تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,503 |
تعداد مشاهده مقاله | 124,121,428 |
تعداد دریافت فایل اصل مقاله | 97,228,389 |
Effect of adding Arabic Gum and Zinc Oxide Nanoparticles to MBR Membranes Supported by Carbon Nanotubes for Ultrafiltration Process of Dairy Wastewater | ||
Pollution | ||
دوره 8، شماره 4، مهر 2022، صفحه 1233-1249 اصل مقاله (1.25 M) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/poll.2022.341201.1430 | ||
نویسندگان | ||
Mohammed Abdul-Majeed1؛ Amer N. Ahmed1؛ Mustafa Al-Furaiji* 1؛ Inmar Ghazi2 | ||
1Ministry of Science and Technology, Environment and Water Directorate, Baghdad- Iraq | ||
2Communications Engineering Department, University of Technology/ Baghdad-Iraq | ||
چکیده | ||
There is great competition to improve the performance of membranes for water treatment within the scope of the research, especially the problem of biofouling on the membrane as it is related to the performance and life of the membrane. This study introduces a new mixture of hybrid bioreactor membranes that combine oxidized multi-walled carbon nanotubes (OMWCNTs) with polyethersulfone (PES) using a phase inversion method, along with equal proportions of zinc oxide nanoparticles (ZnO NPs) and Arabic gum (AG) from an acacia tree, for application in a submerged membrane bioreactor to treat wastewater for a dairy product at the College of Agriculture / Baghdad University. The results when comparing the nascent composite membranes (PES / OMWCNTs / ZnO / AG) with that of (PES / OMWCNTs) indicated that the membrane mixed with ZnO / AG has more hydrophilic (16%) As well as reducing the negative charge on the surface of the membrane almost three times, As evidenced by the water contact angle test and the zeta potential data respectively, furthermore, the atomic force microscopy analysis showed that this improved membrane showed lower values of surface roughness (by 46.8%), and more flexible normal flux values (by almost doubling), Moreover, the rate of rejection increased when the bovine serum albumin (BSA) solution was passed a percentage (13%) when compared with PES / MWCNTs membrane. Importantly, the prepared membrane also presented removal efficiency of chemical oxygen demand (COD) was significantly 37.5% higher when compared with the commercial MBR system. | ||
کلیدواژهها | ||
Oxidized Multi-walled carbon nanotubes: Zinc oxide nanoparticles؛ Arabic gum؛ Polyethersulfone membranes | ||
مراجع | ||
Abbas, T. R., Abdul-Majeed, M. A. and Inmar, N. Ghazi. (2012). Testing the Applicability of Submerged Hollow Fiber Membrane Bioreactor (MBR) Technology for Municipal Wastewater Treatment in Iraq. Engineering and Technology Journal, 30(19), 3467-3473. Abdul Majeed, M.A., Al Naemi, A.N., Al Furaiji, M. and Inmar N. Ghazi, (2022). Fabrication and Characterization of Functionalized Multi-Wall Carbon Nanotubes / Polysulfone Nanocomposite Membranes for Fouling Mitigation. Int. J. Environment and Waste Management. DOI: 10.1504/IJEWM.2022.10032160. Abu-Dalo, M.A., Al-Atoom, M.A., Aljarrah, M.T. and Albiss, B.A. (2022). Preparation and Characterization of Polymer Membranes Impregnated with Carbon Nanotubes for Olive Mill Wastewater. Polymers, 14(3), 457. Ahmad, N., Souhir, S., Al-Gaashani, R., Muataz, A. A. and Viktor, K. (2019). Antibiofouling Performance by Polyethersulfone Membranes Cast with Oxidized Multiwalled Carbon Nanotubes and Arabic Gum. Membranes, 9(2), 32. Alalwan, H. A., Augustine, L. J., Hudson, B. G., Abeysinghe, J. P., Gillan, E. G., Mason, S. E., Grassian, V. H. and Cwiertny, D. M. (2021a). Linking Solid-State Reduction Mechanisms to Size-Dependent Reactivity of Metal Oxide Oxygen Carriers for Chemical Looping Combustion. ACS Applied Energy Materials, 4(2), 1163-1172. Alalwan, H. A., Mohammed, M. M., Sultan, A. J., Abbas, M. N., Ibrahim, T. A., Aljaafari, H. A. and Alminshid, A. A. (2021b). Adsorption of methyl green stain from aqueous solutions using non- conventional adsorbent media: Isothermal kinetic and thermodynamic studies. Bioresource Technology Reports, 14, 100680. Alhoshan, M., Alam, J., Arockiasamy, L. D. and Al-Homaidi, N. (2013). Fabrication of polysulfone/ZnO membrane: Influence of ZnO nanoparticles on membrane characteristics. Adv. Polymer Tech., 32(4), 21369-21375. Alminshid, A. H., Abbas, M. N., Alalwan, H. A., Sultan, A. J., Kadhom, M. A. (2021). Aldol condensation reaction of acetone on MgO nanoparticles surface: An in-situ drift investigation. Molecular Catalysis, 501, 111333. Celik, E., Park, H. and Choi, H. (2011). Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment. Water Research, 45(1), 274-282. Chandrashekhar, M. N., Inamuddin, A. I., Lakshmi, B. Marwani, H.M., Khan, I. (2020). Polyphenylsulfone/multiwalled carbon nanotubes mixed ultrafiltration membranes: Fabrication, characterization and removal of heavy metals Pb2+, Hg2+, and Cd2+ from aqueous solutions, Arabian Journal of Chemistry, 13(3), 4661-4672. Choi, Jae-H., Jegal, J. and Kim, W. N. (2007). Modification of Performances of Various Membranes Using MWNTs as a Modifier. Macromolecular Symposia, 249-250(1), 610-617. Dixon, M. A., Abbas, T., R., Al-Furaiji, M.H. and Abed-Ali, R. H. (2020). Membrane Bioreactor with External Side-Stream Membranes and High Cross Flow Velocity to Treat Municipal Wastewater. Engineering and Technology Journal, 38(1), 1-8. Eman, A. Mwafya, Dawya, M., Abouelsayed, A., Elsabbaghc, I. A. and Elfassc, M. M. (2016). Synthesis and Characterization of Multi-Walled Carbon Nanotubes Decorated ZnO Nanocomposite. Egypt. J. Chem., 59(6), 1061-1068. Hossein, M. D., Hua, D. and Chung, Tai-S. (2018). Cross-linked mixed matrix membranes (MMMs) consisting of amine functionalized multi-walled carbon nanotubes and P84 polyimide for organic solvent nanofiltration (OSN) with enhanced flux. Journal of Membrane Science, 548(15), 319-331. Jiang, X., Cao, Z., Zhang, Yuan, Z., Zimo, L., Xu, X. and Wang, X. (2018). A review of functionalized carbon nanotubes and graphene for heavymetal adsorption from water: Preparation, application, and mechanism. Chemosphere, 195, 351-364. Jing, C., Xue-Li Cao, Yi, Zhao, Fu-Yi Zhou, Zhaoliang, Cui, Yong, W. and Shi-Peng S. (2020). The establishment of high-performance anti-fouling nanofiltration membranes via cooperation of annular supramolecular Cucurbituril and dendritic polyamidoamine. Journal of Membrane Science, 600, 117863. Jun, Y., Guocheng, Z. and Baolin D. (2013). Multi-walled carbon nanotubes (MWNTs) / polysulfone (PSU) mixed matrix hollow fiber membranes for enhanced water treatment. Journal of Membrane Science, 437, 237-248. Kadhom, M., Albayati, N., Salih, S., Al-Furaiji, M., Bayati, M. and Deng, B. (2019b). Role of Cellulose Micro and Nano Crystals in Thin Film and Support Layer of Nanocomposite Membranes for BrackishWater Desalination. Membranes, 9(8), 101. Kadhom, M. and Deng B. (2019a). Thin film nanocomposite membranes filled with bentonite nanoparticles for brackish water desalination: A novel water uptake concept. Microporous and Mesoporous Materials, 279, 82-91. Kadhom, M., Yin, J. and Deng, B. (2016). A Thin Film Nanocomposite Membrane with MCM-41 Silica Nanoparticles for Brackish Water Purification. Membranes (Basel), 6(4), 50. Kalra, A., Garde S. and Hummer G. (2003, July). Osmotic water transport through carbon nanotube membranes. Proceedings of the National Academy of Sciences of the United States of America, 100(18)10175-10180. Lalia, B.S., Kochkodan, V., Hashaikeh, R. and Hilal, N. (2013). A review on membrane fabrication: Structure, properties and performance relationship. Desalination, 326, 77–95. Ma, H., Yoon, K., Rong, L., Shokralla, M., Kopot, A., Wang, X., Fang, D., Hsiao, B.S., B. and Chu, B. (2010). Thin-film nanofibrous composite ultrafiltration membranes based on polyvinyl alcohol barrier layer containing directional water channels. Industrial & Engineering Chemistry Research, 49(23), 11978-84. Malik, M.M., Nisreen, S. M. A., Alalwan, H. A., Alminshid, A. H. and Aljaafari, H. A.S. (2021). Synthesis of ZnO-CoO/Al2O3 nanoparticles and its application as a catalyst in ethanol conversion to acetone. Results in Chemistry, 3, 100249. Mansourpanah, Y., Madaeni, S.S., Rahimpour, A., Adeli, M., Hashemi, M.Y. and Moradian, M.R. (2011). Fabrication new PES-based mixed matrix nanocomposite membranes using polycaprolactone modified carbon nanotubes as the additive: Property changes and morphological studies. Desalination, 277(1–3), 171-177. Narang J. and Chandra S. P. (Eds.) (2018). Current and Future Developments in Nanomaterials and Carbon Nanotubes. Bentham Science publishers. (Sharjah, UAE). Nisreen, S. M. Ali., Alalwan, H. A., Alminshid, A. H. and Malik M. Mohammed. (2022). Synthesis and Characterization of Fe3O4- SiO2 Nanoparticles as Adsorbent Material for Methyl Blue Dye Removal from Aqueous Solutions. Pollution, 8(1), 295-302. Reyhan, S. Tasdemir, Venkata, R.S.S. M., Derya Y. K. and Ismail K. (2018). Effect of polymer type on characterisation and filtration performances of multiwalled carbon nanotubes (MWCNT)-COOH based polymeric mixed matrix membranes. Environmental Technology, 39(10), 1226-1237. Waisi, B., Karim, U., Augustijn, D., Al-Furaiji, M., and Hulscher, S. (2015). A study on the quantities and potential use of produced water in southern Iraq. Water science and technology: water supply, 15(2), 370-376. Weibin, H., Xiaohong, H., Yun, B., Zheng, Li., Yiguo, H., Wang, P., Xiaobo, L. and Kun, J. (2020). Synthesis and self-assembly of polyethersulfone-based amphiphilic block copolymers as microparticles for suspension immunosensors. Polymer Chemistry, 11(8), 1496-1503 Yalei, Z., Jing, Z., Huaqiang, C., Xuefei, Z. and Yong,W. (2014). Effect of modified attapulgite addition on the performance of a PVDF ultrafiltration membrane. Desalination, 344, 71-78 Zinadini, S., Rostami, S., Vatanpour, V. and Jalilian, E. (2017). Preparation of antibiofouling polyethersulfone mixed matrix NF membrane using photocatalytic activity of ZnO/MWCNTs nanocomposite. Journal of Membrane Science, 529, 133-141. | ||
آمار تعداد مشاهده مقاله: 766 تعداد دریافت فایل اصل مقاله: 742 |