تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,502 |
تعداد مشاهده مقاله | 124,118,153 |
تعداد دریافت فایل اصل مقاله | 97,224,020 |
اثر تغییر اقلیم بر پتانسیل عملکرد و بهرهوری آب ذرت علوفهای در ایران | ||
به زراعی کشاورزی | ||
مقاله 15، دوره 24، شماره 4، دی 1401، صفحه 1247-1263 اصل مقاله (850.1 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jci.2022.334981.2648 | ||
نویسندگان | ||
حسنا فیاضی1؛ ابراهیم زینلی* 2؛ افشین سلطانی3؛ بنیامین ترابی4 | ||
1گروه زراعت، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران. رایانامه: h.fayaz222@gmail.com | ||
2نویسنده مسئول، گروه زراعت، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران. رایانامه: e.zeinali@gau.ac.ir | ||
3گروه زراعت، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران. رایانامه: Afshin.Soltani@gau.ac.ir | ||
4گروه زراعت، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران. رایانامه: b.torabi@gau.ac.ir | ||
چکیده | ||
یکی از چالشهای مهم مرتبط با کشاورزی و امنیت غذایی، تغییر اقلیم جهانی است. پژوهش حاضر با هدف بررسی تأثیر تغییر اقلیم در آینده بر عملکرد و بهرهوری آب ذرت علوفهای (Zea mays L.) در ایران انجام شد. برای پیشبینی تغییر اقلیم در آینده (2050 میلادی) از دو سناریوی RCP4.5 و RCP8.5 و از دادههای هواشناسی در سالهای 1394-1380 بهعنوان دوره مبنا استفاده شد. پتانسیل عملکرد با استفاده از مدل شبیهسازی گیاهی SSM-iCrop2 و براساس شیوهنامه گیگا برآورد شد و تغییرات اقلیمی برای هر سناریو در مدل شبیهسازی اعمال شد. نتایج نشان داد که تغییر اقلیم براساس هر دو سناریوی یادشده تأثیر قابلاعتنایی بر پتانسیل عملکرد ذرت علوفهای نسبت به شرایط فعلی نداشت و فقط موجب افزایشی معادل 9/0 و 4/1 درصد در دو سناریوی یادشده نسبت به شرایط فعلی (6/85 تن در هکتار) خواهد شد. این نتیجه را میتوان به چهارکربنهبودن این گیاه و در نتیجه عدم تأثیر افزایش CO2 بر رشد و عملکرد آن و همچنین باقیماندن دما در دامنه دماهای بهینه در بیشتر مناطق اقلیمی اصلی تولید ذرت علوفهای در ایران نسبت داد. میزان بهرهوری آب نیز در هر دو سناریو به میزان 4/0 و 6/1 درصد نسبت به شرایط فعلی (4/10 کیلوگرم بر مترمکعب) افزایش مییابد که دلیل احتمالی آن افزایش غلظت CO2 و بستهترشدن روزنهها میباشد. همچنین، بهدلیل آنکه تغییر چندانی در میزان آب مصرفی و تبخیر و تعرق مشاهده نشد میتوان افزایش بهرهوری آب در ذرت علوفهای را به افزایش پتانسیل عملکرد نسبت داد. | ||
کلیدواژهها | ||
پروتکل گیگا؛ دما؛ شبیه سازی عملکرد؛ مدل SSM-iCrop2؛ مناطق اقلیمی | ||
عنوان مقاله [English] | ||
The Effect of Climate Change on Yield Potential and Water Productivity of Forage Maize in Iran | ||
نویسندگان [English] | ||
Hosna Fayazi1؛ Ebrahim Zeinali2؛ Afshin Soltani3؛ Benyamin Torabi4 | ||
1Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran. E-mail: h.fayaz222@gmail.com | ||
2Corresponding Author, Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran. E-mail: e.zeinali@gau.ac.ir | ||
3Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran. E-mail: Afshin.Soltani@gau.ac.ir | ||
4Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran. E-mail: b.torabi@gau.ac.ir | ||
چکیده [English] | ||
Global climate change is among the most important agricultural and food security challenges. This study tries to investigate the effect of climate change on potential yield and water productivity of forage maize (Zea mays L.) in Iran. Two scenarios of RCP4.5 and RCP8.5 are used to predict the future climate (2050s) and climate data of 2001-2015 have been used as the base period. Potential yield is estimated using SSM-iCrop2 model according to the GYGA protocol and the climate changes for both scenarios are applied in the model. The results show that the climate change will not have a considerable effect on forage maize yield compared to the current conditions (85.6 ton ha-1) and will only lead to an increase of 0.9% and 1.6% in on both scenarios, respectively. This may be attributed to maize being a C4 plant and thus non-effectiveness of CO2 increase on its growth. Also, the temperature will remain in optimum range for maize in most of the main regions for forage maize cultivation areas in Iran. Water productivity in both scenarios will increase by 0.4% and 1.6%, compared to current conditions (10.4 kg m-3), respectively, which may be due to increased CO2 concentration and more closure of stomata. Also, improved water productivity in forage maize may be attributed to increase yield potential due to the fact that no considerable changes are observed in terms of the required water, evapotranspiration and irrigation times. | ||
کلیدواژهها [English] | ||
Climate zones, GYGA protocol, SSM-iCrop2 model, Temperature, Yield simulation | ||
مراجع | ||
Alasti, O., Zeinali, E., Soltani, A., & Torabi, B. (2020). Estimation of yield gap and potential of rainfed barley production increasing in Iran. Crop Production, 13(3), 41-60. (In Persian). https://doi.org/doi: 10.22069/ejcp.2021.16896.2250 Alder, J.R., & Hostetler, S.W. (2013). An interactive web application for visualizing climate data. Eos, Transactions American Geophysical Union, 94(22), 197-198. https://doi.org/10.1002/2013EO220001 Chen, S.X., Zhang, H., Sun, T., & Ren, Y.W. (2010). Effects of winter wheat row spacing on evapotranspiration, grain yield and water use efficiency. Agricultural Water Management, 97, 1126 -1132. https://doi.org/10.1016/j.agwat.2009.09.005 Daccache, A., Weatherhead, E.K., Stalham, M.A., & Knox, J.W. (2011). Impacts of climate change on irrigated potato production in a humid climate. Agricultural and Forest Meteorology, 151(12), 1641-1653. https://doi.org/10.1016/j.agrformet.2011.06.018 Dadrasi, A., Torabi, B., Rahemi, A., Soltani, A., & Zeinali, E. (2020). Parameterization and evaluation of a simple simulation model (SSM-iCrop2) for Potato (Solanum tuberosum L.) growth and yield in Iran. Potato. Research, 63, 545-563. https://doi.org/10.1007/s11540-020-09456-y Dadrasi, A., Torabi, B., Rahemi, A., Soltani, A., & Zeinali, E. (2019). Modeling the production and yield gap of Potato in present and future climatic conditions in Iran. Ph.D. Dissertation, Rafsanjan Vali Asr University, Iran. (In Persian) Densley, R.J., Austin, G.M., Williams, I.D., Tsimba, R., & Edmeades, G.O. (2006). Maize silage and winter crop options to maximize dry matter and energy for NZ dairy systems, In Proceedings of the New Zealand Grassland Association, 68, 193-197. https://doi.org/10.33584/jnzg.2006.68.2647 Faraji, A., & Soltani, A. (2006). Determining the optimal phenology and initial growth rate for chickpeas in rainfed conditions of Gonbad and Gorgan. Agricultural Science and industry, 2(7), 49-58. (In Persian) Fischer, R.A. (2015). Definitions and determination of crop yield, yield gaps, and of rates of change. Field Crops Research, 182, 9-18. https://doi.org/10.1016/j.fcr.2014.12.006 Food and Agriculture Organization (FAO). (2017). The FAOSTAT Database. Available at Web site http://faostat.fao.org/default. aspx (Last accessed July 2019). Intergovernmental Panel on Climate Change (IPCC). (2007). Intergovernmental Panel on Climate Change WGI, Fourth Assessment Report, Climate Change 2007: The Physical Science Basis. Summary for Policymakers. IPCC Secretariat, c/o WMO, 7bis, Avenue de la Paix, C.P.N. 2300, 1211 Geneva 2, Switzerland. Intergovernmental Panel on Climate Change (IPCC). (2014). Climate Change 2014 Synthesis Report. Summary for Policymakers. Contribution of Working Group I, II and III to Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), In: R. Pachauri and L, Meyer (eds). Geneva Switzerland. 151p. Islam, A., Ahuja, L.R., Garcia, L.A., Ma, L., Saseendran, A.S., & Trout, T.J. (2012). Modeling the impacts of climate change on irrigated corn production in the Central Great Plains. Agricultural Water Management, 110(1), 94-108. https://doi.org/10.1016/j.agwat.2012.04.004 Johnston, R.Z., Sandefur, H.N., Bandekar, P., Matlock, M.D., Haggard, B.E., & Thoma, G. (2015). Predicting changes in yield and water use in the production of corn in the United States under climate change scenarios. Ecological Engineering, 82, 555–565. https://doi.org/10.1016/j.ecoleng.2015.05.021 Jones, J.W., Hoogenboom, G., Porter, C.H., Boote, K.J., Batchelor, W.D., Hunt, L.A., Wilkens, P.W., Singh, U., Gijsman, A.J., & Ritchie, J.T. (2003). The DSSAT cropping system model. European Journal of Agronomy, 18(3), 235-265. https://doi.org/10.1016/S1161-0301(02)00107-7 Kang, Y., Khan, S., & Ma, X. (2015). Analysing climate change impacts on water productivity of cropping systems in the Murray Darling Basin, Australia. Irrigation and Drainage, 64(4), 443-453. https://doi.org/10 .1002/ird.1914 Kim, S.H., Kim, J., Walko, R., Myoung, B., Stack, D., & Kafatos, M. (2015). Climate Change Impacts on Maize-yield Potential in the Southwestern United States. In ASABE 1st Climate change symposium: Adaptation and mitigation conference proceedings (pp. 1-3), American Society of Agricultural and Biological Engineers. Kjellstrom, E., Barring, L., Gollvik, S., Hansson, U., Jones, C., Samuelsson, P., Ullerstig, A., Willwn, U., & Wyser, K. (2005). A 140-year simulation of European climate with the new version of the Rossby Centre regional atmospheric climate model (RCA3), Swedish Meteorological and Hydrological Institute, 108, 54 pp. Koocheki, A., & Nassiri Mahalati, M. (2008). Impacts of climate change and CO2 concentration on wheat yield in Iran and adaptation strategies. Field Crop Research, 6(1), 139-154. (In Persian) Li, J., Erickson, J.E., Peresta, G., & Drake, B.G. (2010). Evapotranspiration and water use efficiency in a Chesapeake Bay wetland under carbon dioxide enrichment. Global Change Biology, 16(1), 234-245. https://doi.org/10.1111/j.1365-2486.2009.01941.x. Lollato, R. P., Patrignani, A., Ochsner, T. E., & Edwards, J. T. (2016). Prediction of plant available water at sowing for winter wheat in the southern great plains. Agronomy Journal, 108(2), 745-757. https://doi.org/10.2134/agronj2015.0433 Mahmoodi, A., & Parhizkari, A. (2016). Economic Analysis of the Climate Change Impacts on Products Yield, Cropping Pattern and Farmer's Gross Margin (Case Study: Qazvin Plain). Economic Growth and Development Research, 5(20), 25-40. (In Persian) Ministry of agricultural Jihad statistics. (2001-2015). https://www.maj.ir/Index.aspx?page_=form&lang=1&PageID=11583&tempname=amar&sub=65 method Name=Show Module Content, (Last accessed November 2017). Miri, H.R. (2013). Effect of CO2 enrichment under drought stress condition on growth and weed competetiveness against corn. Plant Ecophysiology, 5(14), 60-73. (In Persian) Mohammadzadeh, Z., Soltani, A., Ajamnorozei, H., & Bazrgar, A. (2019). Modeling production capacity and yield of sugar beet according to current and future climatic conditions in Iran. Ph.D. Dissertation, Islamic Azad University, 90pp. (In Persian) Nehbandani, A.R., Soltani, A., Zeinali, E., Hoseini, F., Shahoseini, A., & Mehmandoy, M. (2017). Soybean (Glycine max L. Merr.) yield gap analysis using boundary line method in Gorgan and Aliabad Katul, Agroecology, 9(3), 760-776. (In Persian) Rahimi Jahangirlou, M., Kambouzia, J., Soufizadeh, S., Zand, E., & Rezayi, M. (2016). Study and comparison of temperature changes impacts on grain yield of irrigated maize (Zea mays L.) in Khuzestan and Fars provinces. Agroecology, 6(1), 118-134. (In Persian) Ramazani Etedali, H., Ababai, B., & Kaviyani, A. (2018). Impact of Increased Atmosphere CO2 Concentration on Crop Yield, Transpiration and Water Productivity of Main Cereals in the Qazvin Plain. Water Resources Engineering, 11(38), 39-48. (In Persian) Sayari, N., Alizadeh, A., Bannayan Awal, M., Hossaini, F., & Hesami Kermani, M.R. (2011). Comparison of two GCM models (HadCM3 and CGCM2) for the prediction of climate parameters and crop water use under climate change (case study: Kashafrood Basin). Water and soil, 25(4), 912-925. (In Persian) Sinclair, T. R., Hammer, G. L., & Van Oosterom, E. J. (2005). Potential yield and water-use efficiency benefits in sorghum from limited maximum transpiration rate. Functional Plant Biology, 32(10), 945-952. https://doi.org/10.1071/FP05047 Soltani, A., & Sinclair, T.R. (2011). A simple model for chickpea development, growth and yield. Field Crops Research, 124(2), 252-260. https://doi.org/10.1016/j.fcr.2011.06.021 Soltani, A., & Sinclair, T.R. (2012). Identifying plant traits to increase chickpea yield in water-limited environments. Field Crops Research, 133(1), 86-196. https://doi.org/10.1016/j.fcr.2012.04.006 Soltani, A., Alimagham, S. M., Nehbandani, A., Torabi, B., Zeinali, E., Dadrasi, A., Zand, E., Ghassemi, S., Pourshirazi, S., Alasti, O., Hosseini, R. S., Zahed, M., Arabameri, R., Mohammadzadeh, Z., Rahban, S., Kamari, H., Fayazi, H., Mohammadi, S., Keramat, S., Vadez, V., van Ittersum, M. K., & Sinclair, T. R. (2020). SSM-iCrop2: A simple model for diverse crop species over large areas. Agricultural Systems, 182, 102855. https://doi.org/10.1016/j.agsy.2020.102855 Soltani, A., Maddah, V., & Sinclair, T. R. (2013). SSM-Wheat: A simulation model for wheat development, growth and yield. International Journal of Plant Production, 7(4), 711-740. https://doi.org/10.22069/IJPP.2013.1266 Tubiello, F. N., & Ewert, F. (2002). Simulating the effects of elevated CO2 on crops: approaches and applications for climate change. European Journal of Agronomy, 18(1-2), 57-74. https://doi.org/10.1016/S1161-0301(02)00097-7 Van Bussel, L.G., Grassini, P., Van Wart, J., Wolf, J., Claessens, L., Yang, H., Boogaard, H., de Groot, H., Saito, K., Cassman, K.G., & van Ittersum, M.K. (2015). From field to atlas: Upscaling of location-specific yield gap estimates. Field Crops Research, 177, 98–108. https://doi.org/10.1016/j.fcr.2015.03.005 Van Ittersum, M.K., Cassman, K.G., Grassini, P., Wolf, J., Tittonell, P., & Hochman, Z. (2013). Yield gap analysis with local to global relevance-a review. Field Crops Research, 143, 4-17. https://doi.org/10.1016/j.fcr.2012.09.009 Van Wart, J., van Bussel, L.G., Wolf, J., Licker, R., Grassini, P., Nelson, A., Boogaard, H., Gerber, J., Mueller, N.D., Claessens, L., & van Ittersum, M.K. (2013). Use of agro-climatic zones to upscale simulated crop yield potential. Field Crops Research, 143, 44-55. https://doi.org/10.1016/j.fcr.2012.11.018 Vanuytrecht, E., Raes, D., & Williems, P. (2011). Considering sink strength to model crop production under elevated atmospheric CO2. Agricultural and Forest Meteorology, 151(12), 1753-1762. https://doi.org/10.1016/j.agrformet.2011.07.011 Xu, Z., Zheng, X., Wang, Y., Wang, Y., Huang, Y., & Zhu, J. (2006). Effect of free-air atmospheric CO2 enrichment on dark respiration of rice plants (Oryza sativa L.). Agriculture, Ecosystems and Environment, 115(1-4), 105-112. https://doi.org/10.1016/j.agee.2005.12.017 Zahed, M., Soltani, A., Zeinali, E., Torabi, B., Zand, E., & Alimagham, S.M. (2018). Modeling the production and yield gap of wheat in Iran. Ph.D. Dissertation, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Iran. (In Persian) | ||
آمار تعداد مشاهده مقاله: 561 تعداد دریافت فایل اصل مقاله: 259 |