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Abstract 

Dynamics of beams made of axially grading material has been analyzed in present 

work. Shear deformation and rotational inertia of the rectangular cross-sectional beam 

have been considered using Timoshenko-Ehrenfest beam model. Material properties of the 

beam have been assumed as a power-law function. Solution of the vibration problem of the 

axially functionally graded Timoshenko-Ehrenfest beam has been carried out with Ritz 

formulation. Present model has been validated with the previous literature works. Effects 

of power-law index parameter and grading material properties on the dynamics of axially 

functionally graded Timoshenko-Ehrenfest beam have been investigated. Transverse 

deflection and slope of the beam have been depicted in various cases. Present study can 

give useful results for designing of axially graded structural elements. 

Keywords: Timoshenko-Ehrenfest beam, Axially graded material, Ritz Method, Weak form. 

1.   Introduction 

Composite structures have made a great impact on material structure design, especially in aviation and space industry 

applications, at the end of 20th century. The trend is continuing with nano and functionally grading applications of 

composite materials. Axially grading materials are one of the popular functional materials which have variable 
material properties in the length direction of structure. Structural elements in a building, which are affected by various 

loads at different cross-sections, are frequently encountered problem for the engineers. Beam elements which are 

made of axially grading material can be appropriate solution for this kind of structural engineering problems. 

Beam elements in structural engineering can be modeled with various continuum mechanics theories. Mostly used 

one is the unimodal Euler-Bernoulli Theory [1] which can give consistent results for smaller values of aspect 

(height/length) ratio. When the aspect ratio increases, rotation of the mid-axis of the beam have important shear 

deformation and rotational inertia effects on mechanics of the beam. Firstly, Bresse [2] interested with this problem 

considering the effects mentioned above. Then, Timoshenko [3,4] proposed the shear deformation and rotational 

inertia effects on beams in his so-called multimodal “Timoshenko beam theory”. Recently, Elishakoff [5–7] has 

proved that Ehrenfest had contributed to the Timoshenko beam theory and this theory must be named as “Timoshenko-

Ehrenfest (T-E) beam theory”. In addition to the transverse displacement of beam, rotation of the mid-axis is defined 
as an independent displacement function in T-E beam theory which can give more accurate results than the Euler-

Bernoulli model.  

Vibration of Timoshenko-Ehrenfest beams had been considered firstly by Thomas and Abbas [8] with finite 

element modeling of the structure. Sarma and Varadan [9] used the Ritz Method for the nonlinear vibration analysis 

of T-E beams. Zhou and Cheung [10] investigated the vibration of tapered T-E beams with using static loading 

displacement function as an approximate functions in dynamic analysis. Ruta [11] used the Chebysev polynomials for 
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the vibration analysis of nonprismatic T-E beam which rests in Pasternak foundation. Park and Hong [12] studied the 

energy flow model in T-E beams for the flexural waves. 

Li [13] firstly modeled the beams which are functionally graded through the thickness, using Euler-Bernoulli, 

Rayleigh and Timoshenko-Ehrenfest beam theories. Free vibration and transverse wave propagation formulations 

were obtained analytically. Pradhan and Chakraverty [14] used the Ritz Method to investigate the vibration of 

transversely graded T-E beams. Gul, Aydogdu and Karacam [15] studied with the wave propagation and vibration of 

transversely graded T-E beams considering new frequency spectrums. 

Nonlinear vibration of a T-E beam under the effect of moving load investigated in [16]. Attarnejad et al. [17] used 

basic displacement functions in vibration analysis of tapered T-E beams. Quintana and Grossi [18] studied the 
vibration of T-E beams with intermediate elastic supports by using Ritz Method. Ashgari et al. [19] used the modified 

couple stress theory for the transversely graded T-E beams. Yang and He [20] studied the vibration and buckling of 

size dependent axially graded T-E beams with modified couple stress theory.  

Shahba et al. [21] investigated the axially graded tapered T-E beams with finite element modeling. Rajasekaran 

[22] studied the dynamics of  centrifugally stiffened axially graded tapered T-E beams with differential transformation 

and differential quadrature element methods. Free vibration of axially graded T-E beams with non-uniform cross-

section was modeled by Huang et al. [23]. They used auxiliary functions in solution for the deflection and rotation. 

Sarkar and Ganguli [24] obtained the closed-form solution for vibration of uniform cross-sectional simply-supported 

axially graded T-E beams. Tang et al. [25] presented closed form frequency equations of axially graded T-E beams in 

various boundary conditions. Free vibration of T-E beams in thermal environment [26], in stepped structures [27], 

embedded in two-parameter elastic foundation [28] and transient analysis with variable cross-sectional area [29] had 
been considered by researchers. 

Dynamic analysis of bidirectional functionally graded T-E beams have been carried out by Hao and Wei [30]. 

Nguyen et al. [31] studied the forced vibration of bidirectional functionally graded T-E beams. Ghayesh [32–34] 

investigated the nonlinear forced vibration and of axially graded tapered T-E beams in his several papers. Cao and 

Gao [35] proposed the asymptotic development method in the dynamic analysis of axially graded T-E beams. 

Elishakoff and coworkers [36–39] proposed novel modified T-E beam models for various case studies including 

axially grading material structures. Nano-sized structures with functionally graded material assumption have been 

investigated by researchers [40–44] and special loading cases in specific nano structures have been studied in several 

works [45–52]. Also, dynamic analysis of axially functionally graded nano structures have been carried out in recent 

studies [53,54]. 

Present study considers the dynamic analysis of axially graded uniform cross-sectional T-E beams. Variation of 

material properties inside the beam are considered in power-law form. Energy formulation has been used in modeling 
of T-E beam. Approximate Ritz method has been used in solution of weak energy formulation. In addition to the 

literature, several boundary condition cases have been modeled and solved with Ritz formulation in the present work. 

Effects of power-law parameter and the grading material properties to the axially graded T-E beam vibration frequency 

have been investigated. Mode shapes for transverse deflection and rotation have been depicted. 

2.   Analysis 

A rectangular cross-sectional beam is considered (Fig. 1). L, b and h are the length, width and height of the beam, 

respectively. x axis is the length direction and z axis is the transverse direction of the beam. 

 

Figure 1. Continuum model for axially functionally graded timoshenko-ehrenfest beam. 
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According to Timoshenko-Ehrenfest beam theory, w(x,t) is assumed as the transverse displacement and Φ(x,t) is 

the angle of rotation of the normal to the mid-surface of the beam, x is the position and t is the time. Strain-

displacement relations can be interpreted as: 

 𝜀𝑥𝑥 = 𝑧
𝜕𝛷

𝜕𝑥
 (1a) 

 𝛾𝑥𝑧 = 𝛷 +
𝜕𝑤

𝜕𝑥
 (1b) 

where z is the coordinate measured from the mid-plane of the beam, ɛxx the normal strain, γxz the transverse shear 

strain. The strain energy for the beam can be written as: 

 𝑈 =
1

2
∫ ∫ (𝜎𝑥𝑥𝜀𝑥𝑥 + 𝜎𝑥𝑧𝛾𝑥𝑧)𝑑𝐴

𝐴
𝑑𝑥

𝐿

0
  (2) 

where A is the cross-sectional area of the beam, σxx and σxz are the normal and transverse shear stresses which are 

defined as: 

 𝜎𝑥𝑥 = 𝐸(𝑥)𝜀𝑥𝑥 = 𝐸𝑧
𝜕𝛷

𝜕𝑥
  (3a) 

 𝜎𝑥𝑧 = 𝐺(𝑥)𝛾𝑥𝑧 = 𝐺(𝑥) (𝛷 +
𝜕𝑤

𝜕𝑥
)  (3b) 

where E(x) is the Young Modulus and G(x) is the Shear modulus of axially functionally graded beam. Relation 

between them can be expressed as: 

 𝐺(𝑥) =
𝐸(𝑥)

2(1+𝜈)
  (4) 

where ν is the Poison’s ratio of the beam. By substituting equations (1a) and (1b) into equation (2), strain energy turns 

into: 

 𝑈 =
1

2
∫ (𝑀 (

𝜕𝛷

𝜕𝑥
)

2

+ 𝑄 (𝛷 +
𝜕𝑤

𝜕𝑥
)

2

) 𝑑𝑥
𝐿

0
  (5) 

where M and Q are the bending moment and shear force, respectively. 

 𝑀 = ∫ 𝑧𝜎𝑥𝑥𝐴
𝑑𝐴 = 𝐸(𝑥)𝐼

𝜕𝛷

𝜕𝑥
 (6b) 

 𝑄 = ∫ 𝜎𝑥𝑧𝐴
𝑑𝐴 = 𝜅𝑠𝐺(𝑥)𝐴 (𝛷 +

𝜕𝑤

𝜕𝑥
) (6b) 

where I is the second moment of area of beam and κs is the shear correction factor. The kinetic energy of the beam: 

 𝑇 =
1

2
∫ (𝜌(𝑥)𝐴 (

𝜕𝑤

𝜕𝑡
)

2

+ 𝜌(𝑥)𝐼 (
𝜕𝛷

𝜕𝑡
)

2

) 𝑑𝑥
𝐿

0
  (7) 

where ρ(x) is the mass density of the axially graded beam material. The Langrangian functional (F) of the vibration 

problem for the T-E beam can be written as: 

 𝐹 =
1

2
∫ (𝐸(𝑥)𝐼 (

𝜕𝛷

𝜕𝑥
)

2

+ 𝜅𝑠𝐺(𝑥)𝐴 (𝛷 +
𝜕𝑤

𝜕𝑥
)

2

) 𝑑𝑥
𝐿

0
−

1

2
∫ (𝜌(𝑥)𝐴 (

𝜕𝑤

𝜕𝑡
)

2

+ 𝜌(𝑥)𝐼 (
𝜕𝛷

𝜕𝑡
)

2

) 𝑑𝑥
𝐿

0
 (8) 

Transverse displacement and rotation of the beam functions may be defined as below with harmonic vibration 

assumption: 

 𝑤(𝑥, 𝑡) = 𝑊(𝑥) 𝑠𝑖𝑛 𝜔𝑡  (9a) 

 𝛷(𝑥, 𝑡) = 𝜃(𝑥) 𝑠𝑖𝑛 𝜔𝑡  (9b) 

Dimensionless form of the Eq. (8): 

 𝐹 =
1

2
∫ ((

𝜕𝛷

𝜕�̅�
)

2

+ 𝛼 (𝛷 +
𝜕�̅�

𝜕�̅�
)

2

) 𝑑�̅�
1

0
−

1

2
∫ (𝛺2(�̅�)2 +

𝛺2

𝛽
(𝛷)2) 𝑑�̅�

𝐿

0
 (10) 

where α is the shear deformation parameter, β is the slenderness ratio and Ω is the non-dimensional vibration frequency 

of the beam. �̅� and �̅� are the dimensionless beam length and transverse displacement, respectively. Mentioned 
parameters are defined below: 
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 𝛼 = 𝜅𝑠
𝐺(𝑥)

𝐸(𝑥)
𝛽   ,   𝛽 =

𝐴𝐿2

𝐼
   ,   𝛺2 =

𝜌(𝑥)𝐴𝜔2𝐿4

𝐸(𝑥)𝐼
   ,    �̅� =

𝑥

𝐿
   ,   �̅� =

𝑊

𝐿
 (11) 

2.1.   Axially Graded Material 

The axially functionally graded (aFG) material considered as mixing of two materials in the present work. Variation 

of the material properties (elasticity modulus, shear modulus and density) are assumed in the following forms: 

 [
𝐸(𝑥)

𝐺(𝑥)

𝜌(𝑥)
] = [

𝐸1 − 𝐸0

𝐺1 − 𝐺0

𝜌1 − 𝜌0

] 𝑥𝑘 + [
𝐸0

𝐺0

𝜌0

]       (12) 

where k is the power-law index and E0, G0, 0 and E1, G1, 1 are the material properties at the left and right end of the 
aFG beam, respectively. s is the ratio of material property variations and is defined below. Material property variations 

can be seen in Fig. (2): 

 
𝐸1

𝐸0
=

𝐺1

𝐺0
=

𝜌1

𝜌0
= 𝑠 (13) 

 

Figure 2. Variation of material properties in afg T-E beam. 

2.2.   Ritz Method 

Analytical solution of the vibration problem of T-E beam is complicated for several boundary conditions [55]. In the 

present study, this complexity increases with axially grading material assumption. Therefore, an approximate 

variational method, Ritz method has been used in the solution of the present problem [53,54,56].  

In the Ritz method, deflection and rotation functions can be defined in the following form [57]: 

 �̅�(�̅�) = ∑ 𝐶𝑚𝜉𝑚(�̅�)𝐽
𝑚=𝑚0

 (14a) 

 𝛷(�̅�) = ∑ 𝐷𝑛𝜑𝑛(�̅�)
𝐽
𝑛=𝑛0

 (14b) 

where 𝐶𝑗 and 𝐷𝑗 are the unknown coefficients, 𝜉𝑚(�̅�) and 𝜑𝑛(�̅�) are functions which fulfills at least geometric 

boundary conditions of the beam, respectively. Convergence of this function is satisfied if functions are 

mathematically complete set. To determine the vibration frequencies of beams following functional can be defined: 

 𝐹 = 𝑈𝑚𝑎𝑥 − 𝑇𝑚𝑎𝑥  (15) 

The functional should be minimized with respect to unknown coefficients given in Eq. (14): 
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𝜕𝐹

𝜕𝐶�̅̅̅�
= ∫ (𝛼

𝜕𝜉𝑚(�̅�)

𝜕�̅�
(𝐷𝑛𝜑𝑛(�̅�) + 𝐶𝑚

𝜕𝜉𝑚(�̅�)

𝜕�̅�
) − 𝛺2𝜑𝑛(�̅�)(𝐷𝑛𝜑𝑛(�̅�))) 𝑑�̅�

1

0
= 0   ,   �̅� = �̅�0, … , 𝐽 (16a) 

𝜕𝐹

𝜕𝐷�̅�
= ∫ (

𝜕𝜑𝑛(�̅�)

𝜕�̅�
(𝐷𝑛

𝜕𝜑𝑛(�̅�)

𝜕�̅�
) + 𝛼𝜑𝑛(�̅�) (𝐷𝑛𝜑𝑛(�̅�) + 𝐶𝑚

𝜕𝜉𝑚(�̅�)

𝜕�̅�
) −

𝛺2

𝛽
𝜑𝑛(�̅�)(𝐷𝑛𝜑𝑛(�̅�))) 𝑑�̅�

1

0
= 0   ,   �̅� =

�̅�0, … , 𝐽  (16b) 

These equations should be solved simultaneously in homogeneous system of linear equations which size is equal 

to sum of number of unknowns (𝐶𝑚 , 𝐷𝑛). Those equations can be described as an eigen-value problem: 

 ([
𝑃11 𝑃12

𝑃21 𝑃22
] − 𝛺2 [

𝑃13 0
0 𝑃23

]) [
𝐶𝑚

𝐷𝑛
] = 0 (17) 

where P11, P12, P21 and P22 are the stiffness matrix elements and P13 and P23 are the mass matrix elements. The mode 

shapes corresponding to any Ω is found by substituting that value into Eq. (15) and solving for the eigenvector 

components. Inserting these components into Eq. (15) gives mode shape of axially graded T-E beam. 

𝜉𝑚(�̅�) and 𝜑𝑛(�̅�) functions should be assumed as in following form: 

 𝜉𝑚(�̅�) = (�̅� − 0)𝑐1  (�̅� − 1)𝑐2(�̅�𝑚−1) (18a) 

 𝛽𝑗(�̅�) = (�̅� − 0)𝑑1  (�̅� − 1)𝑑2(�̅�𝑚−1) (18b) 

where c1 and c2 parameters define the transverse displacement function boundary conditions and d1 and d2 parameters 

define the rotation function boundary conditions. c1 and c2 parameters should be selected as 0, 1 and 1 for the free, 

simply supported and clamped boundary conditions, respectively. d1 and d2 parameters should be selected as 0, 0 and 

1 for the same boundary conditions. 

Assumptions about 𝜉𝑚(�̅�) and 𝜑𝑛(�̅�) polynomials can be seen below in general form: 

 

Table 1: Transverse Deflection and Slope Functions for Various Boundary Conditions. 

Boundary Condition 𝜉𝑚(�̅�) 𝜑𝑛(�̅�) 

S – S (�̅� − 0)1 (�̅� − 1)1(�̅�𝑚−1) (�̅� − 0)0 (�̅� − 1)0(�̅�𝑛−1) 

C – S (�̅� − 0)1 (�̅� − 1)1(�̅�𝑚−1) (�̅� − 0)1 (�̅� − 1)0(�̅�𝑛−1) 

C – F (�̅� − 0)1 (�̅� − 1)0(�̅�𝑚−1) (�̅� − 0)1 (�̅� − 1)0(�̅�𝑛−1) 

C – C (�̅� − 0)1 (�̅� − 1)1(�̅�𝑚−1) (�̅� − 0)1 (�̅� − 1)1(�̅�𝑛−1) 

S – F (�̅� − 0)1 (�̅� − 1)0(�̅�𝑚−1) (�̅� − 0)0 (�̅� − 1)0(�̅�𝑛−1) 

  

3.   Numerical Results and Discussion 

In this section, transverse vibration analysis of the axially graded T-E beam has been carried out for various power-

law index parameters and end side material properties. Dimensionless material properties are assumed in the analysis 

except the Poisson ratio (ν=0.3) of beam. The shear correction factor for the rectangular cross-section is calculated 

according to equation in below [55]: 

 𝜅𝑠 =
10(1+𝜈)

12+11𝜈
  (19) 

Convergence of the Ritz method is satisfied with the comparison with Tang et al. [25]’s study for the first five 

frequencies of the homogenous T-E beam in Table 1. While increasing the J to 10, present model converges to 

literature results. Especially first three mode frequencies are found almost identical for most of boundary conditions. 

Highest percentage error is calculated as %0.295 for 5th mode frequency at C-C boundary condition. Therefore, all 

results presented in this study have been obtained using J=10. 
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Table 2: Comparison of the First Five Dimensionless Frequencies of T-E beam. 

Boundary 

Condition 
 J 

Mode Number 

1 2 3 4 5 

S – S 
Present 

8 9.1631 31.0854 58.2548 88.5601 120.2256 

9 9.1631 31.0851 58.2544 87.1330 119.2301 

10 9.1631 31.0850 58.2470 87.1272 116.4933 

Tang et al. [25] 9.1607 31.0643 58.1930 86.9867 116.1501 

C – S 
Present 

8 11.0825 27.1144 44.8485 59.2041 63.3665 

9 11.0825 27.1144 44.8436 59.2036 63.3664 

10 11.0825 27.1144 44.8436 59.2030 63.3398 

Tang et al. [25] 11.0825 27.1144 44.8435 59.2030 63.3395 

C – F 
Present 

8 3.2271 14.4689 31.5028 47.9189 62.5408 

9 3.2271 14.4689 31.5025 47.9112 62.3602 

10 3.2271 14.4689 31.5025 47.9091 62.3511 

Tang et al. [25] 3.2271 14.4689 31.5025 47.9090 62.3470 

C – C 
Present 

8 13.8348 28.5179 45.6673 61.8775 68.3033 

9 13.8348 28.5179 45.6660 61.8675 68.2919 

10 13.8348 28.5179 45.6660 61.8622 68.2839 

Tang et al. [25] 13.8347 28.5179 45.6659 61.8620 68.2836 

 

Effect of aspect ratio to the dimensionless frequency of aFG T-E beam is shown in Table 3. Length scale affects 

the rigidity of the aFG T-E beam and increasing h/L ratio decreases the frequency. Second or right end side material 

properties also enhances the rigidity of the beam and decreases the frequency on stiffening case (s=2). 

 

Table 3: Dimensionless Fundamental Frequencies for aFG T-E beams (k =2). 

  s = 0.5 s = 2 

h / L 0.01 0.1 0.5 0.01 0.1 0.5 

Boundary 

Condition 

S – S 9.8262 9.4614 5.7750 9.8080 9.4777 5.9727 

C – S  15.7130 14.4006 6.5763 14.8415 13.6042 6.2609 

C – F  4.2502 4.1693 3.0284 2.7941 2.7535 2.1210 

C – C 21.4955 18.6069 7.0160 22.9564 19.8744 7.5099 

S – F  16.5541 15.7704 9.9809 14.4881 13.8413 7.8387 

 

 Variation of dimensionless frequencies with power-law index and right end side material properties can be seen 

in Figs. (3-7) for various boundary conditions. (s=1) curve defines the homogenous material property behavior which 

can be interpreted from Fig. (2). Clamped and simply supported boundary conditions restrict the dynamic behavior of 

aFG T-E beam. Therefore, frequency decreases in (s=0.5) case and increases (s=2) case with the effect of average 

rigidity of aFG T-E beam. Free end condition has not restrictive characteristics and in fact, polynomials in Table-1 
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can not satisfy the free end condition exactly which can be interpreted from Table-1. Thus, frequency increases in 

(s=0.5) case and decreases in (s=2) case with help of free end condition. 

 

Figure 3. Variation of Ω with Power-Law Index (k) on S-S Boundary Condition. 

 

 

Figure 4. Variation of Ω with Power-Law Index (k) on C-S Boundary Condition. 

 

 

Figure 5. Variation of Ω with Power-Law Index (k) on C-F Boundary Condition. 
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Figure 6. Variation of Ω with Power-Law Index (k) on C-C Boundary Condition. 

 

 

Figure 7. Variation of Ω with Power-Law Index (k) on S-F Boundary Condition. 

 

First three transverse deflection and rotation mode shapes of aFG T-E beam are depicted in Figs. (8-12). As in the 

frequency variation, (s=1) curves define the mode shape of homogenous T-E beam. aFG T-E beam mode shapes are 

obtained for (k=3) power-law index parameters. Mode shapes almost same in clamped and simply supported boundary 
cases but maximum deflection at nodal points changes position with the effect of right end side material properties. 

This situation can be seen clearly on 3rd mode shapes. Effect on amplitudes can be seen obviously in free end condition 

cases. Related with the frequency behavior, increasing second material properties increase the amplitude of aFG T-E 

beam. 

 

Figure 8. Right End Material Property Effects on Transverse Deflection and Slope of T-E Beam on S-S Case. 
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Figure 9. Right End Material Property Effects on Transverse Deflection and Slope of T-E Beam on C-S Case. 

 

 

Figure 10. Right End Material Property Effects on Transverse Deflection and Slope of T-E Beam on C-F Case. 

 

 

Figure 11. Right End Material Property Effects on Transverse Deflection and Slope of T-E Beam on C-C Case. 
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Figure 12. Right End Material Property Effects on Transverse Deflection and Slope of T-E Beam on S-F Case. 

 

4.   Conclusion 

Vibration of axially functionally graded beams has been investigated. Shear deformation and rotational inertia of the 

rectangular cross-sectional beam has been considered with using Timoshenko-Ehrenfest beam theory. Axially grading 

material variation has been assumed in power-law formulation. Weak energy formulation has been used in the 

dynamic modeling of aFG T-E beam. Solution of the vibration problem has been utilized by using approximate Ritz 

Method. Variation of material properties and characteristics show important effects on dynamics of aFG T-E beam. 

Restrictive boundary conditions (clamped and simply supported) increases the rigidity of beam and vice versa non-

restrictive (free) boundary condition decreases. Second material property affects the in which nodal point maximum 

deflection occurs. 
Present study could be useful at designing of newly developed structural elements or shafts which are subjected 

various load in different cross-sections.   
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