تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,502 |
تعداد مشاهده مقاله | 124,116,983 |
تعداد دریافت فایل اصل مقاله | 97,221,802 |
مدلسازی و تحلیل سیستم تأمین انرژی سرمایش ساختمان با استفاده از سیستم جریان مبرد متغیر خورشیدی | ||
فصلنامه سیستم های انرژی پایدار | ||
دوره 1، شماره 1، دی 1400، صفحه 51-70 اصل مقاله (1.18 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ses.2021.88276 | ||
نویسندگان | ||
رحیم زاهدی* 1؛ سیاوش گیتی فر2؛ علیرضا اصلانی3 | ||
1دانشجوی مقطع دکتری، گروه انرژیهای نو و محیط زیست، دانشگاه تهران، تهران، ایران | ||
2دانشجوی مقطع دکتری، دانشکدۀ مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران، ایران | ||
3دانشیار گروه انرژیهای نو و محیط زیست، دانشگاه تهران، تهران، ایران | ||
چکیده | ||
با توجه به مصرف حدود نیمی از کل انرژی مصرفی سالانۀ جهان در بخش سرمایش و گرمایش ساختمانها، افزایش بهرهوری سیستمهای تهویۀ مطبوع با استفاده از انرژیهای تجدیدپذیر نقش بسیار مهمی در کاهش مصرف انرژی خواهد داشت. در نقاطی از جهان که دارای اقلیم گرم و مرطوب و تابش خورشید بالایی هستند، بهکارگیری سیستم تهویۀ مطبوع از نوع جریان مبرد متغیر بسیار باارزش است. در این پژوهش یک سیستم پمپ حرارتی جریان مبرد متغیر با بهکارگیری ماژولهای نوری، از نظر کارایی انرژی و میزان تولید برق مصرفی با فناوری فتوولتائیک، در یک مجتمع مسکونی پنجطبقه در یکی از شهرهای قبرس مورد بررسی قرار گرفته است. شدت تابش سالانه در این شهر برابر 1852 کیلوواتساعت و مصرف برق سالانۀ یک سیستم جریان مبرد متغیر نیز در حدود 18500کیلووات ساعت است و هر آرایه از فتوولتائیکها ظرفیت 13کیلووات دارد. نتایج این پژوهش نشان میدهد با توجه به مدت تابش خورشید طی روز، میزان تولید برق روزانه توسط فتوولتائیکها 54 درصد برق مورد نیاز روزانۀ جریان مبرد متغیر را تأمین میکند که این مقدار تأثیر زیادی در کاهش مصرف برق سیستم تهویۀ مطبوع از شبکه و منجر به کاهش 14 تنی تولید سالانه کربن دیاکسید میشود. | ||
کلیدواژهها | ||
بهینهسازی؛ سیستم تهویۀ مطبوع؛ سیستم جریان مبرد متغیر (VRF)ف فناوری فتوولتائیک (PV)؛ مصرف انرژی | ||
عنوان مقاله [English] | ||
Modeling and Analysis of Building Cooling Energy Supply System Using Variable Solar Refrigerant Flow System | ||
نویسندگان [English] | ||
Rahim Zahedi1؛ Siavash Gitifar2؛ Alireza Aslani3 | ||
1PhD Candidate, Department of Renewable Energies and Environment, University of Tehran, Tehran, Iran | ||
2PhD Candidate, Faculty of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran | ||
3Associate Professor, Department of Renewable Energies and Environment, University of Tehran, Tehran, Iran | ||
چکیده [English] | ||
Introduction Variable refrigerant flow systems are one of the most efficient and widely used air conditioning systems to reduce energy consumption while maintaining the desired level of thermal comfort. Variable refrigerant flow systems as an efficient and flexible solution for various heating/cooling applications are gaining more attention and are widely used in commercial and residential buildings. Variable refrigerant flow systems have many advantages over traditional air conditioning systems such as chillers and fan coils or air conditioning units, including satisfactory partial load performance, individual control capability at arbitrary temperature range, and no loss in duct transmission. Easy installation and maintenance. However, variable refrigerant flow systems require a dedicated outdoor air system with an additional ventilation unit. Methodology This section first discusses the design of a variable refrigerant flow system. The next step is to model the building located in Cyprus with the heating system in question. The parts of this modeling include the characteristics of the selected location of the building, modeling of the relevant building, modeling of variable refrigerant air conditioning system and photovoltaic systems in detail. Variable refrigerant flow system Variable refrigerant flow systems Among the various air conditioning systems is the DX system, based on the standard Rankin reverse steam compression cycle. Therefore, these systems are thermodynamically similar to conventional DX systems and have similar equipment such as compressor, expansion valve, condenser, and evaporator. Figure (1) shows the inside of the exterior of a variable refrigerant flow system that is installed outside the building. A 5-storey residential building with an area of 1061 square meters of space has been modeled in Design Builder software (on each floor, there are two residential units with 110 square meters). Each floor consists of two units with an equal area; the north-facing unit has two bedrooms, the south-facing unit has three bedrooms, and the ground floor is uninhabited and without air conditioning. In addition, the corridors between adjacent apartments on each floor are also without air conditioning. This research will focus on the power consumption of the variable refrigerant flow system as an electric charge. Figure (2) shows a schematic of an integrated photovoltaic variable refrigerant flow system. Results and Discussion In this section, energy consumption in variable refrigerant air conditioning, power generation of photovoltaic arrays, and carbon dioxide reduction due to photovoltaics are examined according to the results obtained from the design of builder designs. Conclusion The intensity of solar radiation in this city equals 1852kWh, and the annual electricity consumption of a refrigerant flow system varies around 18500kWh. The results show that according to the duration of sunlight during the day, the total daily electricity produced by photovoltaics provides only 54% of the daily electricity required for variable refrigerant current, which has a significant impact on reducing electricity consumption from the grid and a significant impact on Reduces carbon dioxide by 14 tons per year. Figure 1. Internal view of the outer part of the variable refrigerant flow Figure 2. Schematic of VRF-PV integrated system Figure 3. DNI radiation status of the sun kW/m2 on July 21 Figure 4. Energy rate status of a building unit on July 21 Figure 5. External and indoor temperature status of a unit (dining room facing south on the 5th floor of the building), on July 21 Figure 6. Status of carbon dioxide emissions on 21 July Figure 7. DNI and DIF solar radiation conditions kW / m2 in summer and autumn Figure 8. Electricity status (Kw) required for cooling and photovoltaic power generation in summer and autumn Figure 9. External temperature and temperature of the dining room facing south on the 5th floor of the building, in summer and autumn | ||
کلیدواژهها [English] | ||
Optimization, air conditioning system, variable flow refrigerant system, photovoltaic technology, energy consumption | ||
مراجع | ||
| ||
آمار تعداد مشاهده مقاله: 513 تعداد دریافت فایل اصل مقاله: 317 |