
Journal of Computational Applied Mechanics 2022, 53(2): 157-168 

DOI: 10.22059/JCAMECH.2022.335740.709 

 

          RESEARCH PAPER   

 

A Validation Methodology for Urea Spray on Selective Catalytic 

Reduction Systems 

İsmail Hakkı Savcı1, Mehmet Zafer Gül2, Ramazan Şener 3,* 

1 Ford Otosan Company, Product Development Department, 34885, Istanbul, Turkey. 
2 Department of Mechanical Engineering, Marmara University, 34722, İstanbul, Turkey. 

3 Department of Electronics and Automation, Batman University, 72100, Batman, Turkey. 

 

Abstract 

Selective catalytic reduction (SCR) is an emission control method that 

reduces the NOX emission using urea sprays as ammonia precursors for 

exhaust after-treatment systems. The urea injection system is an essential 

component of the SCR systems. A comprehensive SCR modeling approach is 

required to design compact after-treatment systems that meet the NOX 

emission legislation level. In this study, the characteristics of urea spray 

injectors of the SCR system were investigated using computational fluid 

dynamics (CFD) and the particle image velocimetry (PIV) technique. A 

validation strategy was developed to model the urea spray evaporation, 

liquid/wall contact, and formation of solid urea deposits. The sheet 

atomization model was modified to improve the performance of the CFD 

model. While the Rosin-rammler method predicted the results of 10% 

according to the experimental results, the proposed tabular method 

decreased the difference by 3%. In addition, 500 parcels were determined as 

an optimum number of parcels for urea spray according to the sensitivity 

study. Therefore, the validation methodology was proposed to predict more 

consistent results for urea spray modeling and the formation of solid urea 

deposits. 
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1. Main text 

In the past decades, diesel engines have been the dominant power source for medium and heavy-duty 

commercial vehicle applications such as trucks, buses, and off-road vehicles. Diesel engines are also commonly 

used for light-duty applications such as passenger cars [1, 2]. The main advantages of diesel engines are increased 

fuel economy, higher durability, increased torque, and low taxes imposed by the government compared to a similar 

engine displacement of a gasoline engine. The main disadvantages of diesel engines are harmful exhaust gases due 

to the diesel combustion process [3]. These exhaust emissions threaten public health with three primary pollutants 

[4]. First, particulate matters (PM) are a complex mixture generated from diesel combustion. PM is made up of 

hundreds of chemicals adsorbed which are mostly carcinogens. The small particulate matter size, around 1-2µm, 

directly affects public health, particularly for the lung [5]. Carbon monoxide (CO) is a toxic chemical. It is produced 

from partial combustion [6]. 
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Nitrogen Oxide (NOX) is produced from the combustion of nitrogen at high temperatures [7, 8]. NOX can form a 

nitric acid vapor. Nitric acid vapor can penetrate and damage the lungs [9]. These three emissions should be 

removed from the environment due to their hazardous effect on public health. Stringent legislative emission 

standards to protect public health for heavy diesel duty and light duty engines were introduced by European 

Commission, the United States, and China government commissions. Fig. 1 presents the significant reduction of PM 

and NOX for heavy-duty vehicles. These reductions show the reduction progression from 1992 to 2015 [10]. The 

standards are defined by the vehicles' energy output (g/kwh). The emission standards are based on a test cycle that 

represents the real driving style of the drivers. Each standard emission shapes Euro 3, Euro 4, Euro 5, Euro 6, and 

Euro 7 represents the rectangular. Using the Euro 6 strategy with exhaust gas recirculation (EGR) and selective 

catalytic reduction (SCR) may require a diesel particulate filter (DPF) to meet the Euro 6 emission standard for the 

PM [11]. 

The current strategies attempting to minimize fuel consumption, standalone SCR, and DPF might be sufficient to 

meet the Euro VI standard. However, an advanced strategy is required to optimize the urea injection strategy and 

fuel consumption without EGR hardware, leading to a high emission reduction of NOX. SCR may be more 

advantageous, especially in the heavy-duty truck application, than the competing EGR technology, which brings a 

fuel economy penalty [12]. However, one must remember that SCR engines' fuel savings are at least partially offset 

by the cost of urea, which is consumed at about 3-5% of the fuel volume [13]. Therefore, this method results in a 

better fuel economy without additional hardware. The challenging part of this strategy is high NOX reduction in the 

exhaust after treatment. Thus, optimized SCR system design and urea injection calibration are critical to achieving 

this strategy [14]. 

 
Fig 1: Improvement of Emission Reduction by using different strategies 

The SCR system with ammonia (NH3) injection in automotive applications is a widely used emission reduction 

technique to convert the NOX emissions to nitrogen and water [15]. However, pure ammonia is a toxic reducing 

agent for mobile applications [16]. Urea Water Solution (UWS) has transport and storage advantages over ammonia 

[17]. Urea should decompose to ammonia and carbon dioxide over SCR with NH3 process with a lower conversion 

ratio [18]. Numerous numerical studies were used in the literature [19, 20]. CFD code based on the finite volume 

method was implemented in this study. 

 
Fig 2: Selective catalytic reduction system 

The major components of the active SCR system are a dosing module, SCR catalyst, NOX, and temperature 

sensor. The dosing module controls the mass flow rate of the urea-water solution. The honeycomb SCR catalyst 

accelerates a chemical reaction, and NOX and sensors measure the gas temperature [21]. 
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A comprehensive SCR modeling approach is required to design compact after-treatment systems that meet the 

NOX emission legislation level. In this work, the sheet atomization model was implemented in Star-CCM+. Some 

modifications were made to determine initial spray parameters and velocity over the original model. Simulations 

were carried out to model sprays measured in a spray test bench to assess the model's capability. One case from the 

literature was studied with a correlated spray model. The simulation results were compared with spray images 

obtained from literature images. A reasonably good agreement between simulation and experiment was obtained. 

The spray modeling, results of the optical spray setup, and their comparison are discussed in this paper. Urea spray 

distribution on the SCR inlet is the most critical parameter for SCR performance. So robust urea spray CFD 

methodology is the main part of the complex SCR CFD modeling approaches [22, 23]. Detailed chemistry and flow 

modeling techniques should be based on urea spray modeling. 

2. Material and Methods 

2.1. Experimental Bench 

The most used experimental techniques for spray characterization of urea injectors are Phase Doppler Particle 

Analyzer and Particle Image Velocimetry (PIV). However, Phase Doppler Analyzer was not available for this study. 

PIV and shadow imaging systems (Particle Master) were used to examine spray characterization such as cone angle, 

spray range, spray distribution, drop size, and velocity data of spray across the laser sheet area. Droplets' Sauter 

mean diameter (SMD) was measured using the shadowgraph technique with the long-distance microscope [24]. 

PIV is an application of the laser sheet technique. A laser sheet is a double pulsed laser sheet in a brief time 

interval. The laser sheet is pulsed twice, and a CCD camera can capture illustrated regions—these techniques are 

based on the Lagrangian approach. The positions of the particles are tracked for calculations. The first laser sheet 

illustrates these droplets' initial positions, and the camera captures these frozen images. Then droplets are advanced, 

and the second image of the camera is exposed to the light scattered by the particles from the second laser pulse. 

Hence two images are collected; the first image shows the first position of the particles, and the second picture 

shows the advanced position. The velocity vector is calculated by measuring the particle displacement at a particular 

time [25]. PIV technique can also be used with several exposed frames strategy, and each particle is moved in 

several times to different locations on the same picture. PIV performs an average of the velocity field vector. 

Autocorrelation or cross-correlation functions are post-processed between two images. This technique has the 

advantage, is not being biased by the gradient since the individual particles are tracked individually to get a velocity 

vector [25, 26]. 

The schematic in Fig. 3 shows the experimental configuration for the laser PIV and shadowgraph for the particle 

master experiment. The test bench was designed and developed with a laser, camera, led light, and injection module 

synchronization unit. For these experiments, laser sheets (2mm) were introduced through the spray. The imaging 

system was composed of a camera and laser light source. The cameras were a Lavision Flowmaster digital CCD 

device with a pixel resolution of 1280 columns and 1024 rows with a 12-bit dynamic range and Phantom high-speed 

camera. A 532 nm bandpass filter was used with a 50 mm f/2.8 Nikon camera lens. The laser was the double pulse; 

frequency-doubled nd: YAG laser. Typical pulse durations for the imaging experiments were 1 mJ/5-7 ns at 532 nm, 

and the laser has a maximum reparation rate of 15 Hz. Particle Master System includes Led light, a laser with an 

ultra-short pulse. 

 
Fig 3: A simple schematic view of PIV 
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The optical urea spray experimental setup is shown in Fig. 4. The setup was designed for injector testing and 

modified for optical measurements. In addition, the experimental setup was arranged for parallel and horizontal 

sectional spray measurements.  

A horizontal spray measurement was used to characterize the spray distribution, such as spray cone angle. 

Second, the spray balance was visualized by vertical measurement from each injector hole. Finally, the particle 

master measured the spray size. Thus, one test rig was designed for three different purposes. 

A Xenon lamp was used as a light source for the spray distribution, and a high-speed camera was used to capture 

the spray image. First, the spray behavior was visualized on a laser sheet using a YAG laser and optical arm. This 

visualization result qualitatively confirmed the spray's cross-sectional pattern and mass flux distribution because the 

intensity of the scattered light relied on the droplet density and diameter. The first injector spray distribution was 

observed in Fig. 5. Next, the spray angle, penetration length, and penetration length were extracted from laser 

measurement. 

 
Fig 4: The optical spray experimental setup 

The spray distribution through the surface normal of the nozzle is visualized to check spray balance from each 

injector hole (six holes injectors) and for injector quality testing. Each nozzle was not discharged with the same 

amount of urea as the first injector. Therefore, a problem was detected with the first injector. A new injector based 

on the correct specification was ordered and used in this work. For each urea injector characterization test, injectors 

should measure from the surface normal of the injector hole to observe the urea balance from each injector hole 

(three holes injectors). 

In the experimental spray calibration process, droplet distribution was measured 100 mm below the injector tip 

through the spray. This data was then proceeded to calculate the SMD over the beam. The spray angle was measured 

by the intersection of the spray's two outside edges at the nozzle. There were injection-to-injection variations due to 

injector pumps. Therefore, the spray cone angles varied from 33° to 48°. Five individual measurements were done to 

eliminate this noise factor, and average data was extracted for post-processing. The spray angle was again 

determined to be 33°. After sampling many instantaneous images, an average spray particle diameter distribution 

was determined in Fig. 8. 

 
Fig 5: Spray distribution 
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Fig 6: Spray distribution seeing from the surface normal a) unbalanced spray distribution b) balanced spray distribution 

 
Fig 7: Spray distribution 

 
Fig 8: Droplet diameter distribution 

2.2. Spray Modelling 

First, a free spray was simulated to match the measured droplet size and velocity at the center point 100 mm 

downstream. Then, the results were shown as measured data for the average of five individual experiments. 
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Although initial droplet sizes were used at the injector tip in the simulations, even these values were extracted 100 

mm downstream of the injector tip. Therefore, this calibration study was performed to eliminate this assumption. So 

initial droplet size was specified at the injector tip, and the droplet size was 100 mm downstream of the injector tip. 

If the results are not comparable, a new iteration is applied to the injector tip. For this approach, Rosin-rammler and 

tabulated distribution methods were examined. 

The computational domain was built as the cylindrical region with dimensions of 90 mm diameter, and 115 mm 

height with the three-hole injector at the top center, directed in the axial direction in Fig. 9. A cylindrical chamber 

mesh represents the calibration chamber (also known as Glass Bomb) to tune spray parameters in the CFD model 

with the experimental test result. Local refinement was applied to the tips of the nozzle to improve resolution. 

Boundaries were set to pressure boundaries. Because the size of the domain was sufficiently large, pressure 

boundaries monitored the droplets, and there were no droplets that had passed through boundaries. Since the test 

was usually carried out with the injector pointing toward the ground, the gravity should be set in the same direction. 

Air in the cylindrical domain was modeled as an ideal gas. The standard k-ε model was employed. The energy 

equation was not solved. All the walls of the cylindrical domain were modeled with free slip conditions. The flow 

was assumed to be stagnant to begin. This section describes the modeling approach based on StarCCM+. The mesh 

sensitivity has been evaluated on mass transfer. The global mesh size was 1 mm, but the mesh size of the spray zone 

was specified at 0.5 mm. The double number of mesh did not affect the mass transfer, so current settings were kept 

for this simulation study. 

High-speed shadowgraph images of the one spray injection in ambient conditions highlight its structures. The 

three-hole injector produced three distinct jets of fluid with long breakup lengths. A three-hole injector could not 

produce a uniform distribution of spray across its cross-section. It has been found that the atomization of the spray 

from the injector is consistent for each dosing event. Only injection starting internal time the spray oscillation was 

observed. 200 mg/s, 500 mg/s, and 1000 mg/s have been experimented with, and the dosing rate does not affect 

spray distribution. 

 
(1) 

The volume distribution of particles as a function of their diameter can be obtained from equation 1. It is easy to 

calibrate since it has only two variables. However, if the measured value was specified at the injection tip, a 30% 

error was obtained 100 mm downstream of the injector type. The diameter distribution for the injected droplets was 

given by a Rosin-rammler function as specified in Fig. 10. Parameters of the Rosin-rammler were modified and set 

three can predict a 10% error with the experiments. 

 

 
Fig 9: The computational grid 

 



Journal of Computational Applied Mechanics 2022, 53(2): 157-168 163 

 
Fig 10: Rosin-rammler iterative method 

Table approach, the droplet distribution, e.g., from measurement, was used as the initial guess. The correlation 

was around 10% error at the first attempt. Finally, the droplet diameter tabulated is modified to further Star-CCM+ 

calculation and predict correlation well with experiment data. 

 
Fig 11: Droplet table method for droplet diameter 

Experimental data on the lateral plane was compared with numerical data on the corresponding plane to arrive at 

better empirical model constants in Fig. 12. The spray structure was defined in Fig. 12. Droplet diameters were 

extracted using the CFD and compared with the results of the PIV test (Table 1). The correlation has seemed well 

with the experimental result. 
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Fig 12: Comparison of experimental and computed spray distribution 

Table 1: Injector specifications 

Injector A Spray Angle Penetration Length 

Test Results 33 38 

CFD results 32 36 

3. Results and Discussion 

The glass windows installed test pipe was modeled as three-dimensional for CFD analysis to investigate 

spray/wall interaction and deposit accumulation [27]. A steel plate, injector, and glass windows were considered, 

which is shown in Fig. 13. The CFD model was generated with polyhedral mesh from StarCCM+. Local mesh 

refinement was generated around the injector and spray path. The entire model consists of 3.5 million cells, with 

mainly 1.2 million boundary layer cells. At the injection region, the base cell was 1 mm. region of the injector and 

regions of the spray path were refined with the base cell size of 0.5 mm. The thickness of the wall layer varies from 

0.5 to 1.5 mm. This layer was essential for the high result quality of the HTC [28]. CFD parameters used in this 

study are listed in Table 2.  

Table 2: CFD settings 

Flow Characteristics Compressible, Turbulent, Time-dependent 

CFD Solver Star-CCM+ 

Turbulence Model Standard k-ε with wall function 

Solution Algorithm Simple, double precision 

Residual levels <0.0001 

 

 
Fig 13: Sketch the experimental setup for spray/wall interaction 
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Fig. 14 shows the spray pattern at 4 ms, 10ms, and 20ms a side view of the measured spray penetration at 

different times with the shadowgraph method [27]. 

 
Fig 14: Spray pattern at 4 ms, 10 ms, and 20 ms [25] 

Fig. 15 shows the numerical result of defined geometry in Star-CCM+. The results were compared with the test 

result. This model predicted tiny droplets due to thermal breakup. Penetration length and spray cone angles were 

similar in both simulation and experiment. Therefore, only tiny droplets could not be captured by the CFD. The 

predicted wall film thickness in Fig. 16 reflects spray character with the film thickness in the spray impact region. 

These wall film characteristics correlate with visual observations during the experiment. 

 
Fig 15: The spray pattern of numerical models at 4 ms, 10 ms, and 20 ms 

 
Fig 16: Predicted wall film thickness with spray distribution 



166 Şener et al. 

Fig. 17 shows the urea concentration in the wall film. In the spray impact region, the urea concentration occurred 

by the urea fraction of the droplets. Due to the evaporation of water from urea concentration, droplets increased 

significantly. As the wall film was moved downstream with minor droplet impingement, higher urea concentrations 

occurred due to water evaporation. After water evaporation was completed, thermolysis of urea began in these 

regions. Thus, thermolysis reactions became dominant for NH3 conversion. 

 
Fig 17: Calculated mass fraction of urea in the wall 

Fig. 18 presents views of the ammonia at the center of the model. In the center of the model, ammonia was 

produced significantly higher than the other model parts. The main reason behind these results was to thermolysis 

reaction of tiny droplets. Ammonia generation can be observed by urea decomposition from the boundaries of the 

models. In addition, tiny droplets lead to evaporation and faster thermolysis, so more NH3 conversion can be 

observed on the surface. 

 
Fig 18: Calculated mass fraction urea at the lateral plane 

4. Conclusion 

Urea spray modeling is one of the challenging steps to achieving SCR system modeling including complex 

interactions of multi-phase physics and chemical reactions. The characteristics of urea injectors were investigated 

using numerical and experimental methods. As a result of this study, the spray validation methodology was 

developed for urea spray on SCR systems. 

• Unbalanced spray negatively affects the spray dispersion performance of the injector and increases the 

possibility of deposit formation. Before performing the spray and cone angle tests, the radial spray 

distribution of the injector should be checked. 
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• With the tabular method, CFD results can be estimated in good correlation with the experimental results. 

While the error rate was 10 percent in the solutions made with the Rosin-rammler method, it decreased by 3 

percent in the tabular method. 

• The spray sensitivity work was experimented with to determine the appropriate droplet parcel number. Less 

droplet parcels could not carry necessary information, high parcel numbers have time penalty and 

convergence issue. 50 to 5000 parcels are simulated then 500 parcels have been selected in spray simulations 

as an optimum parcel number. 

• Rosin-rammler and tabular methods accelerated the simulation. In addition, the simulation results with the 

tabular method were more consistent with experimental results than the Rosin-rammler method. 

• As a standard approach, spray data extracted from the experiment is used as direct input in simulation 

studies. In this study, the spray data extracted from the experiment were firstly adjusted on the CFD test 

bench and the distribution obtained from the CFD was used in the applications. Hence, 8 percent more 

accurate data is used as input to the CFD. 
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