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A B S T R A C T 

 

Exploratory drilling is one of the most important and costly stages of mineral exploration procedures, so the continuation of mining activities 
depends on the gathered data during this stage. Due to the importance of cost and time-saving in the performance of mineral exploration 
projects, the effective parameters for reducing the cost and time of drilling activities should be investigated and optimized. Road construction 
and the sequence of the drilling boreholes by drilling rigs are among these parameters. The main objectives of this research were to optimize 
the overall road construction cost and the difference in length drilled by each drilling rig. The problem has been modeled as a Multi-Objective 
Multiple Traveling Salesman Problem (MOmTSP) and solved by the Non-dominated Sorting Genetic Algorithm-II (NSGA-II). Finally; the 
Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method has been used to find the optimal solution among the 
solutions obtained by the NSGA-II. 

Keywords: Exploratory drilling, Multi-objective multiple traveling salesman problem, Non-dominated sorting genetic algorithm-II, 
Optimization, Technique for order preference by similarity to ideal solution. 

1. Introduction 

Estimation of the grade, thickness, and other characteristics of a 
deposit is one of the most important stages of mineral exploration, and 
the possibility of economic extraction could be examined based on its 
results. The reliable estimation of the characteristics is based on the 
gathered data from exploratory drill holes [1,2]. Therefore; exploratory 
drilling is one of the most important stages of mineral exploration 
procedures [3]. It is also the most expensive stage due to the high cost 
of drilling compared to other exploration activities [4]. Therefore; major 
optimization studies in exploratory activities are related to the 
exploratory drilling stage. 

Three different trends could be found in the literature on exploratory 
drilling optimization: 1) Optimization of technical and engineering 
factors of the drilling, including bit type, geometry of bit, thrust, weight 
on bit, rotational speed, low frequency, and flushing rate [3,5,6], 2) 
optimization of drilling pattern [7–10], and 3) optimization of drilling 
rigs route [11–14]. Most of the previous research has focused on the first 
two trends, and little research has been done on the third trend. As 
expected, the investigations that have been done in the optimization of 
drilling rigs route are related to petroleum reservoirs. Due to different 
drilling conditions in mineral resources and mines rather than 
petroleum reservoirs, it is necessary to define the optimization problem 
of drilling rigs route differently from the models presented in petroleum 
reservoirs. 

Exploratory drilling cost could be modeled and predicted simplified 
as a sum of two components of drilling rig relocation cost and drilling 
cost. The relocation cost could be calculated from the sum of the cost of 
transporting the drilling rigs into the area and the relocation cost 
between drilling points. Drilling rigs are usually the first heavy mining 
equipment that appears on the mining sites. Hence; until then, the road  

 
 
did not provide adequate access for heavy machinery traffic, and the cost 
of building a suitable road to the area will be added to the cost of 
transporting the drilling rigs. Since; there is mostly no road between the 
drilling points, a proper road must be created between them before 
moving the machine from one borehole to another [4]. Such a road 
must have suitable conditions for heavy machinery traffic on it. Hence; 
the relocation cost between two points is related to the cost of building 
a road between them. If the number of boreholes is more than 10, more 
than one drilling rig is available, and optimization of the drilling rigs 
route between boreholes will optimize the relocation cost. Also; in such 
conditions, designing the route that all drilling rigs have similar drilling 
lengths has a significant impact on optimizing drilling time. Therefore, 
in this paper, a multiple Traveling Salesman Problem (mTSP) is used to 
optimize the drilling rig’s route between boreholes to optimize the cost 
and time of drilling. 

The Traveling Salesman Problem (TSP) is one of the most popular 
and most well-known problems in combinatorial optimization problems 
that are used to model many real-world problems. The goal of TSP is to 
find the shortest route for a salesman to move from a depot, passing 
between a set of cities in which each city is visited only once and back 
to the depot. The mTSP is a generalization of the TSP in which m 
salesmen (1 < m < n) are used in the solution. In the case of mTSP, with 
a fixed start and endpoint in which all salesmen move from one starting 
point (depot), then all other cities are visited and each city is visited 
exactly once, and finally, all salesmen return to the starting point, the 
goal is to find a tour for all salesmen so that the overall distance traveled 
by salesmen are minimized [15,16]. The mTSP belongs to the class of 
NP-hard problems that could be approximately solved by heuristic 
optimization algorithms, such as genetic algorithms (GAs) [17–19]. 
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Since the issue of access road construction is of great importance in 
drilling exploratory boreholes, the optimal route with the shortest 
length should be determined to reduce the construction cost. In other 
words; an optimal task sequence for the drilling rigs must be planned 
firstly to ensure that it will be taken the least cost for the access road 
construction. Since; the purpose of the mTSP is a minimization the 
overall distance traveled by all salesmen, hence, some salesmen tend to 
travel more than others [20]. It means that, in the optimum drilling rigs 
route, one of the drilling rigs will drill more boreholes than the others 
and return later than them to the starting point. It will increase the 
drilling time and considerable differences in the drilling lengths and 
financial incomes of different drilling rigs. Therefore; the optimum 
route is not operational. In addition; since the drilling speed per meter 
of a borehole is much lower than the speed of the drilling rig moving on 
the ground, hence, in solving the drilling problem of exploratory 
boreholes using the mTSP, balancing the total drilling length by 
different drilling rigs, especially when the length of the boreholes is very 
different from each other, is more essential and operational than 
balancing the path traveled by different drilling rigs. Hence; a multi-
objective function has been defined based on minimizing both the 
overall distance traveled and the difference between the total length 
drilled by different drilling rigs to solve this limitation. Therefore; the 
problem has been defined as a MOmTSP. In literature, some successful 
applications of the MOmTSP in solving engineering problems, such as 
task assignment of multiple vehicles [21] and routing and scheduling of 
courier service [22], have been reported. This type of problem could be 
solved by meta-heuristic optimization methods, such as Strength Pareto 
Evolutionary Algorithm II (SPEA2) [20], NSGA-II [23,24], Multi-
Objective Particle Swarm Optimization (MOPSO) [25], and Multi-
Objective Ant Colony Systems (MOACSs) [26] methods. Due to its 
advantages of good robustness, high computational efficiency, and 
diversity, the NSGA-II method is one of the most popular and 
widespread elitist multi-objective that has been introduced to solve 
multi-objective optimization problems. Recently; some research has 
been done on the application of NSGA-II in the optimization of mine 
engineering problems such as production process [27,28], stope layout 
designing and production scheduling [29], and flotation process [30] 
problems. 

In this paper, to validate the proposed model, a data set of 49 
exploratory boreholes from the Dareh-Zar copper porphyry deposit has 
been used as a case study. Then; NSGA-II was used to solve the problem. 

The remainder of the paper is organized as follows. In section 2, the 
problem is defined. The mathematical models are formulated in Section 
3. Sections 4 and 5 give an overview of the GA and NSGA-II, 
respectively. Section 6 presents the discussions and the obtained results. 
Finally, Section 7 presents the conclusion. 

2. Problem definition 

Since, in the case of mTSP, the goal is to find the shortest route 
traveled by all salesmen, depending on the distribution of the cities, it 
may create an imbalance between the distances traveled by different 
salesmen. Therefore; reducing the difference in the distances traveled 
between salesmen should also be considered a second goal in the mTSP. 

Also, since the drilling time per meter of a borehole by a drilling rig 
is much longer than the traveling time by the drilling rig on the ground, 
hence, to prevent the increase in total drilling time, balancing the 
lengths drilled by different drilling rigs is much more important than 
balancing the distances traveled on the ground by them. Therefore; in 
this research, two objectives have been considered, including 1) 
minimizing the overall distance traveled by drilling rigs and 2) 
minimizing the difference in the lengths drilled between drilling rigs. It 
causes the drilling rigs to return to the starting point with a small-time 
difference from each other. Therefore; this reduces the stopping time of 
the drilling rigs at the endpoint relative to each other. 

3. Problem Formulation 

As mentioned before, the problem of drilling rigs’ routes between 
boreholes could be formulated as a MOmTSP. In this section, we present 
definitions and parameters, decision variables, objective formulation, 
and constraints. 

3.1. Definitions and parameters 

The following definitions are used in the formulation of objectives 
and constraints: 

n the number of boreholes 
m the number of drilling rigs  
dijk distance traveled between borehole i and j by drilling rig k 

Li  length of the borehole i 

3.2. Decision variables 

The drilling rig route is defined as a route between the boreholes, 
based on which a drilling rig drills the boreholes in a specific order. If 
several drilling rigs are available, a separate route should be designed for 
each, according to which each borehole is placed solely in the route of 
one drilling rig. The variable xijk is a binary variable which means if 
drilling rig k passes from borehole i to borehole j, then xijk is equal to 1 
and otherwise equal to 0. It was stated as follows. 

 

 ijkx 0,1          i,j=1,...,n, i j,  k=1,...,m                                                              (1) 
 

Finally, according to the objectives of the problem, a sequence of xijk 
is determined for each of the drilling rigs. 

3.3. Objective formulations 

If we only seek to minimize the overall distance traveled by the 
drilling rigs, this will cause some drilling rigs to transport longer than 
other drilling rigs. So; the standard deviation of the lengths drilled by 
drilling rigs to balance the lengths drilled by them could be defined as a 
second objective function. Therefore; in this project, two objectives 
function have been defined: 1) minimizing the overall distance 
transported by drilling rigs (Eq.2) and 2) minimizing the difference in 
lengths drilled between drilling rigs (Eq.3). 

 

m n n

1 ij ijk

k 1 i 0 j 0

min  Z = d x
= = =


 

(2) 

n n

2 j ijk

j 0 i 0

min  Z std( L x )
= =

= 
 

(3) 

3.4. Constraints 

To ensure that exactly m salesmen leave and return the depot node, 
two constraints have been defined as follows respectively: 

 

m n

0 jk

k 1 j 1

x m
= =

=
 

 (4) 

m n

i0k

k 1 i 1

x m
= =

=
 

(5) 
 

Each borehole should be in the route of one drilling rig and should 
not be repeated in the routes. Therefore; to ensure that a drilling rig 
arrives at each borehole once (Eq.6) and ensure that a drilling rig leaves 
each borehole once (Eq.7), the following constraints have been 
considered. 

 

m n

ijk

k 1 i 1

x 1;      j=2,...,n
= =

=
 

(6) 

m n

ijk

k 1 j 1

x 1;      i=2,...,n 
= =

=
 

(7) 
 

Sub-tour is the path created between the middle cities and is not 
connected to the depot. To remove the sub-tours generation on the final 
solution, the following constraint has been added to the problem as 
follows, 
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(8) 

4. Genetic Algorithm 

Since the GA was proposed by John Holland in the early 1970s [31], 
it has quickly attracted the attention of researchers around the world 
and has been used to solve a variety of problems, including order-based 
problems like the TSP and mTSP. 

In problem-solving using a GA, first, an initial population (parent, 
main population), which represents a possible solution to the problem, 
is created; then crossover and mutation operators are applied to the 
population, and a population of offspring (children) is created. Each of 
the initial population and the children population is evaluated using the 
fitness function. Then; using different scenarios, as much as the initial 
population, suitable members are separated from the initial population 
and the offspring population, and they are introduced as the main 
population of the next generation. This process will continue until the 
termination conditions, including pre-specified fitness value, are 
reached, no significant improvement occurs in the population for a 
given number of iterations, a set amount of computing time, or Number 
Function Evaluation (NFE) passes, are met. 

When a genetic algorithm is implemented to solve a TSP and mTSP, 
each city is considered a gene, and each path/solution is considered a 
chromosome. A solution/ chromosome to the mTSP can be expressed in 
a variety of ways, including one-chromosome [17], two-chromosome 
[32], and two-part chromosome [16] techniques. The advantages of 
using a two-part chromosome in solving mTSP problems result in a 
smaller search space; as a result, it increases the computational speed 
and, in many cases, produces better solutions than one-chromosome 
and two-chromosome techniques [16,33]. As the name implies, a two-
part chromosome comprises two parts. The first part includes a 
permutation of the n cities, and the next part has m genes. The numbers 
assigned to each gene in the second part indicate the number of cities 
assigned to each salesman and should be such that their sum equals the 
number of cities. 

For example, Figure 1 shows a two-part chromosome that includes 
nine cities and three salesmen. The number of cities assigned to each 
salesman is 2, 4, and 3, respectively. According to the first part of the 
chromosome and the cities assigned to each of the salesmen, the first 
salesman passes through cities 3 and 9, respectively, the second salesman 
passes through cities 2, 4, 1, and 7, and finally, the third salesman passes 
through cities 6, 8 and 5, respectively. If we show the depot with 0, the 
movement path of each salesman will be as follows: 

 

Salesman 1: 0→3→9→0 
Salesman 2: 0→2→4→1→7→0 
Salesman 3: 0→6→8→5→0 
 

3 9 2 4 1 7 6 8 5 2 4 3 
Salesman 1 Salesman 2 Salesman 3 

Figure. 1. Two-Part chromosome representation for nine cities with three salesmen. 
 

4.1. Crossover 

The crossover operator in GA is used on more than one selected 
parent to create one or more offspring. The probability of applying a 
crossover operator in a genetic algorithm is determined by pc, which is 

called the crossover probability. Since in a TSP, the parents are in the 
form of a permutation of the n cities, the children of the crossover 
operator must also be in the form of a permutation of the n cities. Four 
well-known crossover operators, which include Single-Point Crossover 
(SPX), Two-Point Crossover (TPX) [34], Order Crossover  (OX) [35], 
and Partially Mapped Crossover (PMX) [36] were used in this project. 

4.2. Mutation 

When we use only the crossover operator in the GA, the algorithm 
may converge the local minimum, which is so-called premature 

convergence. The mutation operator in a GA, through random changes 
of individuals, provides variation in the GA population [37] hence 
enabling GA to discover forgotten areas in the search space and, as a 
result, preventing the algorithm from getting stuck in the local 
minimum [16, 38–40]. Therefore; the mutation operator is one of the 
critical factors in the GA. The probability of applying a mutation 
operator in a GA is determined by pm, which is called mutation 
probability. 

In permutation problems, genes could not be considered 
independently. In other words, in the mutation operator, the 
chromosome is altered until the result of the mutation is also in the form 
of a permutation sequence [41]. 

Swap Mutation [42], Insertion Mutation [43], Simple Inversion 
mutation [31], Inversion mutation [44, 45], and Displacement mutation 
[46], which are employed in this project, are the five most common 
forms of mutation used for permutation problems that provide 
previously unprecedented variations to the population by making 
random changes on individuals. 

5. Non-dominated Sorting Genetic Algorithm (NSGA-II) 

NSGA-II is one of the most popular multi-objective optimization 
algorithms based on population, which evolves along the solution space 
to find well convergent and a set of non-dominated solutions. It is said 
solution x dominates solution y if and only if solution x is not worse 
than solution y for all the objectives and solution x is strictly better than 
solution y for at least one objective [23]. 

To solve multi-objective problems using NSGA-II, first, the parent 
population, which is called Pt with size N, is generated randomly by an 
initialization procedure. For each solution p in the population; the 
number of solutions that dominate the solution p is calculated 
(domination count). Also; a set of solutions that the solution p 
dominates (sp) is obtained. All solutions which are not dominated by 
any other solution in the population; in other words, their domination 
count is equal to zero are put in the first Pareto front. To obtain the 
second front, set sp of each solution p on the first Pareto front is 
examined, and the domination count of each member q of sp reduce by 
one. Finally; each member q whose domination count equals zero is put 
in the second front. This process continues until all fronts are identified. 
Furthermore; for each point in each Pareto front, the average distance 
of two points on either side of the point along each of the objectives is 
calculated; this quantity is called Crowding Distance (CD) [47]. Then; 
crossover and mutation operators are applied to the parent population, 
and an offspring population is obtained is called Qt. If the probability of 
applying the crossover operator is equal to pc and the probability of 
applying the mutation operator is equal to pm, then the size of the 
offspring population will be equal to (N  × pc) + (N  × pm). Then; the 
parent population and the offspring population combine to obtain a 
population Rt that the size of Rt equal to N + (N × pc) + (N  × pm). The 
new population is classified according to the non-dominated sorting 
approach by considering the concept of dominance and is also classified 
according to the CD Sorting procedure on each Pareto front. To select 
N better members of a population as the main population of the next 
generation, members who have a better rank are chosen, or if they have 
the same rank, members are selected who have a higher CD. The 
flowchart of NSGA-II is shown in Figure 2. 

6. Case study and Results 

The data set used in this study includes information on 49 boreholes 
(including Longitud, Latitude, Elevation, and depth of drilling) and a 
Digital Elevation Model (DEM) map of the study area. The distribution 
of boreholes on the DEM map is presented in Figure 3. The length of 
the path between the two boreholes was obtained by using the map of 
the topography slope so that the slope of the path between the two 
boreholes, as much as possible, should not exceed 10 degrees. For 
example, the paths between borehole No. 1 and the other points are 
shown in Figure 3. 
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Figure 2. Flowchart of NSGA-II. 

 

 
Figure 3. Distribution of boreholes on DEM map and the paths between borehole 
No. 1 and other points.  

 

The number of drilling rigs (salesmen) in this project was considered 
three, and the NSGA-II algorithm was implemented to solve this 
problem. 

To solve this problem, the NSGA-II with SPX, TPX, OX, and PMX 
operators, also, swap, insertion, simple inversion, inversion, and 
displacement mutation operators have been used. For all problems, we 
use a population of size 100, a crossover probability of 0.75, a mutation 
probability of 0.6, and a maximum number of generations of 2000. 
Solution time in solving the problem using NSGA-II with different 
forms of crossover and mutation operators was obtained between 18- 21 
minutes (Table 1). In Table 1, it can be seen that the minimum solution 
time is related to the PMX and insertion mutation method, and the 
maximum solution time is associated with the OX and simple inversion 
mutation method. 

By keeping the crossover operator constant, different mutation 
operators were compared. Figure 4 shows the non-dominant solutions 
for the dual objectives' overall distance and standard deviation using the 
SPX (Figure 4. a), TPX (Figure 4. b), OX (Figure 4. c), and PMX (Figure 
4.d) operators. As shown in figure 4, it is clear that the simple inversion 
mutation operator has the best performance and the swap mutation 
operator has the worst performance. It could be because a simple 
inversion mutation divides the chromosome into three parts. All the 
links within a part are preserved and only two links between the parts 
are broken while in the other mutation operators, a large number of 
links are broken. 

Also, by keeping the simple inversion mutation operator constant, the 
different crossover operators were compared with each other. As shown 
in Figure 5, the TPX and PMX operators show better performance than 
the other two crossover operators. 

In the next step, all the non-dominant solutions obtained using 
different crossover and mutation operators, which included 714 
solutions, were used to get the final non-dominant solutions. Finally; 52  
 

Table 1. Solution time with different forms of crossover and mutation operators. 

Method (Crossover- Mutation) second minute 
OX- Displacement 1140.095849 19.00159748 
OX- Insertion 1119.009876 18.6501646 
OX- Inversion 1130.884069 18.84806782 
OX- Simple Inversion 1267.727206 21.12878677 
OX- Swap 1117.981665 18.63302775 
PMX- Displacement 1254.421078 20.90701797 
PMX- Insertion 1111.424067 18.52373445 
PMX- Inversion 1114.209258 18.5701543 
PMX- Simple Inversion 1240.752571 20.67920952 
PMX-Swap 1159.782146 19.32970243 
SPX- Displacement 1159.585815 19.32643025 
SPX- Insertion 1141.389136 19.02315227 
SPX- Inversion 1157.496324 19.2916054 
SPX- Simple Inversion 1137.037451 18.95062418 
SPX-Swap 1138.910945 18.98184908 
TPX- Displacement 1230.977434 20.51629057 
TPX- Insertion 1132.807332 18.8801222 
TPX- Inversion 1140.507993 19.00846655 
TPX- Simple Inversion 1122.822069 18.71370115 
TPX- Swap 1142.035835 19.03393058 

a 

 
Figure 4. Non-dominated solutions with different mutations and a: SPX, b: TPX, c: 
OX, and d: PMX. 

a) 

b) 

c 

d) 
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non-dominant solutions were obtained, which are shown in Table 2. 
Among these solutions, 23, 27, and 2 solutions are related to the PMX, 
TPX, and OX operators, respectively. Also; 1, 2, 1, and 48 solutions are 
related to the swap, displacement, inversion, and simple inversion 
mutation operators, respectively. According to the obtained result, it can 
be said that PMX and TPX operators and simple inversion mutation 
have a more significant role in creating the final non-dominant 
solutions. 
 

 
Figure 5. Non-dominated solutions with simple inversion mutation and different 
crossover. 
 

As shown in Table 2, some solutions have a low overall distance, 
which increases the standard deviation of lengths drilled by drilling rigs. 
For example, the minimum overall distance obtained is 9542.5 meters, 
and the standard deviation of this overall distance is 11303.8, which is 

the highest standard deviation among the available answers. Also; the 
lowest value of standard deviation is equal to 5.4, and the overall 
distance of this standard deviation is 24642.7 meters, which is the 
highest overall distance among the available answers. 

In many cases, objectives in the non-dominant solutions conflict with 
each other, and an optimal solution for one objective is usually not 
optimal for other objectives. Therefore; the optimal solution should be 
selected according to the specific interests of each project. Multi-Criteria 
Decision Making (MCDM) methods provide tools to help choose the 
best solution from the available solutions. The TOPSIS approach is one 
of the MCDM methods developed by Hwang and Yoon [48], and its 
purpose is to find a solution that has the shortest distance from the 
Positive Ideal Solution (PIS) and the maximum distance from the 
Negative Ideal Solution (NIS). The PIS is defined as the vector of the 
best values obtained from each criterion, and the NIS is defined as the 
vector of the worst values obtained from each criterion. 

To find the best answer among the available solutions, the TOPSIS 
method was used. As mentioned above, reducing the standard deviation 
of the lengths drilled by drilling rigs is more important than reducing 
the overall distance traveled by the drilling rigs; from this, the weight 
assigned in the TOPSIS method to the objective function of standard 
deviation was considered 0.85 and the weight assigned to the objective 
function of overall distance was considered 0.15. These values were 
assigned based on the expert's experiences and the trial-and-error 
method. The result of the TOPSIS method is shown as a sequence of 
drilling boreholes in Figure 6. In the solution obtained using the TOPSIS 
method, the value of the overall distance traveled and the value of the 
standard deviation of the lengths drilled by the drilling rigs are equal to 
15037.6 and 28.7 meters, respectively.

 

Table 2. Final non-dominated solutions. 

Solution Overal Distance 

(m) 

Standard Deviation 

(m) 

Crossover Mutation Solution Overal Distance 

(m) 

Standard Deviation 

(m) 

Crossover mutation 

1 24642.7 5.4 OX Swap 27 9542.5 11303.8 TPX Simple Inversion 

2 21711.9 9.2 OX Displacement 28 10307.6 10434.8 TPX Simple Inversion 

3 24402.8 6.3 PMX Displacement 29 10455.8 8028.5 TPX Simple Inversion 

4 15144.5 10.3 PMX Simple Inversion 30 10698.4 7686.5 TPX Simple Inversion 

5 10978.0 5953.7 PMX Simple Inversion 31 10110.3 11083.3 TPX Simple Inversion 

6 14587.1 260.7 PMX Simple Inversion 32 14412.0 1010.1 TPX Simple Inversion 

7 11155.4 5948.7 PMX Simple Inversion 33 10284.9 10828.5 TPX Simple Inversion 

8 11973.0 5124.5 PMX Simple Inversion 34 11603.8 5607.6 TPX Simple Inversion 

9 12828.2 3596.1 PMX Simple Inversion 35 13408.5 3068.5 TPX Simple Inversion 

10 15037.6 28.7 PMX Simple Inversion 36 14364.3 1469.8 TPX Simple Inversion 

11 13544.9 2521.2 PMX Simple Inversion 37 13447.4 2715.8 TPX Simple Inversion 

12 13707.1 2272.6 PMX Simple Inversion 38 13952.6 1788.0 TPX Simple Inversion 

13 12139.6 4908.1 PMX Simple Inversion 39 13207.9 3212.6 TPX Simple Inversion 

14 12741.8 4066.5 PMX Simple Inversion 40 10679.8 7850.2 TPX Simple Inversion 

15 14576.7 712.7 PMX Simple Inversion 41 14541.6 752.2 TPX Simple Inversion 

16 13026.5 3337.1 PMX Simple Inversion 42 12214.4 4450.7 TPX Simple Inversion 

17 12170.4 4670.3 PMX Simple Inversion 43 13904.9 2185.7 TPX Simple Inversion 

18 13910.8 2056.5 PMX Simple Inversion 44 11790.3 5349.9 TPX Simple Inversion 

19 12955.6 3547.9 PMX Simple Inversion 45 11668.1 5354.1 TPX Simple Inversion 

20 12538.1 4246.0 PMX Simple Inversion 46 14309.8 1780.6 TPX Simple Inversion 

21 11607.0 5585.1 PMX Simple Inversion 47 12678.9 4234.7 TPX Simple Inversion 

22 11090.7 5951.3 PMX Simple Inversion 48 14340.9 1630.0 TPX Simple Inversion 

23 11774.7 5352.4 PMX Simple Inversion 49 12467.9 4427.9 TPX Simple Inversion 

24 11109.8 5949.0 PMX Simple Inversion 50 12732.0 4077.9 TPX Simple Inversion 

25 11784.6 5351.2 PMX Simple Inversion 51 12427.0 4450.3 TPX Simple Inversion 

26 24031.0 6.3 TPX Inversion 52 14312.9 1721.7 TPX Simple Inversion 
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Figure 6. the path of the three drilling rigs. 

 

Although, if only the purpose of solving the problem was finding the 
minimum overall distance in mTSP using the GA, a completely different 
path with less overall distance was obtained. Since; the problem under 
consideration is a bi-objective problem, and according to the weights 
assigned in the TOPSIS method to each of the objectives, the objective 
of finding the minimum overall distance is less important than the 
standard deviation. Therefore; the obtained solution, due to the low 
amount of standard deviation, is an acceptable path. 

7. Conclusion 

The purpose of this paper is to find the optimal drilling route to access 
different boreholes in exploratory drilling sites. It will reduce the costs 
associated with access road construction, the standard deviation of 
lengths drilled by drilling rigs, and drilling time. This problem was 
modeled as a MOmTSP, and the NSGA-II was used to solve it. 20 
scenarios have been defined based on available crossover and mutation 
operators to solve this problem with NSGA-II. All the non-dominant 
solutions obtained using the 20 different scenarios were used to get the 
final non-dominant solutions. Then, final non-dominant solutions were 
obtained that PMX and TPX operators and simple inversion mutation 
have a more significant role in creating these solutions. Since the 
objectives in this problem conflict, the TOPSIS approach, as an MCDM 
method, was used to find the best solution among the solutions. Due to 
the greater importance of standard deviation relative to the overall 
distance, weights 0.85 and 0.15 were considered for their objective 
functions, respectively. The optimal solution obtained using the TOPSIS 
method has an overall distance traveled by the drilling rigs equal to 
15,037.6 meters and a standard deviation equal to 28.7 meters. Although; 
the final path does not have the best value for the overall distance, 
according to the intended goals for the problem, it is an optimal solution 
for this problem. 

The multi-objective problem could be solved by classic and 
evolutionary methods. This research is designed based on the 
evolutionary method. The comparison between the efficiency of a classic 
method (like the weighted sum method) and other evolutionary 
methods (such as MOACSs) with NSGA-II will be considered in future 
studies. 
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