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ABSTRACT: This research aim is to develop a procedure for backcalculation of flexible
pavements moduli based on the hybridization of the Artificial Neural Network (ANN)
and the Jaya optimization algorithm. The ANN was applied to predict the pavement
deflection basin, and the Jaya was employed for moduli backcalculation. The comparison
of hybrid ANN-Jaya procedure with some backcalculation software indicates the high
ability of the developed method to perform backcalculation of flexible pavements moduli.
The comparison of the computational speed and accuracy of hybrid ANN-Jaya with
ANN-PSO and ANN-GA indicates the superior performance of ANN-Jaya compared to

other methods.

Keywords: Artificial Neural Network (ANN), Backcalculation, Falling Weight
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1. Introduction

In the pavement engineering, the Falling
Weight Deflectometer (FWD) device, is
commonly applied to estimate the pavement
stiffness modulus and the structural
properties of the layers in a non-destructive
manner  (Saltan and Terzi, 2008;
Gopalakrishnan and Papadopoulos, 2011;
Li et al., 2018). The structural analysis of
pavements has a key role in estimating the
pavements life and determination of the
optimal maintenance activities. As a part of
FWD results interpretation process, the
accurate measuring the pavement moduli

" Corresponding author E-mail: ghanizadeh@sirjantech.ac.ir

provides a reliable basis for the road
management department to formulate
pavement maintenance plans and rationally
arrange funds., Utilizing the several sensors
called geophones in the FWD test
procedure, the deflection basin
(deformations) of the pavement surface in
response to the applied dynamic load pulse
was measured at different radial distances
from the center of rubber plate (the loading
center). The dynamic load pulse simulates
the moving wheel load and is produced by
dropping a heavyweight on the pavement
through a circular rubber plate. Moreover,
the measured deflections can be employed
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to evaluate the pavement life and estimate
the pavement layers stiffness through
backcalculation analysis.

The backcalculation of pavement layers
moduli  consists of comparing the
deflections measured by the FWD and the
calculated ones through an iterative process
(using a pavement response model).
Usually, in most backcalculation software,
the multilayered elastic theory was
employed for forward analysis of pavement
structure. In this process, the modulus of
each layer is initialized, and the pavement
surface deflections will be calculated by
forward analysis. In the subsequent
iterations, the moduli of different layers are
adjusted, and then the computed deviations
are compared with the measured ones, until
the difference is within the acceptable
range. Over the years, different methods of
intelligence computing and deep learning
was emerged and developed to solve
complicated problems (Vasant et al., 2019).
Several static, dynamic and artificial
intelligence methods have been
implemented to the flexible pavement
moduli backcalculation including dataset
search, least squares, and soft computing
such as genetic algorithm, neural network
and, fuzzy logic system (Saric and Pozder,
2017; Guzzarlapudi et al., 2017
Aubdulnibe, 2019; Zhang et al., 2021). In
recent years, advanced computational
intelligence methods have been proposed
with higher computational speed and
accuracy.

Saltan et al. (2002) wused a
backcalculation process to predict the
thickness of layers affecting the pavement
service life. They used the Artificial Neural
Network (ANN) to eliminate the time-
consuming calculations based on linear
elastic theory and Finite Element. They
obtained a value of R? = 0.94 and R? = 0.88
based on the training and testing data,
respectively (Saltan et al., 2002).

Gopalakrishna and Thompson (2004)
used the ANN to predict the moduli of the
three-layer pavement based on FWD
measurements. They modeled the asphalt

layer as linear and base and subgrade as
nonlinear layers. The Coefficient of
Determination (R?) for predicting the
asphalt and subgrade moduli was obtained
0.98 and 0.97, respectively
(Gopalakrishnan and Thompson, 2004).
Ceylan et al. (2005) used the ANN for the
pavement  structural  analysis  and
determined the deflection basin of full-
depth asphalt pavements. They were able to
estimate the asphalt layer modulus based on
the FWD measurements and increase the
speed of backcalculation process (Ceylan et
al., 2005). Rakesh et al. (2006) used the
ANN method to calculate the surface
deflections of four pavement systems,
including pavement with 2, 3, 4 and 5
layers, and compared the results with actual
data. The value of R? for these systems was
0.997, 0.996, 0.997, and 0.997,
respectively. Saltan and Terzi (2008)
modeled the deflection basin of the flexible
pavement using ANN with a cross-
validation technique by applying a
backcalculation process (Saltan and Terzi,
2008).

Gopalakrishnan (2010) proposed a new
intelligent system for back-calculating the
stress-dependent modulus of the layers
using pavement deflection data. For this
purpose, the integration of three methods,
including Finite Element, ANN, and
Particle Swarm Optimization (PSO) as a
hybrid backcalculation tool, was used to
develop a robust system for predicting the
nonlinear modulus of granular base and
subgrade layers. The values of R? obtained
from the calculated modulus, and the actual
data for the asphalt and subgrade layer were
0.996 and 0.984, respectively. In this
research, the developed model has validated
with BACKFAA and WESDEF software in
the six different airport pavement sections
(Gopalakrishnan, 2010).

Saltan et al. (2013) used the ANN
approach to evaluate the structural
properties of a typical flexible pavement,
including the layers thickness, the Poisson’s
ratio, and the resilient modulus (Saltan et
al.,, 2013). Ocal (2014) presented an
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artificial  intelligence  algorithm  to
backcalculate the asphalt pavements moduli
based on FWD results. For this purpose, a
novel hybrid  Gravitational  Search
Algorithm  (GSA)-ANN  method was
proposed (Ocal, 2014). The Ant Colony
Optimization algorithm was applied by
Scimemi et al. (2016) to back-calculate the
airport pavement moduli based on the
surface deflection data. They evaluated
back-calculated moduli in comparison with
the field data utilizing the BACKGA
software, and found that the maximum error
is equal to 0.66%. Li and Wang (2019) used
ANN and Genetic Algorithm (GA) to back-
calculate the flexible pavement layers
moduli.

You et al. (2020) utilized two ANN
based back-calculation models to evaluate
the interlayer conditions and predicting the
layers moduli of four types of pavements.
Moreover, the ANSYS software was
applied to build the corresponding database.
The results of two proposed ANN models
compared to the results of two multiple
regression models have shown that, there
are no significant differences between them.

Fu et al. (2020) estimated the dynamic
surface deflections of asphalt pavement
subjected to the FWD and evaluate the
static backcalculation of layer moduli using
the MODULUS and EVERCALC software.
They found that the static backcalculation
process caused considerable errors due to
regardless of the dynamic effects of FWD
loading.

Wang et al. (2020) evaluated the
traditional backcalculation method based on
the finite element and the multilayer elastic
theory compared to a new one without
backcalculation based on the ANN to
predict pavement surface deflections using
Heavy Weight Deflectometer (HWD). They
showed that the traditional approach
overestimated tensile strain in a thin asphalt
layer and concluded that the accuracy of the
ANN was better than others.

The represented background for
application of Computational Intelligence
(Cl) methods to back-calculate the

pavement layer properties, reveals that a
comprehensive comparison of results
obtained by these methods with actual field
data as well as existing backcalculation
software has not been performed. The
limitations of the dataset for the
development of ANN and the lack of
developed software to implement the
developed CI method are two other
shortcomings. Also, the Jaya algorithm has
not been used to perform backcalculation of
flexible pavements moduli. Unlike other
population-based optimization algorithm,
lack of specific control parameters is the
most important advantage of Jaya
algorithm. Furthermore, better performance
and faster convergence capability are two
other reasons that this algorithm is
employed in this research work.

In this paper, a hybrid optimization
model (ANN-Jaya) is proposed for
performing backcalculation of flexible
pavements moduli, and an applied software
is developed to implement it. Furthermore,
the performance of the developed model is
evaluated based on the field data as well as
different backcalculation software,
including ISSEM4, MODCOMP,
MODULUS, WESDEF, and BACKFAA.
Besides, the ability of the Jaya algorithm in
terms of robustness, convergence rate and
run time is compared with other
optimization methods including the GA and
the PSO algorithm.

2. Falling Weight Deflectometer (FWD)

The Falling Weight Deflectometer (FWD)
iS a testing device that was firstly
introduced in France to estimate the
structural capacity and physical properties
of pavements (Ullidtz, 1987). In this
device, an impact load is applied on a
loading plate, and then the surface
deflection can be measured at different
radial distances using several geophones. In
the LTPP program, the geophones distance
from the loading center was assumed to be
0, 203, 305, 457, 610, 915, and 1525 mm
(Von et al., 2002). The impact load can be
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altered by changing the falling weight
height. The load pulse is applied through a
series of springs in a short time to the
pavement surface (about 28 milliseconds).
The falling load of the FWD device is not
enough to evaluate the airport pavements
that have a higher thickness and load
capacity. In such a situation, the Heavy
Falling Weight Deflectometer (HFWD) can
simulate a Boeing 747-wheel load with a
maximum dynamic pressure of 250 KN and
loading time between 20 and 25
milliseconds. The schematic image of the
FWD device is demonstrated in Figure 1.
Some of the variables which affect the
shape and dimension of the deflection basin
include the Poisson’s ratio, the thickness,
the layers modulus, the load applied by the
FWD, and the subgrade depth (Bendana et
al.,, 1994). Having these values and
deflections in different radial distances, the
modulus of different layers can be obtained
through backcalculation process.

3. Artificial Neural Network (ANN)

An artificial neural network (ANN) adapted
from the behavior of the neurons of the
brain nervous mechanism. The ANN
consists of the artificial neurons which be

Falling weight

/

[

connected (Gurney, 2005). Each connection
has a specific weight that increases or
decreases the strength of the transmitted
signal at a link. The ANN can determine
nonlinear relationships between input and
output variables. Since solving complex
problems with traditional methods is very
difficult, ANN is widely being used in
various Civil Engineering fields. The feed-
forward neural network is one of the most
applicable types of ANN for modeling of
engineering problems. It consists of several
the processing units (the neuron, cell, or
node) placed in the layers that connected the
inputs to the output set. A multilayer feed-
forward neural network includes input,
hidden, and output layers which are
composed of connected neurons.

For developing a multilayer feed-
forward neural network, a learning rule
should be used. One of the most popular
tools for learning is the error back-
propagation  algorithm. The general
architecture of this algorithm is shown in
Figure 2. In this figure L: is the number of
neurons in the hidden layer and Xp1 to Xpn:
are the input and yp1 to ypm: are the output
variables. The elements as well as the
computational process for a typical artificial
neuron is shown in Figure 3.
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Fig. 1. Schematic image of the FWD and measuring the deflection basin for a flexible pavement
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Fig. 3. Structure of a typical artificial neuron

where vyi: is the output signal. Other
variables are described in the figure. To
propagate the activation, the input signals
are assessed using their connection weights
and enters into the activation function as
input. The input signal of the neuron is
obtained using Eq. (1):

N

net; = Z(WUX]) - Hi (1)

j=1

The output signal can also be computed
utilizing the Eq. (2):

yi = f(net;) @)

in which f. is the transfer function
(activation function) and can be classified
as a linear, sigmoid, and tangent sigmoid
function. The tangent sigmoid transfer
function can be acted as real neurons. The
value of the output signal (y;) for tangent
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sigmoid activation function varies between
0 and 1. The tangent sigmoid function can
be calculated by Eq. (3):

f&) = ®)

S
(1+e72%)

Using the input and output data set, the
recursive algorithm modifies the weights
and biases for successive iterations. The
recursive learning rule is based on
minimizing the difference between the
calculated and desired output values (error).
The learning process is randomly started by
assigning connection weights, and then the
values of weights and biases are updated
according to the error value in the
successive iterations. The error back-
propagation EX: is determined utilizing the
Eq. (4) at the end of each stage:

1
EY = i[tﬁ‘ - ¥{] (4)

where t¥: is the real output for the i neuron
and the k" data in the training set. After
completing the activation phase, the
connection weights are adjusted and the
backpropagation phase will begin. In this
case, the output of the activation path is
converted to the return path toward inputs,
and the new connection weight of the
neurons i and j are updated using Eq. (5):

w;; (it + 1) = wy;(it) + nz S5F XK
. 5)

+ a[wij (it)

—w;; (it — 1]

where a: is the momentum factor that
affects the weight in consecutive iterations
to prevent the algorithm from falling down
in the local optima and oscillation. The bias
values are also updated as follows:

0,(it + 1) = 6,(it) + ”Z sk
k

+ a[Gi(it)
—6;(it — 1)]

(6)

This process is repeated for each of the
training data, while the difference between
the calculated and the desired outputs is
minimized (Pekcan et al., 2008). Thereafter,
two criteria including coefficient of
determination (R? and Root Mean Square
Error (RMSE) were employed to evaluate
the neural network performance using the
following equations.

N
1
RMSE = Nz(d" — ;)2 ()
i=1

RZ
_ (NEX (diy) =2 di T i)
(NEX a2 = (2 d)") (VL v2 - (B, 90)°)
(8)

where di: is the actual value, and yi: is the
predicted value for the i data from the
neural network and N: is the number of data
points.

4. Jaya Algorithm

Metaheuristic algorithms have been utilized
to many complicated Civil Engineering
problems (Kaveh and Dadras, 2017;
Hajiazizi et al., 2021; Samadi et al., 2021;
Sonmez et al., 2017; Ghanizadeh and
Heidarabadizadeh, 2018; Ghanizadeh et al.,
2020).

Most of the metaheuristic algorithms
such as the Particle Swarm Optimization
(PSO) (Eberhart and Kennedy, 1995), the
Genetic Algorithm (GA) (Holland, 1975),
the Teaching Learning-Based Optimization
(TLBO) (Rao et al., 2011), and the Firefly
Algorithm (FFA) (Yang, 2009) have several
internal tuning parameters, and the tuning
stage is necessary to determine these
parameters. The internal tuning parameters
are usually set for a specific problem, and
there is no guarantee that these values will
lead to a globally optimal solution in case of
other issues.

Rao (2016) proposed a simple Jaya (a
Sanskrit word meaning victory) algorithm
that does not have any internal tuning
parameter. The initial solutions of the Jaya,



Civil Engineering Infrastructures Journal 2022, 55(1): 89-108 95

P candidates, are randomly generated.
Then, the variables of the solution are
stochastically updated.

Suppose °j’ is the design variable, ‘k’ is
the candidate solutions, and ‘i’ is the
iteration number. The value of the j™
variable for the k™ candidate in the i
iteration is called Xk and calculated from

Eq. (9).

d
Jki

= Xjkit 71 (Xj,best,i' /Xj’k’[/j - ©)]

V)i (Xj,worst,i' |Xj,k,i|)

where Xjpesti and Xjworst,i: are the values of
“” for the best and worst solution,
respectively. Also ryjiand rzj;: are the two
random numbers in the range of 0 to 1. The
term “ryji ((Xjpest,i- | Xijkii | )”: shows the
tendency to the optimal solution and the
term “-r2ji (Xjworst,i- | Xjk,i | )’ defines the
avoidance to the worst solution. The
updated value of X, (X, is accepted only
when the corresponding value of objective
function is improved. All the acceptable
values are maintained as the inputs of the
next iteration.

The Jaya algorithm updates the costs of
the solutions so that the cost of their

objective function converges to the optimal
solution. After updating the solutions, with
comparing the updated and corresponding
old values, only one of them is selected for
the next iteration, which will be the better
value of objective function.

It should be noted that, the optimal
solution is found in every iteration, and the
worst one will be removed, simultaneously.
Thereby, this algorithm provides both
useful intensification and diversification of
the search process in an appropriate way.

In this way, the algorithm always tries to
get closer to the optimal solutions and to
avoid diverging from the optimal solutions.
The general procedure for the Jaya
algorithm is presented in Figure 4 (Rao,
2016).

As can be seen, the Jaya algorithm need
to the usual control variables (population
size and number of generations), while, the
other optimization algorithms such as PSO,
GA, FA, FFA, etc. require the tuning of
respective algorithm-specific parameters.
The proper implementation of this
procedure has positive effects on the
performance of the algorithms, otherwise,
either the calculations will increase or it will
get stuck at the local optimal solution.

Initialize population size, number of variables and termination criterion

v

Identify best and worst solutions in the population

|
¥

Modify the solution based on best and worst solutions
X =Yk + 7150 ( (Y pestim |‘¥f}k:‘ | ) = 7245 Kiworssi- |- ki | )

Yes

A 4

v

Is the solution corresponding to I\J i
better than that corresponding to X ;?

Accept and replace
the previous solution

No

Y

Keep the previous
solution

v

No Is the termination Yes

criterion satisfied?

Report the optimum solution [€
Fig. 4. The Jaya algorithm Flowchart (Rao, 2016)
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5. Developing Feed-Forward Neural
Network

5.1. Artificial Dataset

In this study, 10000 different flexible
pavement sections, consisting of asphalt
concrete, granular base, and subgrade soil,
were analyzed to create a comprehensive
dataset for training and testing artificial
neural networks. The deflection of the
pavement section surface was calculated in
seven different radial distances (0, 203, 305,
457, 610, 915, and 1525 mm). The load was
applied as a circular contact area with
uniform vertical stress of 552 kPa and a
contact radius of 152 mm. Table 1 shows
the statistical characteristics of the analyzed
pavement sections. The Poisson’s ratio of
the subgrade soil, granular base, and asphalt
concrete were assumed to be 0.40, 0.35, and
0.35, respectively, which is commonly used
in the literature (Maher and Bennert, 2008).

Previous studies have also shown slight
changes in the pavement response due to
changes in the Poisson ratio (Huang, 2004).
The NonPAS program has been applied,
which provide the possibility of linear and
nonlinear analysis of pavements subjected
to 10 circular contact loads using
multilayered elastic theory. The NonPAS
verification process showed that the
NonPAS results compared to other
applications such as KENLAYER and
JULEA are very consistent (Ghanizadeh
and Ziaie, 2015). The Statistical
characteristics of the deflections obtained
for different radial distances are shown in
Table 2.

5.2. Optimal Architecture

The training and testing procedure was
conducted using a developed program in
MATLAB which is developed by
MathWorks. In each run of the program, the

MATLAB toolbox assigns random values
to the initial neural network weights and
biases. Despite the consistency of the
neurons and architecture of each layer, the
random assignment of weights and biases
strongly affects the ANN performance. To
address this issue, another MATLAB-based
program was developed to obtain the
optimal number of neurons in the hidden
layer of ANN. The number of neurons was
considered to be between 5 and 100. With
regards to the random values of weights,
and the architecture with the least error was
considered as the optimum architecture. In
this study, the training, validating, and
testing procedure were applied based on the
65% (6500 data points), 10% (1000 data
points) and 25% (2500 data points) of the
data, respectively. Moreover, the transfer
function of the hidden and output layers was
assumed as the tangent sigmoid and the
linear, respectively.

The results showed that increasing the
number of neurons up to 90 improves the
performance of artificial neural networks.
Therefore, the neural network with a hidden
layer and with an architecture of 7-90-5 has
sufficient accuracy for predicting the
pavement surface deflections at different
radial distances. The architecture of the
selected neural network is shown in Figure
5.

5.3. Evaluation of ANN Performance

The ANN performance for prediction of
surface deflections at different radial
distances for the training and testing sets is
shown in Figures 6 and 7, respectively. As
can be seen, the coefficient of determination
in all cases is more than 0.9999, which
indicates the high accuracy of the developed
model in predicting the surface deflections
of flexible pavements.

Table 1. Statistical characteristics of the inputs used for dataset development

Statistical parameter Hi (mm) Hz (mm) Ei1(MPa) E2 (MPa) Es (MPa)
Maximum 309 500 10000 2000 400
Minimum 50 100 500 100 20

Median 300 181 4319 728 100
Mean 178.38 282.55 4703 847 148
Standard deviation 79.42 119 2682 560 112
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Table 2. Statistical characteristics of the outputs used for dataset development
Statistical parameter D1 D2 D3 D4 Ds Ds Dz
Maximum 3.0721 2.0286 1.494 1.0439 0.8883 0.6476 0.3793
Minimum 0.0567 0.0454 0.0414 0.0371 0.0334 0.0275 0.0169
Median 0.2657 0.2137 0.1893 0.1667 0.1481 0.1182 0.0743
Mean 0.3673 0.2982 0.2601 0.2224 0.1931 0.1502 0.0993
Standard deviation 0.3081 0.2466 0.2153 0.1827 0.1588 0.1254 0.0859
Deflection in mm. .
Tangent Sigmoid Linear
Input Layer Hidden Layer Output Layer
Fig. 5. Optimal ANN architecture
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Fig. 7. ANN performance to predict the pavement surface deflections at different radial distances based on the

testing set

6. Hybrid ANN-Jaya

6.1. Backcalculation Procedure Using
Hybrid ANN-Jaya

In this paper, a procedure based on the
hybridization of  ANN (forward
calculations) and Jaya (determining the
modulus of layers) has been proposed for
the moduli backcalculation of flexible
pavements. The schematic diagram of this
procedure is represented in Figure 8. The
calculation of deflections is conducted
using the ANN, and the Jaya applied to
determine the optimum values of the neural
network inputs so that the deflections
calculated through the ANN are as close as
possible to the FWD measured deflections.
In other words, the difference between both
measured and calculated deflection values
should be minimized. Therefore, the
objective function can be expressed
according to Eq. (10).

f=)Iop =gl (10)
i=1

where D™ and Djf:are the deflections
measured by the FWD and calculated by
ANN for i geophone, respectively, and n is
the number of geophones (n = 7).

6.2. Implementation of Hybrid ANN-
Jaya

To implement the hybrid ANN-Jaya, the
JayaBack (a MATLAB-based program)
which provides the possibility of fast and
reliable backcalculation of the pavement
layers moduli was developed. This program
gets the inputs including the asphalt
thickness and granular base layers (cm), the
granular base and subgrade soil moduli
(MPa), upper and lower range of the
asphalt, deflection values at seven radial
distances (mm), contact pressure of FWD
device (MPa), the maximum number of
iterations and the number of moduli
generated per iteration and then determine
the asphalt, granular base and subgrade soil
moduli (MPa) wusing the algorithm
represented in Figure 8. The graphical user
interface (GUI) of JayaBack is shown in
Figure 9.
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6.3. Validation of the ANN-Jaya Method

6.3.1. JayaBack Validation Using Field

Data

To access the performance of the hybrid
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Table 3. Surface deflection values measured by the FWD (SHRP, 1991)

Fig. 9. The JayaBack program GUI

ANN-Jaya method, the deflection values

measured by FWD measured for six

different pavement sections were used

(Table 3). These values have been adapted

from the SHRP-P-651 report (SHRP, 1991).

Layer thickness (mm)

Radial distances (mm)

Section AC Base 0 203 305 457 610 915 1525
1 1065 127 02936 02290 01845 01361 01012 00615 0.0342
2 106.5 127 02839 02193 01779 00133 01005 0.0609 0.0316
3 106.5 127 02664 02079 01697 01284 00975 00597 00315
4 106.5 127 02573 02003 01645 01256 00960 0.0592 0.0318
5 76.2 152 04588 03236 02482 01757 01326 00858 0.0498
6 152.4 3048 04198 03417 03026 02580 02218 01701 0.1078
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To validate and evaluate the accuracy of
the proposed procedure, the FWD measured
deflections, the contact pressure and the
thickness of Asphalt Concrete (AC) and
granular base were given to the
MODCOMP, ISSEM4, MODULUS,
BACKFA, WESDEF, and JayaBack
programs and the moduli for asphalt,
granular base, and subgrade soil was
backcalculated.

ISSEM4 program which has been
developed by Dynatest Company, is based
on the layered elastic theory (ELSYM 5)
and employs an iterative procedure to match
the measured deflections with the
theoretical deflections calculated at the
pavement surface (Bush and Baladi, 1989).
MODCOMP was developed for the U.S.
Army Cold Regions Research and
Engineering Laboratory by Irwin and
Szebenyi (1983). It uses the layered elastic
theory for the forward computation of
surface deflections and an iterative process
for backcalculation of moduli. The program
first calculates the modulus of the deeper
layers, and then calculates the modulus of
the upper layers. It can estimate the moduli
for a pavement system having 2 to 15 layers
and assumes that the lowest layer is as
infinite half-space. It can also handle 6
different loads, each with 10 deflections.
MODCOMP considers material behavior as
linear elastic or nonlinear elastic for to
estimate layers modulus (Irwin, 1983,
William, 1999).

MODULUS program which has been
developed at the Texas Transportation
Institute, uses WESLEA’s forward analysis
program to create the deflection database,
and employed the Pattern Search Algorithm
for inverse calculation (Alexander et al.,
1989; Richardson and Lusher, 2015; Van et
al., 1989). The WESDEF uses the
WESLEA program as forward analysis tool
and to backcaulate the layers moduli that
results in the best fit between a computed
and a measured deflection basin (Hassan,
2003). The BAKFAA, was developed by
Federal Aviation Administration (FAA) and
uses the LEAF, a layered elastic theory

program, for forward analysis (Brill and
Hughes, 2007; Gopalakrishnan, 2012).

The value of the moduli calculated by the
JayaBack program and other programs are
represented in Figure 10. Table 4 shows the
percentage of the difference between the
predicted modulus of the JayaBack and
other programs.

As can be seen in Table 4, maximum
difference between the predicted modulus
of the JayaBack and the other programs for
the asphalt layer, base, and subgrade was
found to be 22.5, 33.7, and 19.9 percent,
respectively. To evaluate the accuracy of
the JayaBack, the backcalculated moduli by
the ISSEM4, MODCOMP, MODULUS,
WESDEF, BACKFA, and JayaBack
program were given to the KENLAYER
program, and the surface deflections in case
of each pavement section was computed.
Then, the deflection basin resulted from the
KENLAYER program based on the
backcalculated moduli of each program was
compared to the deflection basin measured
by the FWD device.

The values of R? and RMSE obtained
from the comparison of the deflection basin
measured by the FWD device and
calculated by the KENLAYER program
based on the backcalculted moduli using
different software are given in Table 5.
according to this table, the JayaBack
deflection results, in comparison with the
other programs, have more compatibility
with the FWD results. Therefore, it can be
concluded that the backcalculted modules
obtained from the JayaBack are reliable.
Figure 11 shows the deflection basins
calculated based on the moduli
backcalculated using the JayaBack and ones
measured by the FWD device for six
different sections.

6.3.2. Hybrid ANN-Jaya Method in
Comparison with other Optimization
Methods

To investigate the ability of the Jaya with
the GA and PSO, the hybrid ANN-GA and
ANN-PSO were developed, and their
results were compared with ANN-Jaya. The
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speed and accuracy of these three methods pavement sections mentioned in the
were investigated for the different previous article.
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Fig. 10. Backcalculated moduli by JayaBack and other programs
Table 4. Difference between the moduli backcalculated by the JayaBack and other programs
ISSEM4 MODCOMP MODULUS WESDEF BACKFAA
E: 7.7 7.7 16.2 5.2 2.7
Section 1 E. 12.7 6.1 311 9.3 0.7
Es 12.4 3.4 7.3 6.1 3.4
Section 2 E1 2.9 5.2 2.4 8.2 3.4
E> 17.1 28.6 3.5 3.4 16.6
Es 2.8 0.4 5.1 13.5 1.7
Section 3 E: 5.3 4.6 1.3 225 22.1
E. 135 11.6 5.3 337 21.7
Es 55 1.4 4.4 15.6 4.0
E1 1.8 15.8 11.5 214 18.9
Section 4 E> 24.5 20.8 16.4 29.8 13.8
Es 12.0 19.9 3.3 12.0 3.3
E: 3.1 4.6 3.1 10.1 43
Section 5 E. 6.0 25 7.6 15.7 5.1
Es 0.4 3.4 3.9 17.3 8.9
E1 3.3 35 3.3 10.4 4.4
Section 6 E> 4.5 55 2.2 135 5.0

Es 23 75 6.2 65 13.4
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Table 5. Evaluation of deflection basin, measured by the FWD, and calculated by the KENLAYER

ISSEM4 MODCOMP MODULUS WESDEF BACKFAA JayaBack
Section 1 R? 0.99928 0.99983 0.99942 0.99977 0.99985 0.99986
RMSE 0.01093 0.00499 0.00526 0.00689 0.00488 0.00103
Section 2 R? 0.99681 0.99572 0.99608 0.99929 0.99916 0.99946
RMSE 0.00709 0.00776 0.04308 0.02281 0.00536 0.00208
Section 3 R? 0.99862 0.99932 0.99536 0.99623 0.99956 0.99958
RMSE  0.00532 0.00202 0.04159 0.01442 0.00440 0.00176
Section 4 R? 0.99954 0.99976 0.99357 0.99985 0.99961 0.99967
RMSE  0.00945 0.02045 0.04342 0.01027 0.00407 0.00173
Section 5 R? 1.00000 0.99992 1.00000 0.99935 0.99998 1.00000
RMSE  0.00695 0.00552 0.00670 0.01224 0.00628 0.00175
Section 6 R? 0.99999 0.99996 0.99999 0.99964 0.99999 0.99997
RMSE  0.00862 0.00746 0.00843 0.01311 0.00694 0.00089
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Fig. 11. Deflection basins calculated based on the JayaBack backcalculated moduli and ones measured by the
FWD device; a) Section 1; b) Section 2; ¢) Section 3; d) Section 4; e) Section 5; and f) Section 6
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Before the backcalculation, the tuning
parameters of the optimization algorithms
should be determined. The Jaya algorithm
needs no tuning parameter. The PSO
algorithm has two tuning parameters of c;
and cz, which vary between 1 and 2. The
Genetic  Algorithm  consists of two
parameters, including the intersection
probability and the probability of mutation,
and the range of variations of these two
parameters was considered to be [0.7-1] and
[0.1-0.4], respectively (Yang, 2010). The
optimal values were determined while the
objective function was evaluated based on
50 particles and 1000 iterations. The
optimal value of the c; and cz in the PSO
algorithm was equal to 2. Moreover, the
best value for crossover and mutation
probability parameters were found to be 0.9
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and 0.4, respectively.

The optimal values of the objective
function can be seen for ANN-Jaya, ANN-
PSO, and ANN-GA methods for six
different pavement sections in Table 6. It is
clear from this table that the optimal value
of the objective function for the ANN-Jaya
and ANN-PSO is approximately equal,
although the ANN-Jaya has achieved a
more accurate value. It can be also seen that
the ANN-GA method has been trapped into
the local optima, and in most cases, it is not
able to find global optima. Figure 12 shows
the convergence diagram of each method
for six pavement sections. According to the
figure, the convergence rate of the Jaya
algorithm to the global optima is faster than
the PSO and notably greater than the GA
algorithm.
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ig. 12. The convergence diagram of ANN-GA, ANN-PSO and ANN-Jaya for different pavement sections; a)

Section 1; b) Section 2; ¢) Section 3; d) Section 4; e) Section 5; and f) Section 6
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Table 6. Optimal values of the objective function derived from backcalculation using different methods

Section ANN-GA ANN-PSO ANN-Jaya
1 0.044151 0.005788 0.005586
2 0.024705 0.009703 0.009701
3 0.045097 0.008931 0.008909
4 0.024637 0.008672 0.008546
5 0.006453 0.002098 0.002068
6 0.002886 0.001571 0.001486
6.4. Experimental Results each  implementation, five hundred

The proposed method was implemented
in the MTLAB program. All computations
were solved on an Intel Core i5-3210 M
CPU 2.5 GHz with 4 GB of RAM. The
developed program gets the input
parameters including the asphalt and
granular base layers thicknesses (cm), the
granular base and subgrade soil moduli
(MPa), asphalt content, the contact pressure
of FWD device (MPa), the deflection values
at seven radial distances (mm), the number
of moduli generated per iteration and the
maximum number of iterations. The
software determines the asphalt, granular
base and subgrade soil moduli (MPa) as the
output.

In order to compare the robustness,
stability, reliability and convergence of
different optimization algorithms including
the Jaya, PSO, and GA, each field data was
run as much as 10 times by means of each
optimization algorithms. To evaluate the
robustness, stability, reliability and
convergence of the developed model, each
field data was run as much as 10 times. At

iterations are run and, fifty modulus is
considered at each iteration, and the
objective function is RMSE value of
predicted values of deflections with desired
deflections. The thickness of asphalt
concrete and granular base layers for each
pavement section along with the measured
deflections are given in Table 3. The lower
and upper band of the resilient modulus
were also considered for asphalt concrete
layer, granular base layer, and subgrade soil
layer as 500 to 10,000 MPa, 100 to 2000
MPa and 20 to 400 MPa, respectively.

Tables 7-9 indicate the statistical
parameters of the optimal objective
function value, the last optimization

iteration, and the run time for the Jaya, PSO,
and GA algorithms, respectively. In this
study, the maximum number of iterations as
well as the minimum RMSE have been used
as the stopping criteria. As can be seen, the
Jaya algorithm indicates the high robustness
and superior convergence in comparison
with the GA and PSO algorithms.

Table 7. The statistical parameters to evaluate of the Jaya algorithm

Section Section Section Section Section Section
1 2 3 4 5 6
Min 0.001237 0.001886 0.001731 0.001714 0.000652 0.000980
Optimal objective Max 0.001989 0.001980 0.001978 0.001990 0.001872 0.001990
functi Average 0.001653 0.001940 0.001879 0.001852 0.001519 0.001637
unction value (mm) Sta
De\'/ 0.000248 0.000029 0.000079 0.000089 0.000337 0.000230
Min 0.61 0.87 0.72 0.70 0.67 0.85
Max 0.97 1.21 1.10 0.84 0.96 1.03
Total time (sec) Average 0.79 1.01 0.85 0.78 0.80 0.91
Sta. 0.10 0.10 0.09 0.05 0.09 0.06
Dev
Min 3 28 9 7 2 23
The latest iterations of Max 33 56 38 23 31 38
L Average 17.4 37.1 19.8 18.4 19 28.1
optimality Sta
' 8.80 8.37 7.21 2.87 6.65 491

Dev
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Table 8. The statistical parameters to evaluate of the PSO algorithm

Section 1 Section 2 Section 3 Section 4 Section 5 Section 6
Optimal Min 0.001461 0.001900 0.001782 0.001796 0.001125 0.001152
objective Max 0.001996 0.001994 0.001987 0.001996 0.001925 0.001991
function Average 0.001702 0.001953 0.001904 0.001916 0.001570 0.001648
value (mm) Sta. Dev 0.000165 0.000029 0.000062 0.000054 0.000279 0.000338
Min 0.66 5.36 1.54 1.02 0.17 5.17
Total time Max 7.05 9.56 9.04 7.19 11.11 10.18
(sec) Average 3.22 6.91 5.39 3.11 4.59 7.79
Sta. Dev 1.72 1.29 2.09 1.60 3.34 1.61
The latest Min 5 34 13 14 8 28
iterations of Max 41 52 48 45 67 54
optimality Average 19.7 415 29 19.8 28.4 415
Sta. Dev 10.20 5.48 10.86 9.85 20.02 8.33
Table 9. The statistical parameters to evaluate of the GA algorithm
Section 1 Section 2 Section 3 Section 4 Section 5 Section 6
Optimal Min 0.003789 0.002363 0.002248 0.002320 0.001765 0.001634
objective Max 0.015410 0.010474 0.013726 0.008998 0.021849 0.001874
function Average 0.008279 0.005942 0.005759 0.004917 0.010778 0.001715
value (mm)  Sta. Dev 0.003149 0.002791 0.003260 0.001803 0.007063 0.000087
Min 370.77 367.24 368.21 369.57 284.44 0.46
Total time Max 416.56 374.35 399.72 420.18 417.61 4,98
(sec) Average 383.99 369.40 375.94 410.13 396.06 2.13
Sta. Dev 15.13 2.67 10.97 15.46 39.98 1.24
Min 500 500 500 500 500 2
itg‘aeti'j;iséf Max 500 500 500 500 500 17
optimality Average 500 500 500 500 500 8.2
Sta. Dev 0 0 0 0 0 4.24

7. Conclusions

The goal of this study was development of
a moduli backcalculation method for the
flexible pavements using the hybridization
of the ANN and Jaya. The ANN was
employed as the forward model to predict
the pavement deflection basin, and the Jaya
was applied to find the modulus of the
layers based on the minimizing the
difference  between  measured and
calculated deflections. The results of this
research can be concluded as follows:

- The developed ANN can predict the
pavement deflections with high accuracy
such that the coefficient of determination
(R?) in all cases is more than 0.9999.

- Comparison of results obtained by the
hybrid ANN-Jaya method with other
programs such as ISSEM4, MODCOMP,
WESDEF, MODULUS and BACKFAA
showed that the hybrid ANN-Jaya
method can predict the pavement layers
moduli with high accuracy.

- The deflection basins computed by the
KENLAYER program based on the
backcalculated moduli resulted from
different programs as well as ANN-Jaya

procedure were compared to the
deflection basin measured by the FWD
device and results confirm that the ANN-
Jaya procedure can be used as a reliable
method for backcalculation of flexible
pavements.

- Comparison of ANN-Jaya results with
ANN-GA and ANN-PSO showed that the
ANN-Jaya has a higher capability to find
the optimum solutions in terms of
convergence speed and finding global
optima. It was also observed that, the
ANN-GA was not able to find the global
optima in most cases.

- The developed method was implemented
in a computer program called JayaBack
to facilitate the use of this method for
moduli  backcalculation of flexible
pavements and further researches.

- The method (ANN-Jaya) and software
(JayaBack) developed in this research
can be used more accurately than the
previous methods to predict the resilient
modulus based on the FWD test results.
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