تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,500 |
تعداد مشاهده مقاله | 124,086,197 |
تعداد دریافت فایل اصل مقاله | 97,189,619 |
Effects of α-pinene Administration During Pregnancy on Depressive-like Behavior Following Delivery in Mice | ||
Iranian Journal of Veterinary Medicine | ||
مقاله 7، دوره 17، شماره 3، مهر 2023، صفحه 253-262 اصل مقاله (1.56 M) | ||
نوع مقاله: Original Articles | ||
شناسه دیجیتال (DOI): 10.32598/ijvm.17.3.1005263 | ||
نویسندگان | ||
Ali Elahinia1؛ Shahin Hassanpour* 2؛ Ahmad Asghari3؛ Ehssan Khaksar4 | ||
1Department of Veterinary, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran. | ||
2Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran. | ||
3Department of Clinical Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran | ||
4Department of Clinical Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran. | ||
چکیده | ||
Background: Parturition depression is an important physiological problem, and several attempts have been made to ascertain this physiological phenomenon. Natural monoterpenes like α-pinene have numerous beneficial properties, but no studies have been done on their antidepressant potential in postpartum animals. Objectives: This study aimed to determine the effects of prenatal administration of α-pinene on the antidepressant-like behavior of mice following delivery. Methods: Pregnant female mice were randomly assigned into four groups. In the control group, the animals were injected with saline on their 5, 8, 11, 14, and 17 gestation days (GD). In groups 2 to 4, pregnant female mice were injected with α-pinene (0.1, 0.5, and 1 mg/kg, respectively) at GD 5, 8, 11, 14, and 17. On day 2 postpartum, open field test (OFT), rotarod, forced swimming test (FST), and tail suspension test (TST) were used to evaluate the antidepressant activity of α-pinene in mice. Also, serum samples were taken to determine the antioxidant activity. Results: According to the results, α-pinene (0.5 and 1 mg/kg) significantly increased activity in OFT and staying on the rotarod (P≤0.05). Also, α-pinene (0.5 and 1 mg/kg) diminished immobility time (s) in TST and FST on postpartum mice (P≤0.05). α-pinene (0.5 and 1 mg/kg) decreased malondialdehyde while increased glutathione peroxidase, superoxide dismutase, and total antioxidant status levels in postpartum mice as compared with the control group (P≤0.05). Conclusion: It seems that prenatal administration of the α-pinene can alleviate postpartum depression via its antioxidant property in mice. | ||
کلیدواژهها | ||
Antidepressant؛ α-pinene؛ Mice؛ Pregnancy | ||
عنوان مقاله [English] | ||
اثرات قرار گرفتن در معرض آلفا پینن در دوران بارداری بر رفتار ضد افسردگی متعاقب زایمان در موش | ||
نویسندگان [English] | ||
علی الهی نیا1؛ شاهین حسن پور2؛ احمد اصغری3؛ احسان خاکسار4 | ||
1گروه دامپزشکی، دانشکده دامپزشکی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران . | ||
2گروه علوم پایه، دانشکده دامپزشکی، واحد علوم تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران. | ||
3گروه علوم درمانگاهی، دانشکده دامپزشکی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایرا ن. | ||
4گروه علوم درمانگاهی، دانشکده دامپزشکی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایرا ن. | ||
چکیده [English] | ||
زمینه مطالعه: افسردگی پس از زایمان مهم ترین مشکل فیزیولوژیکی است و تلاش های زیادی برای تعیین وقایع فیزیولوژیکی دخیل در بروز آن انجام شده است. مونوترپنهای طبیعی مانند آلفا پینن دارای فواید متعددی هستند و مطالعات کمی در خصوص اثرات ضد افسردگی آلفا پینن در افسردگی پس از زایمان انجام شده است. هدف: این مطالعه با هدف تعیین اثرات مواجهه با آلفا پینن در دوران بارداری بر رفتار شبه ضد افسردگی پس از زایمان در موش انجام شد. روش کار: موشهای ماده آبسنن به طور تصادفی در چهار گروه قرار گرفتند. در گروه شاهد، به موشهای آبستن سالین در روزهای 5، 8، 11، 14 و 17 آبستنی تزریق شد. در گروه های 2-4، موش های ماده آبستن آلفا پینن (0/1، 1/5 و 1 میلیگرم بر کیلوگرم) را در روزهای 5، 8، 11، 14 و 17 آبستنی دریافت کردند. در روز دوم پس از زایمان، تست های میدان باز ، روتارود، تست شنای اجباری و تست تعلیق دم برای ارزیابی فعالیت ضد افسردگی شبه افسردگی آلفا پینن استفاده شد. همچنین نمونه های سرمی برای تعیین فعالیت آنتی اکسیدانی گرفته شد. نتایج: با توجه به نتایج، آلفا پینن (0/5 و 1 میلیگرم) بطور معنی داری تعداد مربعهای متقاطع شده در تست میدان باز و زمان ماندن در روتارود را پس از زایمان فزایش داد (P<0/05). همچنین، آلفا پینن (0/5 و 1 میلی گرم) به طور معنیداری زمان بیحرکتی در تستهای شنای اجباری و تعلیق دم را متعاقب زایمان در موشها کاهش داد (P<0/05). چنین، آلفا پینن (0/5 و 1 میلیگرم) طور قابل توجهی مالون دی آلدئیدرا کاهش داد در حالی که سطح گلوتاتیون پراکسیداز، سوپراکسید دیسموتاز و وضعیت آنتی اکسیدانی کل را در موش های پس از زایمان در مقایسه با گروه کنترل افزایش داد (P<0/05). نتیجهگیری نهایی: به نظر میرسد تجویز آلفا پینن در دروان آبستنی میتواند موجب تقلیل افسردگی متعاقب زایمان از طریق اثرات آنتی اکسیدانی در آن انجام شود. | ||
کلیدواژهها [English] | ||
آبستنی, آلفا پینن, موش, ضد افسردگی | ||
اصل مقاله | ||
1. Introduction
Tail suspension test (TST)
3. Results
Ethical Considerations
References Alamolhoda, S. H., Kariman, N., & Mirabi, P. (2020). Relationship between oxidative stress concentration and postpartum depression: A cohort study. Iranian Journal of Psychiatry and Behavioral Sciences, 14(1), e84188. [DOI:10.5812/ijpbs.84188] Alimohammadi, S., Hassanpour, S., & Moharramnejad, S. (2019). Effect of maternal exposure to zinc oxide nanoparticles on reflexive motor behaviors in mice offspring. International Journal of Peptide Research and Therapeutics, 25(3), 1049-1056. [DOI:10.1007/s10989-018-9752-3] Alimohammadi, S., Hosseini, M. S., & Behbood, L. (2019). Prenatal exposure to zinc oxide nanoparticles can induce depressive-like behaviors in mice offspring. International Journal of Peptide Research and Therapeutics, 25(1), 401-409. [DOI:10.1007/s10989-018-9686-9] Asadi, K., Abbasi-Maleki, S., & Hashjin, G. S. (2020). Antidepressant-like effect of cuminum cyminum essential oil on the forced swim and tail suspension tests in male mice. Journal of Shahrekord University of Medical Sciences, 22(4), 167-172. [DOI:10.34172/jsums.2020.27] Belzung, C. (2014). Innovative drugs to treat depression: Did animal models fail to be predictive or did clinical trials fail to detect effects? Neuropsychopharmacology, 39(5), 1041-1051. [DOI:10.1038/npp.2013.342][PMID][PMCID] Beydoun, M. A., Beydoun, H. A., Boueiz, A., Shroff, M. R., & Zonderman, A. B. (2013). Antioxidant status and its association with elevated depressive symptoms among US adults: National health and nutrition examination surveys 2005-6. British Journal of Nutrition, 109(9), 1714-1729. [DOI:10.1017/S0007114512003467][PMID][PMCID] Craft, R. M., Kostick, M. L., Rogers, J. A., White, C. L., & Tsutsui, K. T. (2010). Forced swim test behavior in postpartum rats. Pharmacology Biochemistry and Behavior, 96(4), 402-412. [DOI:10.1016/j.pbb.2010.06.012][PMID][PMCID] Cryan, J. F., Mombereau, C., & Vassout, A. (2005). The tail suspension test as a model for assessing antidepressant activity: Review of pharmacological and genetic studies in mice. Neuroscience & Biobehavioral Reviews, 29(4-5), 571-625. [DOI:10.1016/j.neubiorev.2005.03.009][PMID] Demin, K. A., Sysoev, M., Chernysh, M. V., Savva, A. K., Koshiba, M., & Wappler-Guzzetta, E. A., et al. (2019). Animal models of major depressive disorder and the implications for drug discovery and development. Expert Opinion on Drug Discovery, 14(4), 365-378. [DOI:10.1080/17460441.2019.1575360][PMID] Donato, F., de Gomes, M. G., Goes, A. T., Filho, C. B., Del Fabbro, L., & Antunes, M. S., et al. (2014). Hesperidin exerts antidepressant-like effects in acute and chronic treatments in mice: Possible role of l-arginine-NO-cGMP pathway and BDNF levels. Brain Research Bulletin, 104, 19-26. [DOI:10.1016/j.brainresbull.2014.03.004][PMID] Eltokhi, A., Kurpiers, B., & Pitzer, C. (2021). Comprehensive characterization of motor and coordination functions in three adolescent wild-type mouse strains. Scientific Reports, 11(1), 1-12. [DOI:10.1038/s41598-021-85858-3][PMID][PMCID] Ghosh, S., Kumar, A., Sachan, N., & Chandra, P. (2021). Anxiolytic and antidepressant-like effects of essential oil from the fruits of piper nigrum linn. (black pepper) in mice: Involvement of serotonergic but not GABAergic transmission system. Heliyon, 7(4), e06884. [DOI:10.1016/j.heliyon.2021.e06884][PMID][PMCID] Goudarzi, S., & Rafieirad, M. (2017). Evaluating the effect of α-pinene on motor activity, avoidance memory and lipid peroxidation in animal model of parkinson disease in adult male rats. Research Journal of Pharmacognosy, 4(2), 53-63. [Link] Hajialyani, M., Hosein Farzaei, M., Echeverría, J., Nabavi, S. M., Uriarte, E., & Sobarzo-Sánchez, E. (2019). Hesperidin as a neuroprotective agent: A review of animal and clinical evidence. Molecules, 24(3), 648. [DOI:10.3390/molecules24030648][PMID][PMCID] Hing, B., Sathyaputri, L., & Potash, J. B. (2018). A comprehensive review of genetic and epigenetic mechanisms that regulate BDNF expression and function with relevance to major depressive disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 177(2), 143-167. [DOI:10.1002/ajmg.b.32616][PMID] Karthikeyan, R., Kanimozhi, G., Madahavan, N. R., Agilan, B., Ganesan, M., & Prasad, N. R., et al. (2019). Alpha-pinene attenuates UVA-induced photoaging through inhibition of matrix metalloproteinases expression in mouse skin. Life Sciences, 217, 110-118. [DOI:10.1016/j.lfs.2018.12.003][PMID] Karthikeyan, R., Kanimozhi, G., Prasad, N. R., Agilan, B., Ganesan, M., & Srithar, G. (2018). Alpha pinene modulates UVA-induced oxidative stress, DNA damage and apoptosis in human skin epidermal keratinocytes. Life Sciences, 212, 150-158. [DOI:10.1016/j.lfs.2018.10.004][PMID] Kasuya, H., Okada, N., Kubohara, M., Satou, T., Masuo, Y., & Koike, K. (2015). Expression of BDNF and TH mRNA in the brain following inhaled administration of α-pinene. Phytotherapy Research, 29(1), 43-47. [DOI:10.1002/ptr.5224][PMID] Khan-Mohammadi-Khorrami, M. K., Asle-Rousta, M., Rahnema, M., & Amini, R. (2020). [The effect of alpha-pinene on amyloid-beta-induced neuronal death and depression in male Wistar rats (Persian)]. Journal of Ardabil University of Medical Sciences, 20(4), 456-464. [Link] Kong, Y., Wang, T., Wang, R., Ma, Y., Song, S., & Liu, J., et al. (2017). Inhalation of roman chamomile essential oil attenuates depressive-like behaviors in Wistar Kyoto rats. Science China Life Sciences, 60(6), 647-655. [DOI:10.1007/s11427-016-9034-8][PMID] Kontaris, I., East, B. S., & Wilson, D. A. (2020). Behavioral and neurobiological convergence of odor, mood and emotion: A review. Frontiers in Behavioral Neuroscience, 14, 35. [DOI:10.3389/fnbeh.2020.00035][PMID][PMCID] Kumar, R., Singh, A. K., Gupta, A., Bishayee, A., & Pandey, A. K. (2019). Therapeutic potential of aloe vera-a miracle gift of nature. Phytomedicine, 60, 152996. [DOI:10.1016/j.phymed.2019.152996][PMID] Leuner, B., Fredericks, P. J., Nealer, C., & Albin-Brooks, C. (2014). Chronic gestational stress leads to depressive-like behavior and compromises medial prefrontal cortex structure and function during the postpartum period. Plos One, 9(3), e89912. [DOI:10.1371/journal.pone.0089912][PMID][PMCID] Lin, S. H., Chou, M. L., Chen, W. C., Lai, Y. S., Lu, K. H., & Hao, C. W., et al. (2015). A medicinal herb, melissa officinalis l. ameliorates depressive-like behavior of rats in the forced swimming test via regulating the serotonergic neurotransmitter. Journal of Ethnopharmacology, 175, 266-272. [DOI:10.1016/j.jep.2015.09.018][PMID] Liu, J., Meng, F., Dai, J., Wu, M., Wang, W., & Liu, C., et al. (2020). The BDNF-FoxO1 axis in the medial prefrontal cortex modulates depressive-like behaviors induced by chronic unpredictable stress in postpartum female mice. Molecular Brain, 13(1), 1-14. [DOI:10.1186/s13041-020-00631-3][PMID][PMCID] Moghadam, L. (2016). Chemical composition and antioxidant activity cuminum cyminum l. essential oils. International Journal of Food Properties, 19(2), 438-442. [DOI:10.1080/10942912.2015.1038355] Nasehi, M., Mohammadi-Mahdiabadi-Hasani, M. H., Ebrahimi-Ghiri, M., & Zarrindast, M. R. (2019). Additive interaction between scopolamine and nitric oxide agents on immobility in the forced swim test but not exploratory activity in the hole-board. Psychopharmacology, 236(11), 3353-3362. [DOI:10.1007/s00213-019-05294-0][PMID] Porres-Martínez, M., González-Burgos, E., Carretero, M. E., & Gómez-Serranillos, M. P. (2015). Protective properties of salvia lavandulifolia vahl. essential oil against oxidative stress-induced neuronal injury. Food and Chemical Toxicology, 80, 154-162. [DOI:10.1016/j.fct.2015.03.002][PMID] Rahbar, I., Abbasnejad, M., Haghani, J., Raoof, M., Kooshki, R., & Esmaeili-Mahani, S. (2019). The effect of central administration of alpha-pinene on capsaicin-induced dental pulp nociception. International Endodontic Journal, 52(3), 307-317. [DOI:10.1111/iej.13006][PMID] Rufino, A. T., Ribeiro, M., Judas, F., Salgueiro, L., Lopes, M. C., & Cavaleiro, C., et al. (2014). Anti-inflammatory and chondroprotective activity of (+)-α-pinene: Structural and enantiomeric selectivity. Journal of natural products, 77(2), 264-269. [DOI:10.1021/np400828x PMID: 24455984][PMID] Saeedipour, S., & Rafiei-Rad, M. (2020). [Anti-anxiety effect of alpha-pinene in comparison with diazepam in adult male rats (Persian)]. Feyz, Journal of Kashan University of Medical Sciences, 24(3), 245-253. [Link] Sanacora, G., Zarate, C. A., Krystal, J. H., & Manji, H. K. (2008). Targeting the glutamatergic system to develop novel, improved therapeutics for mood disorders Nature Reviews Drug Discovery, 7(5), 426-437. [DOI: 10.1038/nrd2462][PMID][PMCID] Slattery, D. A., & Cryan, J. F. (2012). Using the rat forced swim test to assess antidepressant-like activity in rodents. Nature Protocols, 7(6), 1009-1014. [DOI:10.1038/nprot.2012.044][PMID] Steru, L., Chermat, R., Thierry, B., & Simon, P. (1985). The tail suspension test: A new method for screening antidepressants in mice. Psychopharmacology, 85(3), 367-370. [DOI:10.1007/BF00428203][PMID] Türkez, H., & Aydın, E. (2016). In vitro assessment of cytogenetic and oxidative effects of α-pinene. Toxicology and Industrial Health, 32(1), 168-176. [DOI:10.1177/0748233713498456][PMID] Ueno, H., Shimada, A., Suemitsu, S., Murakami, S., Kitamura, N., & Wani, K., et al. (2020). Alpha-pinene and dizocilpine (MK-801) attenuate kindling development and astrocytosis in an experimental mouse model of epilepsy. IBRO Reports, 9, 102-114. [DOI:10.1016/j.ibror.2020.07.007][PMID][PMCID] Ueno, H., Shimada, A., Suemitsu, S., Murakami, S., Kitamura, N., & Wani, K., et al. (2019). Attenuation effects of alpha-pinene inhalation on mice with dizocilpine-induced psychiatric-like behaviour. Evidence-Based Complementary and Alternative Medicine, 2019, 2745453. [DOI:10.1155/2019/2745453][PMID][PMCID] Villareal, M. O., Ikeya, A., Sasaki, K., Arfa, A. B., Neffati, M., & Isoda, H. (2017). Anti-stress and neuronal cell differentiation induction effects of rosmarinus officinalis l. essential oil. BMC Complementary and Alternative Medicine, 17(1), 1-10. [DOI:10.1186/s12906-017-2060-1][PMID][PMCID] Walia, V., & Gilhotra, N. (2016). Nitriergic influence in the compromised antidepressant effect of fluoxetine in stressed mice. Journal of Applied Pharmaceutical Science, 6(10), 092-097. [DOI:10.7324/JAPS.2016.601012] Zamyad, M., Abasnejad, M., Esmaeili-Mahani, S., & Mostafavi, A. (2016). Alpha-pinene as the main component of ducrosia anethifolia (boiss) essential oil is responsible for its effect on locomotor activity in rats. Avicenna Journal of Neuro Psycho Physiology, 3(2), 29-34. [DOI:10.17795/ajnpp-38787]
| ||
مراجع | ||
Alamolhoda, S. H., Kariman, N., & Mirabi, P. (2020). Relationship between oxidative stress concentration and postpartum depression: A cohort study. Iranian Journal of Psychiatry and Behavioral Sciences, 14(1), e84188. [DOI:10.5812/ijpbs.84188] Alimohammadi, S., Hassanpour, S., & Moharramnejad, S. (2019). Effect of maternal exposure to zinc oxide nanoparticles on reflexive motor behaviors in mice offspring. International Journal of Peptide Research and Therapeutics, 25(3), 1049-1056. [DOI:10.1007/s10989-018-9752-3] Alimohammadi, S., Hosseini, M. S., & Behbood, L. (2019). Prenatal exposure to zinc oxide nanoparticles can induce depressive-like behaviors in mice offspring. International Journal of Peptide Research and Therapeutics, 25(1), 401-409. [DOI:10.1007/s10989-018-9686-9] Asadi, K., Abbasi-Maleki, S., & Hashjin, G. S. (2020). Antidepressant-like effect of cuminum cyminum essential oil on the forced swim and tail suspension tests in male mice. Journal of Shahrekord University of Medical Sciences, 22(4), 167-172. [DOI:10.34172/jsums.2020.27] Belzung, C. (2014). Innovative drugs to treat depression: Did animal models fail to be predictive or did clinical trials fail to detect effects? Neuropsychopharmacology, 39(5), 1041-1051. [DOI:10.1038/npp.2013.342][PMID][PMCID] Beydoun, M. A., Beydoun, H. A., Boueiz, A., Shroff, M. R., & Zonderman, A. B. (2013). Antioxidant status and its association with elevated depressive symptoms among US adults: National health and nutrition examination surveys 2005-6. British Journal of Nutrition, 109(9), 1714-1729. [DOI:10.1017/S0007114512003467][PMID][PMCID] Craft, R. M., Kostick, M. L., Rogers, J. A., White, C. L., & Tsutsui, K. T. (2010). Forced swim test behavior in postpartum rats. Pharmacology Biochemistry and Behavior, 96(4), 402-412. [DOI:10.1016/j.pbb.2010.06.012][PMID][PMCID] Cryan, J. F., Mombereau, C., & Vassout, A. (2005). The tail suspension test as a model for assessing antidepressant activity: Review of pharmacological and genetic studies in mice. Neuroscience & Biobehavioral Reviews, 29(4-5), 571-625. [DOI:10.1016/j.neubiorev.2005.03.009][PMID] Demin, K. A., Sysoev, M., Chernysh, M. V., Savva, A. K., Koshiba, M., & Wappler-Guzzetta, E. A., et al. (2019). Animal models of major depressive disorder and the implications for drug discovery and development. Expert Opinion on Drug Discovery, 14(4), 365-378. [DOI:10.1080/17460441.2019.1575360][PMID] Donato, F., de Gomes, M. G., Goes, A. T., Filho, C. B., Del Fabbro, L., & Antunes, M. S., et al. (2014). Hesperidin exerts antidepressant-like effects in acute and chronic treatments in mice: Possible role of l-arginine-NO-cGMP pathway and BDNF levels. Brain Research Bulletin, 104, 19-26. [DOI:10.1016/j.brainresbull.2014.03.004][PMID] Eltokhi, A., Kurpiers, B., & Pitzer, C. (2021). Comprehensive characterization of motor and coordination functions in three adolescent wild-type mouse strains. Scientific Reports, 11(1), 1-12. [DOI:10.1038/s41598-021-85858-3][PMID][PMCID] Ghosh, S., Kumar, A., Sachan, N., & Chandra, P. (2021). Anxiolytic and antidepressant-like effects of essential oil from the fruits of piper nigrum linn. (black pepper) in mice: Involvement of serotonergic but not GABAergic transmission system. Heliyon, 7(4), e06884. [DOI:10.1016/j.heliyon.2021.e06884][PMID][PMCID] Goudarzi, S., & Rafieirad, M. (2017). Evaluating the effect of α-pinene on motor activity, avoidance memory and lipid peroxidation in animal model of parkinson disease in adult male rats. Research Journal of Pharmacognosy, 4(2), 53-63. [Link] Hajialyani, M., Hosein Farzaei, M., Echeverría, J., Nabavi, S. M., Uriarte, E., & Sobarzo-Sánchez, E. (2019). Hesperidin as a neuroprotective agent: A review of animal and clinical evidence. Molecules, 24(3), 648. [DOI:10.3390/molecules24030648][PMID][PMCID] Hing, B., Sathyaputri, L., & Potash, J. B. (2018). A comprehensive review of genetic and epigenetic mechanisms that regulate BDNF expression and function with relevance to major depressive disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 177(2), 143-167. [DOI:10.1002/ajmg.b.32616][PMID] Karthikeyan, R., Kanimozhi, G., Madahavan, N. R., Agilan, B., Ganesan, M., & Prasad, N. R., et al. (2019). Alpha-pinene attenuates UVA-induced photoaging through inhibition of matrix metalloproteinases expression in mouse skin. Life Sciences, 217, 110-118. [DOI:10.1016/j.lfs.2018.12.003][PMID] Karthikeyan, R., Kanimozhi, G., Prasad, N. R., Agilan, B., Ganesan, M., & Srithar, G. (2018). Alpha pinene modulates UVA-induced oxidative stress, DNA damage and apoptosis in human skin epidermal keratinocytes. Life Sciences, 212, 150-158. [DOI:10.1016/j.lfs.2018.10.004][PMID] Kasuya, H., Okada, N., Kubohara, M., Satou, T., Masuo, Y., & Koike, K. (2015). Expression of BDNF and TH mRNA in the brain following inhaled administration of α-pinene. Phytotherapy Research, 29(1), 43-47. [DOI:10.1002/ptr.5224][PMID] Khan-Mohammadi-Khorrami, M. K., Asle-Rousta, M., Rahnema, M., & Amini, R. (2020). [The effect of alpha-pinene on amyloid-beta-induced neuronal death and depression in male Wistar rats (Persian)]. Journal of Ardabil University of Medical Sciences, 20(4), 456-464. [Link] Kong, Y., Wang, T., Wang, R., Ma, Y., Song, S., & Liu, J., et al. (2017). Inhalation of roman chamomile essential oil attenuates depressive-like behaviors in Wistar Kyoto rats. Science China Life Sciences, 60(6), 647-655. [DOI:10.1007/s11427-016-9034-8][PMID] Kontaris, I., East, B. S., & Wilson, D. A. (2020). Behavioral and neurobiological convergence of odor, mood and emotion: A review. Frontiers in Behavioral Neuroscience, 14, 35. [DOI:10.3389/fnbeh.2020.00035][PMID][PMCID] Kumar, R., Singh, A. K., Gupta, A., Bishayee, A., & Pandey, A. K. (2019). Therapeutic potential of aloe vera-a miracle gift of nature. Phytomedicine, 60, 152996. [DOI:10.1016/j.phymed.2019.152996][PMID] Leuner, B., Fredericks, P. J., Nealer, C., & Albin-Brooks, C. (2014). Chronic gestational stress leads to depressive-like behavior and compromises medial prefrontal cortex structure and function during the postpartum period. Plos One, 9(3), e89912. [DOI:10.1371/journal.pone.0089912][PMID][PMCID] Lin, S. H., Chou, M. L., Chen, W. C., Lai, Y. S., Lu, K. H., & Hao, C. W., et al. (2015). A medicinal herb, melissa officinalis l. ameliorates depressive-like behavior of rats in the forced swimming test via regulating the serotonergic neurotransmitter. Journal of Ethnopharmacology, 175, 266-272. [DOI:10.1016/j.jep.2015.09.018][PMID] Liu, J., Meng, F., Dai, J., Wu, M., Wang, W., & Liu, C., et al. (2020). The BDNF-FoxO1 axis in the medial prefrontal cortex modulates depressive-like behaviors induced by chronic unpredictable stress in postpartum female mice. Molecular Brain, 13(1), 1-14. [DOI:10.1186/s13041-020-00631-3][PMID][PMCID] Moghadam, L. (2016). Chemical composition and antioxidant activity cuminum cyminum l. essential oils. International Journal of Food Properties, 19(2), 438-442. [DOI:10.1080/10942912.2015.1038355] Nasehi, M., Mohammadi-Mahdiabadi-Hasani, M. H., Ebrahimi-Ghiri, M., & Zarrindast, M. R. (2019). Additive interaction between scopolamine and nitric oxide agents on immobility in the forced swim test but not exploratory activity in the hole-board. Psychopharmacology, 236(11), 3353-3362. [DOI:10.1007/s00213-019-05294-0][PMID] Porres-Martínez, M., González-Burgos, E., Carretero, M. E., & Gómez-Serranillos, M. P. (2015). Protective properties of salvia lavandulifolia vahl. essential oil against oxidative stress-induced neuronal injury. Food and Chemical Toxicology, 80, 154-162. [DOI:10.1016/j.fct.2015.03.002][PMID] Rahbar, I., Abbasnejad, M., Haghani, J., Raoof, M., Kooshki, R., & Esmaeili-Mahani, S. (2019). The effect of central administration of alpha-pinene on capsaicin-induced dental pulp nociception. International Endodontic Journal, 52(3), 307-317. [DOI:10.1111/iej.13006][PMID] Rufino, A. T., Ribeiro, M., Judas, F., Salgueiro, L., Lopes, M. C., & Cavaleiro, C., et al. (2014). Anti-inflammatory and chondroprotective activity of (+)-α-pinene: Structural and enantiomeric selectivity. Journal of natural products, 77(2), 264-269. [DOI:10.1021/np400828x PMID: 24455984][PMID] Saeedipour, S., & Rafiei-Rad, M. (2020). [Anti-anxiety effect of alpha-pinene in comparison with diazepam in adult male rats (Persian)]. Feyz, Journal of Kashan University of Medical Sciences, 24(3), 245-253. [Link] Sanacora, G., Zarate, C. A., Krystal, J. H., & Manji, H. K. (2008). Targeting the glutamatergic system to develop novel, improved therapeutics for mood disorders Nature Reviews Drug Discovery, 7(5), 426-437. [DOI: 10.1038/nrd2462][PMID][PMCID] Slattery, D. A., & Cryan, J. F. (2012). Using the rat forced swim test to assess antidepressant-like activity in rodents. Nature Protocols, 7(6), 1009-1014. [DOI:10.1038/nprot.2012.044][PMID] Steru, L., Chermat, R., Thierry, B., & Simon, P. (1985). The tail suspension test: A new method for screening antidepressants in mice. Psychopharmacology, 85(3), 367-370. [DOI:10.1007/BF00428203][PMID] Türkez, H., & Aydın, E. (2016). In vitro assessment of cytogenetic and oxidative effects of α-pinene. Toxicology and Industrial Health, 32(1), 168-176. [DOI:10.1177/0748233713498456][PMID] Ueno, H., Shimada, A., Suemitsu, S., Murakami, S., Kitamura, N., & Wani, K., et al. (2020). Alpha-pinene and dizocilpine (MK-801) attenuate kindling development and astrocytosis in an experimental mouse model of epilepsy. IBRO Reports, 9, 102-114. [DOI:10.1016/j.ibror.2020.07.007][PMID][PMCID] Ueno, H., Shimada, A., Suemitsu, S., Murakami, S., Kitamura, N., & Wani, K., et al. (2019). Attenuation effects of alpha-pinene inhalation on mice with dizocilpine-induced psychiatric-like behaviour. Evidence-Based Complementary and Alternative Medicine, 2019, 2745453. [DOI:10.1155/2019/2745453][PMID][PMCID] Villareal, M. O., Ikeya, A., Sasaki, K., Arfa, A. B., Neffati, M., & Isoda, H. (2017). Anti-stress and neuronal cell differentiation induction effects of rosmarinus officinalis l. essential oil. BMC Complementary and Alternative Medicine, 17(1), 1-10. [DOI:10.1186/s12906-017-2060-1][PMID][PMCID] Walia, V., & Gilhotra, N. (2016). Nitriergic influence in the compromised antidepressant effect of fluoxetine in stressed mice. Journal of Applied Pharmaceutical Science, 6(10), 092-097. [DOI:10.7324/JAPS.2016.601012] Zamyad, M., Abasnejad, M., Esmaeili-Mahani, S., & Mostafavi, A. (2016). Alpha-pinene as the main component of ducrosia anethifolia (boiss) essential oil is responsible for its effect on locomotor activity in rats. Avicenna Journal of Neuro Psycho Physiology, 3(2), 29-34. [DOI:10.17795/ajnpp-38787]
| ||
آمار تعداد مشاهده مقاله: 515 تعداد دریافت فایل اصل مقاله: 467 |