCS increases up to a specific 
value and then decreases. It is also observed that by increasing the moisture 
content or decreasing the curing time for the cement and lime stabilized 
specimens, the UCS decreases. Goodarzi stated that the reason for the decrease in  

UCS in the presence of large amounts of lime is due to the complete dissolution 
of clay particles and the lack of sufficient silica and alumina in the system for the 
continuation of pozzolanic reactions. Under these conditions, free lime remains 
between soil particles, and its low friction and adhesion reduce UCS [59]. Past 
research, on the other hand, has shown that increasing the water-to-binder ratio 
as well as increasing the curing time will increase UCS [56, 60, 61]. The effect of 
the water-to-binder ratio is similar to that of Portland cement concrete, and 
increasing the curing time improves the pozzolanic reaction, resulting in greater 
UCS of the stabilized soil. Figures 11 and 12 show the effects of the inputs on 
Young's modulus of the cement/lime stabilized clay, respectively. 

 

 

  
                                                                              (a) Train                                                                                                            (b) Test 

Figure 5. The performance of the EPR model for predicting the UCS of cement stabilized clay soil. 
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                                                                              (a) Train                                                                                                            (b) Test 

Figure 6. The performance of the EPR model for predicting Young's Modulus of cement stabilized clay soil. 

 

 
                                                                              (a) Train                                                                                                            (b) Test 

Figure 7. The performance of the EPR model for predicting the UCS of lime stabilized clay soil. 

 

 
                                                                              (a) Train                                                                                                            (b) Test 

Figure 8. The performance of the EPR model for predicting Young's Modulus of lime stabilized clay soil. 
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Table 8. Performance criteria for the developed EPR models . 

           Model R2 RMSE MAD MAPE 

Cement stabilized UCS 

Training 0.96 255.09 957.35 0.10 

Testing 0.95 258.63 822.85 0.10 

Total 0.96 256.13 979.34 0.10 

Lime stabilized UCS 

Training 0.91 88.90 186.46 0.10 

Testing 0.87 102.63 194.39 0.12 

Total 0.90 92.46 196.64 0.11 

Cement stabilized 
Young’s modulus 

Training 0.90 56.62 144.85 0.20 

Testing 0.89 63.40 147.24 0.21 

Total 0.90 58.70 145.58 0.20 

Lime stabilized Young’s 
modulus 

Training 0.88 20.53 35.73 0.26 

Testing 0.94 23.00 29.20 0.34 

Total 0.88 21.29 36.20 0.28 

 
As expected, in the cement-stabilized samples, with increasing the 

cement percentage, Young's modulus increases, and in the lime-
stabilized specimens, Young's modulus increases up to a certain value 
and then decreases. It is also observed that with increasing the moisture 
content or decreasing the curing time of the stabilized specimens, 
Young's modulus decreases. Moreover, with increasing the UCS of 
stabilized specimens, Young's modulus increases. As can be seen, the 
trend of changes in Young's modulus is similar to the trend of changes 
in uniaxial compressive strength, which is consistent with the results of 
other researchers [57, 62, 63]. 

 

7. Sensitivity Analysis Using Gamma Test 

The Gamma Test (GT) can evaluate the relationship between the 
input and output variables. The GT calculates the minimum mean 
square error (MSE) using a smooth nonlinear function. For a better 
understanding of the GT, it is assumed that if the variables x and x' in 
the input space are closed together, their corresponding variables in the 
output space, y and y', will also be closed to each other. Otherwise, the 
noises have made a difference between them. Consider a set of 
parameters that are given as: 

 

{(𝑥𝑖 , 𝑦𝑖), 1 ≤ 𝑖 ≤ 𝑀} = (𝑋, 𝑌)                                                             (14) 
 

Where X is a vector, including the input variables xi, and yi are the 
corresponding output variables in the vector Y. The relationship 
between the x and y can be considered as : 

 

𝑦 = 𝑓(𝑥1, . . . . , 𝑥𝑀) + 𝑟                                                                            (15) 
 

In which r and f are random noise variables and the smooth function, 
respectively. The variance of the r can be calculated using the following 
equations: 

 

𝛿𝑀(𝑘) =
1

𝑀
∑ |𝑥𝑁(𝑖,𝑘) − 𝑥𝑖|

𝑀
𝑖=1

2
1 ≤ 𝑘 ≤ 𝑝                                               (16) 

 

𝛾𝑀(𝑘) =
1

2𝑀
∑ |𝑦𝑁(𝑖,𝑘) − 𝑦𝑖|

𝑀
𝑖=1

2
1 ≤ 𝑘 ≤ 𝑝                                               (17) 

 

Where 𝛾𝑀(𝑘) is the Gamma function of the output variable, 𝛿𝑀(𝑘)is 
the mean square distance to the kth nearest neighbor, 𝑥𝑁(𝑖,𝑘)is the index 
of kth nearest neighbor, 𝑦𝑁(𝑖,𝑘)is the corresponding output for 𝑥𝑁(𝑖,𝑘), and 
|…| is the Euclidean distance. The best intercept of the linear regression 
line 𝛾𝑀(𝑘) , in contrast 𝛿𝑀(𝑘) , is often named Г. Therefore, by 
calculating Γ, the least-squares error can be obtained using the following 
equation: 

 

𝛾 = 𝐴𝛿 + 𝛤                                                                                                 (18) 
 

If the vertical axis is intercepted (δ = 0), the value of Γ is shown as 
follows: 

 

𝛾𝑀(𝑘) → 𝑉𝑎𝑟(𝑟)    𝑎𝑠      𝛿𝑀(𝑘) → 0                                                                 (19) 
 

When the Gamma value is zero, there will be no limit to developing 
a precise model, so the points with the lower gamma values will be used 
for modeling. The slope can also provide useful information. The slope 
is a dimensionless value indicating the complexity of the function. The 
standard deviation also expresses the accuracy of linear regression. It is 
more reliable if this value is closed to zero. Moreover, the Vratio which 
returns the noise is calculated as: 

 

𝑉𝑟𝑎𝑡𝑖𝑜 =
𝛤

𝜎2(𝑦)
                                                                                         (20) 

 

Where, 𝜎2(𝑦) is the variance of y. In the gamma test, where the Vratio 
is closer to zero, the y value is more accurate. However, for the input 
parameters which be resulted in Vratio closer to 1, the value of random 
error is increased, and therefore, the extended model will be 
inappropriate.  

 

   
(c) Curing time (b) Moisture content (a) Cement content 

Figure 9. The effect of input variables on the UCS of the cement-stabilized clay soil. 

 

   
(c) Curing time (b) Moisture content (a) Lime content 

 

Figure 10. The effect of input variables on the UCS of the lime-stabilized clay soil. 
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(b) Moisture content (a) Cement content 

  
(d) UCS (c) Curing time 

 

Figure 11. The effect of input variables on Young's modulus of the cement-stabilized clay. 

 

  
(b) Moisture content (a) Lime content 

  
(d) UCS (c) Curing time 

 

Figure 12. The effect of input variables on Young's modulus of the lime-stabilized clay. 

Useful information can be obtained from the regression line of 
equation 17 and the distribution graph of the Gamma test in Figure 13. 
First, the y-intercept of the regression line shows the value of the 
Gamma test, which represents the portion of the output data variance 
that cannot be estimated by the model. Second, the slope of the 
regression represents the complexity of the model constructed from the 
input and output data. The steeper slope results in a more complex 
model. 

In this study, the Gamma test was employed to determine the 
importance of input parameters affecting the UCS and E50. Initially, the 

Vratio was calculated considering all the parameters. In the subsequent 
scenarios, the input parameters were removed one by one, and the Vratio 
was recalculated. Figures 14 and 15 show the effect of each scenario on 
the calculated Vratio value for the two parameters UCS and E50. By 
increasing the model's sensitivity to the parameters, the Vratio was 
increased. Therefore, the high value of the Vratio can be used to identify 
the most influential parameters of the model. 

As can be seen from the figures, the compressive strength of the 
cement-stabilized clay has the highest and lowest sensitivity to the 
Portland cement percentage and curing time, respectively. However, the 
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compressive strength of the lime-stabilized clay has the highest and 
lowest sensitivity to the moisture content and curing time, respectively. 
Moreover, Young’s modulus of the cement-stabilized clay has the 
highest and lowest sensitivity to the moisture content and Portland 
cement percentage, respectively. However, Young’s modulus of the 
lime-stabilized clay has the highest and lowest sensitivity to the 
compressive strength and curing time parameters, respectively. 

 

 
Figure 13. Distribution graph of the gamma test [64]. 

 
(a) Lime stabilized clay soil 

 
(b) Cement stabilized clay soil 

Figure 14. Significant importance of the inputs for predicting the USC. 

 

8. Conclusion 

The results showed that the developed models based on the EPR have 
good accuracy in predicting the compressive strength and Young's 
modulus. So, in the cement-stabilized soils, the R2 values related to the 
UCS prediction of the training and test data were 0.96 and 0.95 and for 
the lime-stabilized soils were 0.91 and 0.87, respectively. Moreover, in 
the cement stabilized soils, the R2 values related to Young's modulus 
prediction of the training and test data were 0.90 and 0.89, and for the 
lime stabilized soils were 0.88 and 0.94, respectively. The results of the 
parametric analysis showed that in the cement-stabilized specimens, 
with increasing the cement percentage, the UCS increases.  

 
(a) Lime stabilized clay soil 

 
(b) Cement stabilized clay soil 

Figure 15. Significant importance of the inputs for predicting Young’s modulus. 

 

The results showed that in the cement-stabilized soil, the cement 
percentage had the most impact and the curing time had the least impact 
on the compressive strength. However, in the lime-stabilized soil, the 
moisture content and curing time had the most and least impact on the 
UCS, respectively. 

It should be noted that the moisture content had the most and the 
cement percentage had the least effect on the cement stabilized Young's 
modulus. However, the UCS and curing time had the most and least 
effect on Young's modulus of lime-stabilized soil, respectively. Due to 
the accuracy of the developed models, it can be concluded that the EPR 
method can be useful for solving complex geotechnical problems. 
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