تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,106,921 |
تعداد دریافت فایل اصل مقاله | 97,211,960 |
Effects of Occupational Formaldehyde Exposure on Passive Avoidance Conditioning and Anxiety Levels in Wistar rats | ||
Iranian Journal of Veterinary Medicine | ||
مقاله 7، دوره 17، شماره 1، فروردین 2023، صفحه 65-74 اصل مقاله (1.76 M) | ||
نوع مقاله: Anatomy- Histology | ||
شناسه دیجیتال (DOI): 10.22059/ijvm.17.1.1005241 | ||
نویسندگان | ||
Ava Resae؛ Mohammad Hasan Yousefi* ؛ Saeideh Naeimi؛ Ali Mahdavi | ||
Department of Basic Sciences, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran. | ||
چکیده | ||
Background: Formaldehyde is a volatile organic compound widely used in industry and medical fields such as Anatomy and Pathology. Exposure to this chemical negatively affects the skin, mucous membrane, and respiratory system. It can pass through the blood-brain barrier, potentially causing neurotoxicity. According to studies, formaldehyde might be involved in memory impairment and the cognitive decline process in Alzheimer disease (AD). Objectives: This study aimed to simulate chronic occupational formaldehyde exposure in rats and study its impacts on passive avoidance conditioning and anxiety. Methods: Twenty-four adult male Wistar rats were divided into four groups of 6 rats each. After an adaptation period, the rats were exposed to 1, 2, and 3 ppm formaldehyde vapor in an exposure chamber, 6 hours per day for 7 days. The control group was exposed to saline. After the exposure period, a shuttle box for passive avoidance conditioning and an elevated plus-maze test for assessing anxiety levels were performed. The data were analyzed by 1-way ANOVA and Duncan’s multiple range test for group comparison in SPSS and SAS software. Results: In the shuttle box test, formaldehyde dose-dependently decreased escape-through latency and increased the percentage of dark compartment entries (P<0.0001). In the elevated plus maze test, the percentage of time spent in open arms decreased by increasing the dosage (P<0.0001). Conclusion: Based on these findings, formaldehyde exposure can negatively alter brain function and cause memory impairment and anxiety. | ||
کلیدواژهها | ||
Anxiety؛ Formaldehyde؛ Memory؛ Rat؛ Shuttle box | ||
عنوان مقاله [English] | ||
تأثیر مواجهه با فرمالدهید شغلی بر شرایط احترازی غیرفعال و سطوح اضطراب در موشهای صحرایی ویستار | ||
نویسندگان [English] | ||
آوا رضایی؛ محمد حسن یوسفی؛ سعیده نعیمی؛ علی مهدوی | ||
گروه علوم پایه، دانشکده دامپزشکی، دانشگاه سمنان، سمنان، ایران. | ||
چکیده [English] | ||
زمینه مطالعه: فرمالدهید یک مادهی آلی فرار بوده که در صنعت و پزشکی کاربرد فراوان دارد. این ماده بر پوست، مخاطات و تنفس اثر گذاشته و طبق برخی مطالعات، فرمالدهید توان ورود به مغز و ایجاد عوارض عصبی داشته و در پروسهی آلزایمر نیز دخالت دارد. هدف: هدف از این مطالعه شبیهسازی مواجههی شغلی با فرمالدهید و بررسی اثر آن بر شرطیشدن احترازی غیرفعال و میزان اضطراب در موش صحرایی بود. روش کار: در این مطالعه 24 قطعه رت بالغ نژاد ویستار به چهار گروه تقسیم شدند. گروههای تحت درمان پس از دوره-ی سازش پذیری، بهمدت هفت روز متوالی و روزانه شش ساعت مورد مواجهه با فرمالدهید با دوزهای 1، 2 و ppm 3 قرار گرفتند. در گروه کنترل بهجای فرمالدهید از نرمال سالین استفاده شد. پس از اتمام دورهی مواجهه، تستهای رفتاری شاتلباکس و ماز بعلاوهمرتفع انجام شد. برای آنالیز دادههای آماری از نرم افزار SPSS وSAS، و برای مقایسهی گروهها از آزمون آماری ANOVA و آزمون تکمیلی دانکن استفاده شد. نتایج: مواجهه با فرمالدهید موجب افزایش درصدی زمان سپری شده در بازوی بسته در آزمون ماز بعلاوه مرتفع گردید (P<0.0001). همچنین در آزمون شاتلباکس، مواجهه با فرمالدهید موجب افزایش درصد و کاهش تاخیر زمانی ورود حیوانات به اتاقک تاریک شد (P<0.0001). نتیجهگیری نهایی: با توجه به یافتههای مطالعهی حاضر، مواجهه با فرمالدهید بصورت استنشاقی میتواند بر دستگاه عصبی مرکزی و حافظه اثر مخرب داشته و اضطراب را نیز افزایش دهد. | ||
کلیدواژهها [English] | ||
اضطراب, فرمالدهید, حافظه, موش صحرایی, شاتل باکس | ||
اصل مقاله | ||
1. Introduction
4. Discussion
| ||
مراجع | ||
Albertini, R. J., & Kaden, D. A. (2017). Do chromosome changes in blood cells implicate formaldehyde as a leukemogen? Critical Reviews in Toxicology, 47(2), 145-184. [PMID] Anderson, S. L., & Teicher, M. H. (1999). Serotonin laterality in amygdala predicts performance in the elevated plus maze in rats. Neuroreport, 10(17), 3497-3500. [DOI:10.1097/00001756-199911260-00006] [PMID] Bertoglio, L. J., & de Pádua Carobrez, A. (2016). Animal tests for anxiety. In M. Andersen, & S. Tufik (Eds.), Rodent models as tools in ethical biomedical research (pp. 313-326). Cham: Springer. [DOI:10.1007/978-3-319-11578-8_18] Canteras, N. S., Resstel, L. B., Bertoglio, L. J., Carobrez, A., & Guimarães, F. S. (2010). Neuroanatomy of anxiety. Current Topics in Behavioral Neuroscience, 2, 77-96. [PMID] Cardinali, D. P. (2018). Fourth level: The limbic system. In D. P. Cardinali (Eds.), Autonomic nervous system (pp. 245-285). Cham: Springer. [DOI:10.1007/978-3-319-57571-1_6.] Capuzzo, G., & Floresco, S. B. (2020). Prelimbic and infralimbic prefrontal regulation of active and inhibitory avoidance and reward-seeking. The Journal of neuroscience : The Official Journal of The Society for Neuroscience, 40(24), 4773–4787. [PMID] [PMCID] Clark, I. A., & Maguire, E. A. (2016). Remembering preservation in hippocampal amnesia. Annual Review of Psychology, 67, 51–82. [DOI:10.1146/annurev-psych-122414-033739] [PMID] [PMCID] Cornelio, A. M., & Nunes-de-Souza, R. L. (2007). Anxiogenic-like effects of mCPP microinfusions into the amygdala (but not dorsal or ventral hippocampus) in mice exposed to elevated plus-maze. Behavioural Brain Research, 178(1), 82-89. [DOI:10.1016/j.bbr.2006.12.003] [PMID] Dan, S., Pant, M., Kaur, T., & Pant, S. (2020). Toxic effect of formaldehyde: A systematic review. International Research Journal of Modernization in Engineering Technology and Science, 2(9), 179-189. [Link] de Lucena, J. D., da Silveira, H. F., de Paula, L. S., Junior, H. L. R., da Costa, S. O. O., & Leal, K. M., et al. (2017). The irritating effects of exposure to formaldehyde in user students of the human anatomy laboratory. International Archives of Medicine, 10(220), 1-6. [Link] Deng, M., Chen, S. R., & Pan, H. L. (2019). Presynaptic NMDA receptors control nociceptive transmission at the spinal cord level in neuropathic pain. Cellular and Molecular Life Sciences, 76(10), 1889-1899. [PMID] [PMCID] Donkelaar, H. J. T., Insausti, R., Domburg, P. V., Kusters, B., Hashizumw, Y., & Hori, A. (2020). The limbic system. In H. J. T. Donkelaar (Ed.), Clinical neuroanatomy (pp. 745-830). Cham: Springer. [DOI:10.1007/978-3-030-41878-6_14] Horisawa, T., Ishibashi, T., Nishikawa, H., Enomoto, T., Toma, S., & Ishiyama, T., et al. (2011). The effects of selective antagonists of serotonin 5-HT7 and 5-HT1A receptors on MK-801-induced impairment of learning and memory in the passive avoidance and Morris water maze tests in rats: Mechanistic implications for the beneficial effects of the novel atypical antipsychotic Lurasidone. Behavioural Brain Research, 220(1), 83-90. [DOI:10.1016/j.bbr.2011.01.034] [PMID] Josselyn, S. A. (2010). Continuing the search for the engram: Examining the mechanism of fear memories. Journal of Psychiatry and Neuroscience, 35(4), 221-228. [DOI:10.1503/jpn.100015] [PMID] [PMCID] Kang, D. S., Kim, H. S., Jung, J. H., Lee, C. M., Ahn, Y. S., & Seo, Y. R. (2021). Formaldehyde exposure and leukemia risk: A comprehensive review and network-based toxicogenomic approach. Genes and Environment, 43(1), 13. [PMID] [PMCID] Kapogiannatou, A., Paronis, E., Paschidis, K., Polissidis, A., & Kostomitsopoulos, N. G. (2016). Effect of light colour temperature and intensity on τhε behaviour of male C57CL/6J mice. Applied Animal Behaviour Science, 184, 135-140. [DOI:10.1016/j.applanim.2016.08.005] Kodavanti, P. R., Royland, J. E., Richards, J. E., Besas, J., & Macphail, R. C. (2011). Toluene effects on oxidative stress in brain regions of young-adult, middle-age, and senescent Brown Norway rats. Toxicology and Applied Pharmacology, 256(3), 386-398. [PMID] [DOI:10.1016/j.taap.2011.04.012] Korte, S. M., & De Boer, S. F. (2003). A robust animal model of state anxiety: Fear-potentiated behavior in the elevated plus-maze. European Journal of Pharmacology, 463(1-3), 163-175. [DOI:10.1016/S0014-2999(03)01279-2] Kumar, V., Bhat, Z. A., & Kumar, D. (2013). Animal models of anxiety: A comprehensive review. Journal of Pharmacology and Toxicology Methods, 68(2), 175-183. [DOI:10.1016/j.vascn.2013.05.003] [PMID] Li, T., Su, T., He, Y. G., & He, R. Q. (2016a). Chronic dehydrated dysmetabolism of formaldehyde in mouse brain and decline of learning in the shuttle-box. Progress in Biochemistry and Biophysics, 43(4), 429-438. [Link] Li, Y., Song, Z., Ding, Y., Xin, Y., Wu, T., & Su, T., et al. (2016). Effects of formaldehyde exposure on anxiety-like and depression-like behavior, cognition, central levels of glucocorticoid receptor and tyrosine hydroxylase in mice. Chemosphere, 144, 2004-2012. [DOI:10.1016/j.chemosphere.2015.10.102] [PMID] Lu, Z., Li, C. M., Qiao, Y., Yan, Y., & Yang, X. (2008). Effect of inhaled formaldehyde on learning and memory of mice. Indoor Air, 18(2), 77-83. [DOI:10.1111/j.1600-0668.2008.00524.x] [PMID] Makowski, E. C., & Ordonez, L. A. (1981). Behavioral alterations induced by formaldehyde-derived tetrahydroisoquinolines. Pharmacology Biochemistry and Behavior, 14(5), 639-643. [DOI:10.1016/0091-3057(81)90125-8] Matzen, L. E., Trumbo, M. C., Leach, R. C., & Leshikar, E. D. (2015). Effects of non-invasive brain stimulation on associative memory. Brain Research, 1624, 286-296. [DOI:10.1016/j.brainres.2015.07.036] [PMID] McDonald, R. J., Balog, R. J., Lee, J. Q., Stuart, E. E., Carrels, B. B., & Hong, N. S. (2018). Rats with ventral hippocampal damage are impaired at various forms of learning including conditioned inhibition, spatial navigation, and discriminative fear conditioning to similar contexts. Behavioural Brain Research, 351, 138-151. [DOI:10.1016/j.bbr.2018.06.003] [PMID] Nogueira, M. I., Barbieri, C., Vieira, R., Marques, E. R., & Moreno, J. E. H. (1997). A practical device for histological fixative procedures that limits formaldehyde deleterious effects in laboratory environments. Journal of Neuroscience Methods, 72(1), 65-70. [DOI:10.1016/S0165-0270(96)00158-6] Occupational Safety and Health Administration. (2011). Formaldehyde fact sheet. Washington, D.C: Occupational Safety and Health Administration. [Link] Qu, M., Lu, J., & He, R. (2017). Formaldehyde from environment. In R. He (Ed.), Formaldehyde and cognition (pp. 1-19). Dordrecht: Springer. [DOI:10.1007/978-94-024-1177-5_1] Quillfeldt, J. A. (2016). Behavioral methods to study learning and memory in rats. In M. Andersen, & S. Tufik (Eds.), Rodent model as tools in ethical biomedical research (pp. 271-311). Cham: Springer. [DOI:10.1007/978-3-319-11578-8_17] Reingruber, H., & Pontel, L. B. (2018). Formaldehyde metabolism and its impact on human health. Current Opinion in Toxicology, 9, 28-34. [DOI:10.1016/j.cotox.2018.07.001] Salonen, H., Salthammer, T., & Morawska, L. (2020). Human exposure to air contaminants in sports environments. Indoor Air, 30(6), 1109-1129. [DOI:10.1111/ina.12718] [PMID] Sorg, B. A., Swindell, S., & Tschirgi, M. L. (2004). Repeated low level formaldehyde exposure produces enhanced fear conditioning to odor in male, but not female rats. Brain Research, 1008(1), 11-19. [PMID] Svalbe, B., Stelfa, G., Vavers, E., Zvejniece, B., Grinberga, S., & Sevostjanovs, E., et al. (2019). Effects of the N-methyl-d-aspartate receptor antagonist, MK-801, on spatial memory and influence of the route of administration. Behavioural Brain Research, 372, 112067. [DOI:10.1016/j.bbr.2019.112067] [PMID] Til, H. P., Woutersen, R. A., Feron, V. J., & Clary, J. J. (1988). Evaluation of the oral toxicity of acetaldehyde and formaldehyde in a 4-week drinking water study in rats. Food and Chemical Toxicology, 26(5), 447-452. [DOI:10.1016/0278-6915(88)90056-7] Tong, Z., Han, C., Luo, W., Wang, X., Li, H., & Luo, H., et al. (2013). Accumulated hippocampal formaldehyde induces age-dependent memory decline. Age (Dordrecht, Netherlands), 35(3), 583–596. [DOI:10.1007/s11357-012-9388-8] [PMID] [PMCID] Trask, S., Ferrara, N. C., Jasnow, A. M., & Kwapis, J. L. (2021). Contributions of the rodent cingulateretrosplenial cortical axis to associative learning and memory: A proposed circuit for persistent memory maintenance. Neuroscience & Biobehavioral Reviews, 130, 178-184. [PMID] [PMCID] Wiktorowska, L., Bilecki, W., Tertil, M., Kudla, L., Szumiec, L., & Mackowiak, M., et al. (2021). Knockdown of the astrocytic glucocorticoid receptor in the central nucleus of the amygdala diminishes conditioned fear expression and anxiety. Behavioural Brain Research, 402, 113095. [DOI:10.1016/j.bbr.2020.113095] [PMID] | ||
آمار تعداد مشاهده مقاله: 895 تعداد دریافت فایل اصل مقاله: 684 |