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ABSTRACT: Applications of machine learning techniques in concrete properties' 

prediction have great interest to many researchers worldwide. Indeed, some of the most 

common machine learning methods are those based on adopting boosting algorithms. A 

new approach, histogram-based gradient boosting, was recently introduced to the 

literature. It is a technique that buckets continuous feature values into discrete bins to 

speed up the computations and reduce memory usage. Previous studies have discussed its 

efficiency in various scientific disciplines to save computational time and memory. 

However, the algorithm's accuracy is still unclear, and its application in concrete 

properties estimation has not yet been considered. This paper is devoted to evaluating the 

capability of histogram-based gradient boosting in predicting concrete's compressive 

strength and comparing its accuracy to other boosting methods. Generally, the results of 

the study have shown that the histogram-based gradient boosting approach is capable of 

achieving reliable prediction of concrete compressive strength. Additionally, it showed 

the effects of each model's parameters on the accuracy of the estimation. 

 

Keywords: Compressive Strength, Concrete, Histogram-Based Gradient Boosting, 

Machine Learning. 

  
 

1. Introduction 

 

There is no doubt that concrete is one of the 

most widely used materials all over the 

world (Elzokra et al., 2020; Habib et al., 

2021). Generally, it has high compressive 

strength and stiffness, making it suitable for 

various construction works (Malkawi et al., 

2020). Concrete mixture design as a vital 

and recondite problem is the method of 

identifying the kind and amount of 

individual components to produce concrete 

that fits desired properties, such as 

workability and strength, for a particular 
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purpose and is also economically 

acceptable (Yeh, 2007; Wardeh et al., 

2015). Optimal design of concrete 

composition proportions with the lowest 

cost and needed performance is considered 

a challenge of designers and decision-

makers (DeRousseau et al., 2018). In 

reality, the strength of this material is one of 

its significant parameters for mixture design 

and optimization, yet obtaining it at a 

mature age requires a relatively long 

experimental process (Ni and Wang, 2000; 

Al Houri et al., 2020).  

Mathematical modeling of concrete 
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characteristics has become a fundamental 

issue in recent years, owing to the rapid 

developments of novel concrete types 

stimulated by the ever-challenging 

requirements of the construction industry 

(Chaabene et al., 2020). The used 

techniques to design concrete 

characteristics are separated into two 

categories: conventional and artificial 

intelligence-augmented methods 

(Ziolkowski and Niedostatkiewicz, 2019; 

Gholamzadeh Chitgar and Berenjian, 

2021). In general, various data-driven 

mathematical methods have been applied to 

estimate the properties of concrete rapidly, 

including multiple linear regression 

(Khademi et al., 2017), fuzzy logic (Topcu 

and Sarıdemir, 2008), genetic programming 

(Chopra et al., 2016), artificial neural 

networks (Lee, 2003; Habib and Yildirim, 

2021), bagging machine learning 

techniques (Han et al., 2019; Farooq et al., 

2020), boosting machine learning methods 

(Nguyen-Sy et al., 2020; Salimbahrami and 

Shakeri, 2021).  

Due to its superior accuracy, the 

gradient-boosting decision tree is a 

commonly used machine learning algorithm 

in many disciplines (Guryanov, 2019). For 

instance, Feng et al. (2020) utilized an 

adaptive boosting approach to estimate 

concrete's compressive. Kaloop et al. 

(2020) used the gradient tree boosting 

machine to predict the compressive strength 

of high-performance concrete. Moreover, 

Nguyen-Sy et al. (2020) developed a 

machine learning model using extreme 

gradient boosting to design concrete 

mixtures using constituent materials and 

age at testing. Even though the gradient 

boosting algorithm performs very well, 

massive ensembles will likely be slow in 

training and inference (Lu et al., 2020). This 

difficulty in developing gradient-boosting 

models for large datasets, tens of thousands 

of observations or more, emerges from the 

time consumed to find the best split points 

(Shepovalov and Akella, 2020). 

In contrast, a histogram-based technique 

can decrease computation time and memory 

usage by converting continuous data into 

discrete bins to build attribute histograms 

instead of finding the split points (Cai et al., 

2021). Recently, three major Python coding 

libraries that wrap up many modern 

efficiency approaches for training gradient-

boosting algorithms have permitted the 

development of histogram-based models, 

including scikit-learn (Pedregosa et al., 

2011), XGBoost (Chen and Guestrin, 

2016), and LightGBM (Ke et al., 2017). The 

importance of histogram-based gradient 

boosting (HGBoost) comes from its ability 

to considerably reduce the computational 

efforts and memory usage required to train 

machine learning models for large datasets. 

Previous studies have focused on the 

technique's performance regarding the time 

and memory needed to develop the 

estimation models. Besides, the capability 

of HGBoost in predicting concrete 

characteristics is still unclear, and the 

studies investigating its accuracy for 

adaptation in the civil engineering 

discipline are scarce.  

Therefore, this article evaluates the 

accuracy and reliability of the histogram-

based gradient boosting technique in 

predicting the compressive strength of 

concrete mixtures. As a part of the study, a 

parametric assessment will be conducted to 

highlight the influence of each of the 

method's parameters on the model's 

accuracy. In addition, the results of the 

HGBoost will be compared against that of 

various boosting approaches to benchmark 

and understand the algorithm's 

performance. This information is missing 

from the literature and is helpful for many 

engineers and researchers working in the 

field. 

 

2. Materials and Methods 

 

Researchers have invented artificial 

intelligence-based solutions for many real-

time scenarios in recent years, thanks to 

advances in the application of machine 

learning algorithms across a wide range of 

fields (Amidi et al., 2021; Ahmad et al., 
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2022; Kim et al., 2022). The roots of 

gradient boosting may be traced back to the 

discovery by statistician Leo Breiman that it 

can help diminish bias, resulting in 

increased performance (Mease and Wyner, 

2008). Adaptive Boosting (AdaBoost) was 

the first convenient embodiment of the 

boosting concept. It was developed by Yoav 

Freund and Robert Schapire in 1995, and it 

has been shown to help enhance the 

behavior of various learning techniques 

(Freund and Schapire, 1997). When it 

comes to training machine learning 

algorithms for massive datasets, HGBoost 

is very valuable because of its ability to 

minimize the amount of computing effort 

and memory needed significantly 

(Guryanov, 2019). The general 

methodology followed in this research for 

quantifying the accuracy of HGBoost is 

illustrated in Figure 1. 

The fundamental purpose of concrete 

mixture design is to determine the 

appropriate quantity of constituents in the 

mix. Therefore, the mixture components 

must be chosen precisely to obtain the 

highest possible concrete performance 

while keeping costs down. This behavior is 

manifested by several features in which 

compressive strength is the most important.  

In this research, machine learning 

techniques will be applied to design a 

concrete mixture using the HGBoost model 

and an enormous dataset for estimating the 

strength of concrete. The histogram-based 

gradient boosting method predicts the 

compressive strength of a concrete mix 

relied on the quantity of the seven primary 

ingredients and age at testing of concrete, 

more accurately cement, fine and coarse 

aggregate, superplasticizer, fly ash, silica 

fume, and water, as shown in Figure 2. 

 

 
Fig. 1. Graphical description of the research methodology 

 

 
Fig. 2. Stages of a process for concrete mixture design using a machine learning 
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2.1. Dataset Acquisition 

As stated before, this research focuses 

solely on the accuracy of HGBoost rather 

than its time and memory consumption. 

Accordingly, developing a significantly 

large dataset with tens of thousands of 

observations is not required. Thus, a 

relatively large set of experimental results 

for various concrete mixtures was utilized 

to investigate the HGBoost model's 

capability against other machine learning 

techniques. This dataset was first developed 

by Yeh (1998) from many resources and 

then used in various researches for 

developing numerical models (Yeh, 2006; 

Asteris et al., 2021; Ke and Duan, 2021). 

Generally, the database comprises 1005 

observations (Table 1 and Figure 3). The 

compressive strength of the mixtures is 

accounted for 15 cm cylinder specimens. 

Yeh (1998) stated that the dataset often 

contains some unexpected inaccuracies 

regarding the class of fly ash or that of the 

cement, the gradation of the aggregates, and 

the type of superplasticizer. While this issue 

might cause difficulty to the machine 

learning model due to the fluctuation of the 

materials' sources, it will simulate the cause 

of constructing a generalized machine 

learning model for designing concrete 

mixtures, which is one of the major 

potentials of the HGBoost model. Indeed, 

the concrete's constituent materials and age 

were used as the input parameters, while its 

compressive strength was the output of the 

estimation models. Additionally, it can be 

noticed from Table 1 that the fly ash and age 

have higher standard deviations than the 

average values, which is attributed to 

having high vibration between the values 

and abnormal distribution of the data. 
 

2.2. Boosting Machine Learnings 

Techniques 

A decision tree is a learning technique that 

is widely used in data mining. It is applied 

for classification and regression issues. 

According to this process, the estimation 

model is often created by recursively 

splitting the dataset, fitting a basic 

predicting algorithm in each of these 

divisions, and ultimately depicting each 

model as a decision tree (Loh, 2011). At a 

given node 𝑚, the data is represented by 𝑄𝑚 

with 𝑁𝑚 samples. This data is partitioned 

into two subsets 𝑄𝑚
𝑙𝑒𝑓𝑡

(𝜃), Eq. (1), and 

𝑄𝑚
𝑟𝑖𝑔ℎ𝑡

(𝜃), Eq. (2), where for each 

candidate split 𝜃 = (𝑗, 𝑡𝑚) compose of a 𝑗 

feature and 𝑡𝑚 threshold. 
 

𝑄𝑚
𝑙𝑒𝑓𝑡(𝜃) = {(𝑥, 𝑦)|𝑥𝑖 ≤ 𝑡𝑚} 

𝑄𝑚
𝑟𝑖𝑔ℎ𝑡(𝜃) = 𝑄𝑚/𝑄𝑚

𝑙𝑒𝑓𝑡(𝜃) 
(1) 

 

The quality of the candidate split at the 

given node 𝑚 is calculated through the loss 

function 𝐻(). 
 

𝐺(𝑄𝑚, 𝜃)

=
𝑁𝑚

𝑙𝑒𝑓𝑡

𝑁𝑚
𝐻 (𝑄𝑚

𝑙𝑒𝑓𝑡(𝜃))

+
𝑁𝑚

𝑟𝑖𝑔ℎ𝑡

𝑁𝑚
𝐻 (𝑄𝑚

𝑟𝑖𝑔ℎ𝑡(𝜃)) 

(2) 

 

Thereafter, those parameters that 

minimize the loss are selected using Eq. (3), 

and the process is repeated for 𝑄𝑚
𝑙𝑒𝑓𝑡

(𝜃) and 

𝑄𝑚
𝑟𝑖𝑔ℎ𝑡

(𝜃) until reaching the maximum 

allowable depth 𝑁𝑚 < 𝑚𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 or 

𝑁𝑚 = 1. 
 

 

Table 1. Descriptive statistics of the utilized database 

Variable Average 
Standard 

deviation 
Min. 

First 

quintile 
Median 

Third 

quintile 
Max. 

Input 

Cement (kg/m3) 278.63 104.34 102 190.7 265 349 540 

Blast furnace slag (kg/m3) 72.04 86.17 0 0 20 142.5 359.4 

Fly ash (kg/m3) 55.54 64.21 0 0 0 118.3 200.1 

Water (kg/m3) 182.08 21.34 121.8 166.6 185.7 192.9 247 

Superplasticizer (kg/m3) 6.033 5.92 0 0 6.1 10 32.2 

Coarse aggregate (kg/m3) 974.38 77.58 801 932 968 1032 1145 

Fine aggregate (kg/m3) 772.69 80.34 594 724.3 780 823.1 992.6 

Age (days) 45.86 63.73 1 7 28 56 365 

Output 
Compressive strength 

(MPa) 
35.25 16.285 2.33 23.52 33.8 44.975 82.6 
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Fig. 3. Visualization of the utilized database 

 

𝜃∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃𝐺(𝑄𝑚, 𝜃) (3) 
 

On the other hand, Adaptive boosting, as 

described by Freund and Schapire (1997), is 

a method that works by fitting new copies 

of the regression model using the same 

training dataset through adjusting its 

weights from the error of the prior trial. The 

implantation of this algorithm is performed 

according to Drucker (1997). In the 

beginning, the AdaBoost is trained on a 

base estimator (weak learner) 𝑓(𝑥), and the 

error 𝑒𝑖 is obtained for the entire set. 

Thereafter, a series of weak learners 

𝑓𝑘(𝑥), 𝑘 = 1,2, … , 𝑁 is produced and 

combined to develop a strong model 𝐻(𝑥) 

through the strategy in Eq. (4). 

𝐻(𝑥) = 𝑣 ∑ (𝑙𝑛
1

𝛼𝑘
)

𝑁

𝑘=1

𝑔(𝑥) (4) 

 

where 𝑣: is the learning rate, 𝛼𝑘: is the 

weight of the base estimators calculated 

from Eq. (5), and 𝑔(𝑥): is median of all 

𝛼𝑘𝑓𝑘(𝑥). 
 

𝛼𝑘 =
𝑒𝑖

1 − 𝑒𝑖
 (5) 

 

Stochastic gradient boosting (SGBoost) 

is similar to the AdaBoost approach that 

works by adding a new model ensemble but 

with a significant difference based on 

minimizing the learner's loss function. In 

addition, the weak estimator in the gradient 
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boosting is a larger decision tree with 

multiple levels compared to the regressor in 

the AdaBoost model. The training set 
{(𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛)} ⊂ 𝜒 × 𝑅 will be 

determined with a sample size 𝑛 and space 

of input variables 𝜒. Specify �̂�𝑖 as the 

prediction of a gradient boosting machine 

method with 𝑥𝑖 input variable as indicated 

in Eq. (6).  
 

�̂�𝑖 = 𝐹𝑀(𝑥𝑖) = ∑ ℎ𝑚(𝑥𝑖)

𝑀

𝑚=1

 (6) 

 

in which 𝑀: is the total number of predictors 

provided in the algorithm and ℎ𝑚: is a weak 

learner. 

The gradient boosting is developed 

greedily, as stated in Eq. (7). 
 

𝐹𝑚(𝑥)
= 𝐹𝑚−1(𝑥)

+
𝑎𝑟𝑔𝑚𝑖𝑛
ℎ ∈ 𝐻

∑ 𝐿[𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖) + ℎ(𝑥𝑖)]

𝑛

𝑖=1

 

(7) 

 

where ℎ(𝑥): is the base estimator, 𝐿(∙): is the 

loss function with the negative gradient 

identified in Eq. (8). 
 

𝑔𝑚 = −
𝜕𝐿[𝑦, 𝐹𝑚−1(𝑥)]

𝜕𝐹𝑚−1(𝑥)
 (8) 

 

The SGBoost is formulated by 

modifying the gradient boosting model to fit 

the base learner randomly on a subsample 

with fraction 𝑓 < 1. 

Histogram-based gradient boosting 

(HGBoost) is a recently introduced machine 

learning approach (Chen and Guestrin, 

2016). Unlike other techniques, it buckets 

continuous feature values into discrete bins 

and uses these bins to construct feature 

histograms during training. This method 

speeds up the training stage and reduces the 

memory consumption of the model. The 

algorithm developed herein is based on the 

one available in the scikit-learn library (Cai 

et al., 2021). 

eXtreme gradient boosting (XGBoost) is 

an efficient and scalable machine learning 

algorithm applied for tree boosting 

(Pedregosa et al., 2011). In general, both 

gradients boosting and XGBoost follow the 

principle of gradient boosting, but XGBoost 

uses a more regularized model to control the 

over-fitting issues to achieve better results. 

Additionally, the XGBoost model uses the 

exact greedy tree method compared to the 

optimized approximate one adopted in the 

HGBoost model. The objective function of 

this algorithm is given in Eq. (9). 
 

𝑂𝑏𝑗 = ∑ 𝐿[�̂�𝑖 , 𝑦𝑖)]

𝑛

𝑖=1

+ ∑ 𝜔(𝑓𝑡)

𝑛

𝑖=1

 (9) 

 

where 𝐿(∙): is the loss function for the 

model's bias, and 𝜔: is a regular term used 

for suppressing the complexity of the 

model. 

 

2.6. Model Development and 

Hyperparameters Tunning 

The machine learning algorithm's 

performance is greatly affected by the 

chosen hyperparameter values that must be 

tuned. This article used the grid search 

method with k-fold cross-validation in the 

training stage to optimize the approaches' 

hyperparameters. Hence, the proposed 

process for developing the machine 

learning techniques, Figure 4, has started by 

first dividing the dataset into 70% training 

and 30% testing ones. The proper parameter 

selection of each approach was performed 

utilizing a 10-folds cross-validation 

procedure. Once the hyperparameters of 

each technique are defined, the performance 

of the final tuned algorithm is validated on 

the test dataset by comparing different 

scoring parameters. 

 

2.7. Quality Assessment 

Statistical measures and visual 

representations are adopted for analyzing 

the HGBoost performance, as revealed in 

Figure 5. The goodness-of-fit is checked 

using the coefficient of determination, Eq. 

(10), and A20-index, Eq. (11). The Root 

Mean Square Error (RMSE), Eq. (12), and 

Mean Absolute Error (MAE), Eq. (13), 

were used for the error analysis. 
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Fig. 4. Schematic diagram for developing machine learning algorithms 

 

𝑅2 = 1 −
∑(𝑥𝑖 − 𝑦𝑖)2

∑(𝑥𝑖 − �̅�𝑖)2
 (10) 

𝐴20 − 𝐼𝑛𝑑𝑒𝑥 =
𝑚20

𝑛
 (11) 

𝑅𝑀𝑆𝐸 = √
∑ (𝑥𝑖 − 𝑦𝑖)2𝑛

𝑖=1

𝑛
 (12) 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − �̅�𝑖|

𝑛

𝑖=1

 (13) 

 

where 𝑥𝑖: is the measured value, �̅�𝑖: is the 

mean of the measured values, 𝑦𝑖: is the 

predicted value �̅�𝑖: is the mean of the 

predicted values, 𝑛: is the number of 

observations, and 𝑚20: is the number of 

samples with a measured to the predicted 

ratio between 0.8 and 1.20. 

 

3. Results and Discussions 

 

Indeed, hyperparameter tuning of machine 

learning models is critical for achieving 

superior estimation capabilities. In this 

section, a parametric study was conducted 

to evaluate the impacts of each of the 

HGBoost parameters on the model 

performance. The effect of the tree depth is 

clarified in Figure 6. Generally, it can be 

seen that shallow trees result in reduced 

performance of the HGBoost model. 

Whereas, deep ones, especially over ten 

edges from the root to the deepest leaf, 

provide superior testing results in which the 

A10-index, R2, RMSE, and MAE 0.85, 

0.92, 22, and 3.2, respectively. Similar 

outcomes were reported for the 

unconstrained trees. Accordingly, the 

unconstrained tree is adopted for this study. 

Also, in Figure 7, increasing the number of 

bins beyond ten affects the estimation 

results slightly and yields high accuracy 

with an average R2 of 0.92. Thus, any value 

after 10 is suitable for the HGBoost model, 

yet in this study, the one with the least error 

value was used. On the other hand, the least 

essential variable while generating the 

model was the L2 regularization parameter, 

Figure 8, since it showed a fluctuation at 

low values and slightly impacted both the 

fitting rates and errors of the algorithm and 

later ones. Furthermore, for the investigated 

dataset, the learning rate with a value of 0.3 

yields the best performance of the HGBoost 

method with an A10-index of about 1, as 

indicated in Figure 9. Additionally, the 

least-squares loss function improved the 

model's accuracy compared to the slightest 

absolute deviation, as shown in Figure 10. 

Therefore, the least-squares loss function 

was utilized for developing the HGBoost 

model. 
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Fig. 5. Benchmarking proposed model 

 

 
Fig. 6. Influence of the depth of each tree on the HGBoost performance 

 

 
Fig. 7. Role of number of bins in HGBoost on the model performance 
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Fig. 8. Impact of the L2 regularization parameter on the HGBoost quality 

 

 
Fig. 9. Influence of learning rate in HGBoost on the performance of the model 
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Fig. 10. Influence of the type of loss function on the performance of the HGBoost model 

 

As mentioned previously, several 

machine learning and statistical models 

were proposed for predicting the 

compressive strength of concrete mixtures. 

However, the literature still lacks a study 

that evaluates the accuracy of HGBoost 

models. Therefore, a comparative 

assessment of boosting algorithms in 

machine learning will be presented. The 

estimation results, Figure 11, show that the 

AdaBoost model gives a minimal 

performance. At the same time, SGBoost, 

HGBoost, and XGBoost approaches 

yielded similar outcomes. This observation 

is further illustrated in the residual plot as 

shown in Figure 12a. As a matter of fact, the 

box plots in Figure 12b highlights that for 

the case of the training dataset, the average, 

median, first quartile, and third quartile 

were all predicted accurately in all models. 

On the other hand, these values were best 

estimated in the testing dataset by the 

HGBoost model followed by the SGBoost 

and XGBoost. Indeed, the capabilities of the 

methods are not affected by the value of the 

compressive strength in which the models 

revealed good efficiency for both low and 

high strength mixtures.  

Table 2 represents the fitting rates and 

the errors values of the addressed algorithm. 

In general, the coefficient of determination 

for the training dataset is higher than that of 

the testing data. The performance of the 

AdaBoost technique in the testing case has 

dropped significantly compared to the 

training set directed towards an overfitting 

issue. Also, the A20 index of HGBoost has 

reduced by 4.9% and 6% against SGBoost 

and XGBoost models, respectively, while 

the AdaBoost generates the lowest A20 

index and highest testing errors. On the 

other hand, the HGBoost achieves higher 

testing errors than the SGBoost and 

XGBoost because the latter techniques use 

the exact greedy tree method while the 

HGBoost adopts an optimized approximate 

one.  

 

Table 2. Performance assessment of the models 

Model 
Training Testing 

R2 RMSE MAE A20 Index R2 RMSE MAE A20 Index 

AdaBoost 1.00 1.41 0.54 0.97 0.87 35.54 4.17 0.78 

SGBoost 1.00 0.54 0.22 0.99 0.92 23.01 2.96 0.88 

HGBoost 0.99 1.51 0.79 0.99 0.91 24.97 3.28 0.84 

XGBoost 0.99 1.60 0.84 1.00 0.93 20.61 2.94 0.89 
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Fig. 11. Compressive strength estimation using boosting technique 

  

  
(a) (b) 

Fig. 12. a) Residual plot; and b) Box plots of the machine learning techniques 
 

4. Conclusions 

 

Traditionally, decision-makers have been 

mainly concerned with meeting needed 

objectives for specific concrete 

characteristics, such as obtaining a defined 

early-age compressive strength besides 

keeping a workable concrete when 

developing concrete mixtures. At present, 

this situation has changed after emerging 

modern technologies that offer advanced 

methods to quantify and fine-tune the 
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properties of concrete. This investigation is 

primarily focused on using machine 

learning in concrete mixture design and 

developing a helpful tool to be applied in 

engineering practices. It evaluated the 

quality of histogram-based gradient 

boosting algorithms in estimating the 

compressive strength of the concrete mix. 

The performance analysis of the HGBoost 

model indicated that it returns high 

accuracy, but a slight reduction was 

produced compared to SGBoost and 

XGBoost in the testing case, as previously 

stated. Further works are still needed in this 

field to propose more generalized models 

capable of estimating other properties of 

concrete, such as its durability and dynamic 

behavior. In addition, it is crucial to report 

the performance of other newly developed 

models in the rapidly growing field of 

machine learning, including those 

approaches that can be built to serve 

specified tasks. 
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