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Coupled Riccati equation has widely been applied to
various engineering areas such as jump linear quadratic
problem, particle transport theory, and Wiener–Hopf
decomposition of Markov chains. In this paper, we
consider an iterative method for computing Hermitian
solution of the Coupled Algebraic Riccati Equations
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1 Introduction:
Coupled Riccati equation has widely been applied to various engineering areas such as
jump linear quadratic problem, particle transport theory, andWiener–Hopf decomposition
of Markov chains [1, 14, 17]. In this paper, we consider the solution of CARE of the
optimal control for jump linear systems. This problem was investigated in [8, 9].
Consider the following CARE:
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

R1(X1, ..., XN ) = 0

R2(X1, ..., XN ) = 0

...

RN (X1, ..., XN ) = 0

for k = 1, 2, ..., N where

Rk(X1, ..., XN ) = DkXk +XkDk −XkSkXk +Qk +

N∑
j=1,j ̸=k

λkjXj . (1)

where λkj are positive real constants and Dk, Sk, Qk ∈ Rn×n are constant matrices.

For example, coupled Riccati equation (1) arises in the optimal control of the following
jump linear system

dx(t) = A(r)x(t) +B(r)u(t), x(t0) = x0,

where x(t) is an n-dimensional vector of the states of the system, u(t) is a control input
of dimension m, A and B are mode-dependent matrices of appropriate dimension and r is
a Markovian random process representing the mode of the system and takes on values in
a discrete set Ψ = {1, 2, ..., N}. The stationary transition probabilities of the modes of the
system are determined by the transition rate matrix given by

Π =


λ11 λ12 . . . λ1N
λ21 λ22 . . . λ2N
...

...
...

...
λN1 λN2 . . . λNN

 ,

where the entries λij have properties λij ≥ 0, i ̸= j and λii = −
∑
j ̸=i

λij.

The performance of the given linear dynamic system is evaluated by the following criterion

J = E

{∫ ∞

0

[
xT (t)Q(r)x(t) + uT (t)R(r)u(t)

]
dt|t0,x(t0),r(t0)

}
,

where Q(r) ≥ 0 , R(r) > 0 for every r. The optimal feedback controls of the mentioned
problem are given by

uopt(t) = −R−1
k BT

k Xkx(t), k = 1, 2, ..., N,

where the subscript k shows that the system is in mode r = k and A(r) = Ar, B(r) = Br,
Q(r) = Qr, R(r) = Rr. In uopt(t), the matrices Xk(k = 1, 2, ..., N) are the positive semidefinite
solutions of a set of the coupled algebraic Riccati equations:(

Ak +
1

2
λkk

)T

Xk +Xk

(
Ak +

1

2
λkk

)T

−XkBkR
−1
k BT

k Xk +Qk +

N∑
j=1,j ̸=k

λkjXj = 0,
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and k = 1, 2, ..., N ( See [10, 17]).
Therefore, considering important applications of coupled algebraic Riccati equation (1),
a surging number of researchers have been interested in studying this equation in recent
years.
For example, some studies focused on iterative methods to solve algebraic Riccati equa-
tion. In particular, Newton’s method and the fixed point iteration were used to find
the minimal positive solution for the non-symmetric algebraic Riccati equation [12]. In
another study, the linearized implicit iteration method was utilized for computing its
minimal nonnegative solution [18]. Furthermore, the numerical solution of the projected
non-symmetric algebraic Riccati equations via Newton’s method [6], the matrix bounds
and iterative algorithms for the coupled algebraic Riccati equation [15, 16] and the mod-
ified alternately linearized implicit iteration methods were also applied for solving this
problem [11].
Some other studies attempted to demonstrate the upper or the lower solution bounds of
CARE. For instance, while the lower matrix bound of the solution of the unified coupled
Riccati equation was examined in [13], the upper solution bounds of the discrete algebraic
Riccati matrix equation[5], the improved upper solution bounds of the continuous coupled
algebraic Riccati matrix equation [20] and two new upper bounds of the solution for the
continuous algebraic Riccati equation and their application were also investigated [19].
Another group of studies examined the largescale non-symmetric Riccati equations from
diverse perspectives. More specifically, Krylov subspace-based methods [4], low-rank
Newton-ADI methods [2] and low-rank ADI-type algorithm [3] could be mentioned as
examples of such studies.
This paper is organized as follows: the next section is devoted to the statement of the
numerical method based on Newton’s method to solve Problem (1). Also, the conver-
gence of this method will be proved. The aim of Section 3 is to express the problem as an
equivalent optimization problem. Some numerical simulations are done in Section 4 and
we conclude with some remarks in Section 5.

2 Remodified Newton’s iteration method

The classical approach in iterative solution to a system of equations indicates the use of
the already computed approximations to obtain the current approximation value. In [10],
the following iterative approximztion has been introduced:

(
Dk − SkX

(i)
k

)T
X

(i+1)
k +X

(i+1)
k

(
Dk − SkX

(i)
k

)
+

k−1∑
j=1

λkjX
(i+1)
j

+
N∑

j=k+1
λkjX

(i)
j +X

(i)
k SkX

(i)
k +Qk = 0.

for k = 1, 2, ..., N, i = 0, 1, 2, ...

First, we define some key terms.The notation Hn indicates the linear space of Hermitian
matrices of size n over the field of real numbers. For any A,B ∈ Hn, we write A > B
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(or A ≥ B) if A − B is positive definite (or A − B is positive semidefinite). We use some
properties of positive definite and positive semidefinite matrices. So, if A > 0 and B > 0,
then A+ B > 0, if A ≥ 0 and B ≥ 0, then A+ B ≥ 0 and if A > 0 and B ≥ 0, then A+ B > 0.
The spectrum of any complex matrix A will be demonstrated by σ(A). A matrix A is
asymptotically stable if all the eigenvalues of A lie in the open left-half plane and A is
stable if all eigenvalues of A lie in the closed left-half plane. For a linear operator L on
Hn, let ρ(L) = max{|λ| : λ ∈ σ(L)} be the spectral radius and β(L) = max{Re(λ) : λ ∈ σ(L)}.
L is called asymptotically stable if the eigenvalues to L lie in the open left-half plane and
stable, if the eigenvalues to L lie in the closed left-half plane.
On the basis of the iterative method introduced in [10], we present the following remodified
Newton’s iteration method (RMNM).
By introducing parameter 0 ≤ ω ≤ 1, for l = 0, 1, ..., we have the following iterative furmula:

(
Dk − SkX

(l)
k

)T
X

(l+1)
k +X

(l+1)
k

(
Dk − SkX

(l)
k

)
+

k−1∑
j=1

λkj

(
ωX

(l+1)
j + (1− ω)X

(l)
j

)
+

N∑
j=k+1

λkjX
(l)
j +X

(l)
k SkX

(l)
k +Qk = 0.

(2)

When ω = 0 and ω = 1, RMNM is equivalent to Newton’s method and method in [10],
respectively.
Theorem 2.1 Suppose that there exist symmetric matrices X̃k, X

(0)
k , k = 1, ..., N , where

Rk(X̃1, ..., X̃N ) ≥ 0; X(0)
k ≥ X̃k; Rk(X

(0)
1 , ..., X

(0)
N ) ≤ 0 and Dk − SkX

(0)
k is asymptotically stable

for all k = 1, ..., N . Then, the matrix sequences {X(l)
1 }∞l=1, ..., {X

(l)
N }∞l=1 defined by (2) have

properties:

(i) For k = 1, ..., N we have X
(l)
k ≥ X

(l+1)
k , X(l)

k ≥ X̃k and Rk(X
(l)
1 , ..., X

(l)
N ) ≤ ω

k−1∑
j=1

λkj

(
X

(l)
j −X

(l+1)
j

)
where l = 0, 1, 2, ...;

(ii) Dk − SkX
(l)
k is asymptotically stable for k = 1, ..., N and l = 0, 1, 2, ...;

(iii) The sequences {X(l)
1 }, ..., {X(l)

N } converge to the solution X+
1 , ..., X+

N of the equations
Rk(X1, ..., XN ) = 0 and X+

k ≥ X̃k for k = 1, ..., N ;

(iv) The matrix Dk − SkX
+
k for k = 1, ..., N are stable. In addition if Rk(X̃1, ..., X̃N ) > 0 for

k = 1, ..., N , then the matrices Dk − SkX
+
k are asymptotically stable.

Proof: Let l = 0. According to the theorem conditions, X(0)
k ≥ X̃k, Dk−SkX

(0)
k is asymptot-

ically stable and Rk(X
(0)
1 , ..., X

(0)
N ) ≤ 0 for k = 1, ..., N . We will prove inequalities X

(0)
k ≥ X

(1)
k

for k = 1, ..., N . From iteration (2) for l = 0 we get(
Dk − SkX

(0)
k

)T
X

(1)
k +X

(1)
k

(
Dk − SkX

(0)
k

)
= −

k−1∑
j=1

λkj

(
ωX

(1)
j + (1− ω)X

(0)
j

)
−

N∑
j=k+1

λkjX
(0)
j −X

(0)
k SkX

(0)
k −Qk
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and thus X
(1)
k is the unique solution of the last equation because each matrix Dk − SkX

(0)
k

is asymptotically stable. We get the equality(
Dk − SkX

(0)
k

)T (
X

(1)
k −X

(0)
k

)
+
(
X

(1)
k −X

(0)
k

)(
Dk − SkX

(0)
k

)
= −Rk

(
X

(0)
1 , ..., X

(0)
N

)
− ω

k−1∑
j=1

λkj

(
X

(1)
j −X

(0)
j

) (3)

for k = 1, ..., N . In the last equation, for k = 1, the right-hand side
(
−R1

(
X

(0)
1 , ..., X

(0)
N

))
is positive semidefinite and its solution X

(1)
1 −X

(0)
1 is negative semidefinite, which means

X
(0)
1 ≥ X

(1)
1 . Consider (3) where k = 2, for the right-hand side, −R2

(
X

(0)
1 , ..., X

(0)
N

)
−

ωλ21

(
X

(1)
1 −X

(0)
1

)
≥ 0 and matrix

(
D2 − S2X

(0)
2

)
is asymptotically stable. Then, solution

X
(1)
2 − X

(0)
2 is negative semidefinite, or X

(0)
2 ≥ X

(1)
2 . Following similar arguments, it is

proved that X
(0)
k ≥ X

(1)
k for k = 3, ..., N .

Now, assume that there exists a natural number l = r − 1 and the matrix sequences
{X(l)

1 }r0, ..., {X
(l)
N }r0 are computed and properties (i) and (ii) are observed, i.e. for k =

1, ..., N , X
(r−1)
k ≥ X

(r)
k , X

(r−1)
k ≥ X̃k and Rk(X

(r−1)
1 , ..., X

(r−1)
N ) ≤ ω

k−1∑
j=1

λkj

(
X

(r−1)
j −X

(r)
j

)
and Dk − SkX

(r−1)
k are asymptotically stable. We will show that for k = 1, ..., N , the follow-

ing statements are true:
X

(r)
k ≥ X̃k and Dk − SkX

(r)
k are asymptotically stable, we will show how to compute each

X
(r+1)
k and that inequalities X

(r)
k ≥ X

(r+1)
k hold, and finally, we will prove inequalities

Rk(X
(r)
1 , ..., X

(r)
N ) ≤ ω

k−1∑
j=1

λkj

(
X

(r)
j −X

(r+1)
j

)
.

We start with inequalities X
(r)
k ≥ X̃k for k = 1, ..., N . Using Rk(X̃1, ..., X̃N ) and the inequality

Rk(X̃1, ..., X̃N ) ≥ 0, we get(
Dk − SkX

(r−1)
k

)T (
X

(r)
k − X̃k

)
+
(
X

(r)
k − X̃k

)(
Dk − SkX

(r−1)
k

)
= −X

(r−1)
k SkX

(r−1)
k −Qk −

k−1∑
j=1

λkj

(
ωX

(r)
j + (1− ω)X

(r−1)
j

)
−

N∑
j=k+1

λkjX
(r−1)
j

−
(
Dk − SkX

(r−1)
k

)T
X̃k − X̃k

(
Dk − SkX

(r−1)
k

)
= −X

(r−1)
k SkX

(r−1)
k −Qk −

k−1∑
j=1

λkj

(
ωX

(r)
j + (1− ω)X

(r−1)
j

)
−

N∑
j=k+1

λkjX
(r−1)
j

−DT
k X̃k − X̃kDk +X

(r−1)
k SkX̃k + X̃kSkX

(r−1)
k

= −X
(r−1)
k SkX

(r−1)
k −

k−1∑
j=1

λkj

(
ωX

(r)
j + (1− ω)X

(r−1)
j

)
−

N∑
j=k+1

λkjX
(r−1)
j

+X
(r−1)
k SkX̃k + X̃kSkX

(r−1)
k +

∑
j ̸=k

λkjX̃k − X̃kSkX̃k −Rk

(
X̃1, ..., X̃N

)
.
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We obtain equality(
Dk − SkX

(r−1)
k

)T (
X

(r)
k − X̃k

)
+
(
X

(r)
k − X̃k

)(
Dk − SkX

(r−1)
k

)
= −

(
X

(r−1)
k − X̃k

)
Sk

(
X

(r−1)
k − X̃k

)
−

k−1∑
j=1

λkj

(
ωX

(r)
j + (1− ω)X

(r−1)
j − X̃j

)
−

N∑
j=k+1

λkj

(
X

(r−1)
j − X̃j

)
−Rk

(
X̃1, ..., X̃N

)
.

(4)

Thus, for k = 1, for the right-hand side (4), we have

−
(
X

(r−1)
1 − X̃1

)
S1

(
X

(r−1)
1 − X̃1

)
−

N∑
j=2

λkj

(
X

(r−1)
j − X̃j

)
−R1

(
X̃1, ..., X̃N

)
≤ 0

and thus solution
(
X

(r)
1 − X̃1

)
to (4) is a positive semidefinite matrix or Xr

1 ≥ X̃1. We

know X
(r−1)
1 ≥ X

(r)
1 ; so, ωX(r)

1 + (1− ω)X
(r−1)
1 ≥ X̃1 . For k = 2, the right-hand side (4) is

−
(
X

(r−1)
2 − X̃2

)
S2

(
X

(r−1)
2 − X̃2

)
− λ21

(
ωX

(r)
1 + (1− ω)X

(r−1)
1 − X̃1

)
−

N∑
j=3

λkj

(
X

(r−1)
j − X̃j

)
−R2

(
X̃1, ..., X̃N

)
≤ 0

and hence, X
(r)
2 − X̃2 ≥ 0. Inequalities X

(r)
k − X̃k ≥ 0 for k = 3, ..., N are established in a

similar way.
We will prove that all matrices Dk−SkX

(r)
k , (k = 1, ..., N) are asymptotically stable. Writing

Dk − SkX
(r)
k = Dk − SkX

(r−1)
k + Sk

(
X

(r−1)
k −X

(r)
k

)
we compute,(

Dk − SkX
(r)
k

)T (
X

(r)
k − X̃k

)
+
(
X

(r)
k − X̃k

)(
Dk − SkX

(r)
k

)
=
(
Dk − SkX

(r−1)
k

)T (
X

(r)
k − X̃k

)
+
(
X

(r)
k − X̃k

)(
Dk − SkX

(r−1)
k

)
+
(
X

(r−1)
k −X

(r)
k

)
Sk

(
X

(r)
k − X̃k

)
+
(
X

(r)
k − X̃k

)
Sk

(
X

(r−1)
k −X

(r)
k

)
(4)
≤ −

k−1∑
j=1

λkj

(
ωX

(r)
j + (1− ω)X

(r−1)
j − X̃j

)
−

N∑
j=k+1

λkj

(
X

(r−1)
j − X̃j

)
−
(
X

(r−1)
k − X̃k

)
Sk

(
X

(r−1)
k − X̃k

)
+
(
X

(r−1)
k −X

(r)
k

)
Sk

(
X

(r)
k − X̃k

)
+
(
X

(r)
k − X̃k

)
Sk

(
X

(r−1)
k −X

(r)
k

)
= −

k−1∑
j=1

λkj

(
ωX

(r)
j + (1− ω)X

(r−1)
j − X̃j

)
−

N∑
j=k+1

λkj

(
X

(r−1)
j − X̃j

)
−
(
X

(r)
k − X̃k

)
Sk

(
X

(r)
k − X̃k

)
−
(
X

(r−1)
k −X

(r)
k

)
Sk

(
X

(r−1)
k −X

(r)
k

)
≤ −

(
X

(r−1)
k −X

(r)
k

)
Sk

(
X

(r−1)
k −X

(r)
k

)
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Conclusively,(
Dk − SkX

(r)
k

)T (
X

(r)
k − X̃k

)
+
(
X

(r)
k − X̃k

)(
Dk − SkX

(r)
k

)
≤ −

(
X

(r−1)
k −X

(r)
k

)
Sk

(
X

(r−1)
k −X

(r)
k

)
.

Let us assume that there is a number k so that Dk − SkX
(r)
k is not asymptotically stable.

Thus, there exists an eigenvalue λ of Dk −SkX
(r)
k with Re(λ) ≥ 0 and a nonzero eigenvector

x with
(
Dk − SkX

(r)
k

)
x = λx. Through the last inequality, we get

0 ≤ 2Re(λ)xT
(
X

(r)
k − X̃k

)
x ≤ −xT

(
X

(r−1)
k −X

(r)
k

)
Sk

(
X

(r−1)
k −X

(r)
k

)
x ≤ 0.

Hence,

xT
(
X

(r−1)
k −X

(r)
k

)
Sk

(
X

(r−1)
k −X

(r)
k

)
x = 0

SkX
(r−1)
k x = SkX

(r)
k x.

Since(
Dk − SkX

(r−1)
k

)
x = Dkx− SkX

(r−1)
k x = Dkx− SkX

(r)
k x =

(
Dk − SkX

(r)
k

)
x = λx,

λ is an eigenvalue of Dk−SkX
(r−1)
k , which is contradictory to the c-stability of this matrix.

Our assumption is not true and hence, Dk −SkX
(r)
k is asymptotically stable for k = 1, ..., N .

Further, we will compute matrices X
(r+1)
k and will prove X

(r)
k ≥ X

(r+1)
k for k = 1, ..., N . By

iteration (2), for i = r and for each k = 1, ..., N , we obtain:

(
Dk − SkX

(r)
k

)T
X

(r+1)
k +X

(r+1)
k

(
Dk − SkX

(r)
k

)
+

k−1∑
j=1

λkj

(
ωX

(r+1)
j + (1− ω)X

(r)
j

)
+

N∑
j=k+1

λkjX
(r)
j +X

(r)
k SkX

(r)
k +Qk = 0.

Since Dk−SkX
(r)
k is asymptotically stable, X(r+1)

k is the unique solution of the last equation.
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Let us consider(
Dk − SkX

(r)
k

)T (
X

(r)
k −X

(r+1)
k

)
+
(
X

(r)
k −X

(r+1)
k

)(
Dk − SkX

(r)
k

)
=
(
Dk − SkX

(r)
k

)T
X

(r)
k +X

(r)
k

(
Dk − SkX

(r)
k

)
−
(
Dk − SkX

(r)
k

)T
X

(r+1)
k −X

(r+1)
k

(
Dk − SkX

(r)
k

)
(2)
=
(
Dk − SkX

(r−1)
k + Sk

(
X

(r−1)
k −X

(r)
k

))T
X

(r)
k +X

(r)
k

(
Dk − SkX

(r−1)
k + Sk

(
X

(r−1)
k −X

(r)
k

))
+

k−1∑
j=1

λkj

(
ωX

(r+1)
j + (1− ω)X

(r)
j

)
+

N∑
j=k+1

λkjX
(r)
j +X

(r)
k SkX

(r)
k +Qk

=
(
Dk − SkX

(r−1)
k

)T
X

(r)
k +X

(r)
k

(
Dk − SkX

(r−1)
k

)
+
(
X

(r−1)
k −X

(r)
k

)
SkX

(r)
k

+X
(r)
k Sk

(
X

(r−1)
k −X

(r)
k

)
+

k−1∑
j=1

λkj

(
ωX

(r+1)
j + (1− ω)X

(r)
j

)
+

N∑
j=k+1

λkjX
(r)
j +X

(r)
k SkX

(r)
k +Qk

(2)
= −ω

k−1∑
j=1

λkj

(
X

(r)
j −X

(r+1)
j

)
− (1− ω)

k−1∑
j=1

λkj

(
X

(r−1)
j −X

(r)
j

)
−

N∑
j=k+1

λkj

(
X

(r−1)
j −X

(r)
j

)
−X

(r−1)
k SkX

(r−1)
k +X

(r−1)
k SkX

(r)
k −X

(r)
k SkX

(r)
k +X

(r)
k SkX

(r−1)
k −X

(r)
k SkX

(r)
k +X

(r)
k SkX

(r)
k

= −ω
k−1∑
j=1

λkj

(
X

(r)
j −X

(r+1)
j

)
− (1− ω)

k−1∑
j=1

λkj

(
X

(r−1)
j −X

(r)
j

)
−

N∑
j=k+1

λkj

(
X

(r−1)
j −X

(r)
j

)
−
(
X

(r−1)
k −X

(r)
k

)
Sk

(
X

(r−1)
k −X

(r)
k

)
.

After these transformations, we obtain:(
Dk − SkX

(r)
k

)T (
X

(r)
k −X

(r+1)
k

)
+
(
X

(r)
k −X

(r+1)
k

)(
Dk − SkX

(r)
k

)
= −ω

k−1∑
j=1

λkj

(
X

(r)
j −X

(r+1)
j

)
− (1− ω)

k−1∑
j=1

λkj

(
X

(r−1)
j −X

(r)
j

)
−

N∑
j=k+1

λkj

(
X

(r−1)
j −X

(r)
j

)
−
(
X

(r−1)
k −X

(r)
k

)
Sk

(
X

(r−1)
k −X

(r)
k

)
.

(5)

Let k = 1. The right-hand side

−
N∑
j=2

λ1j

(
X

(r−1)
j −X

(r)
j

)
−
(
X

(r−1)
1 −X

(r)
1

)
S1

(
X

(r−1)
1 −X

(r)
1

)

is a negative semidefinite matrix and hence, matrix X
(r)
1 −X

(r+1)
1 is a positive semidefinite

one. Consider (5) for k = 2. We know X
(r)
1 −X

(r+1)
1 ≥ 0. After analogous considerations,

we get X
(r)
2 −X

(r+1)
2 ≥ 0. In a similar way, it is proved that X

(r)
k −X

(r+1)
k ≥ 0 for k = 3, ..., N .

We continue with the proof of the fact Rk(X
(r)
1 , ..., X

(r)
N ) ≤ ω

k−1∑
j=1

λkj

(
X

(r)
j −X

(r+1)
j

)
where

k = 1, ..., N . Let us consider

Rk(X
(r)
1 , ..., X

(r)
N ) =

(
Dk − SkX

(r)
k

)T
X

(r)
k +X

(r)
k

(
Dk − SkX

(r)
k

)
+

N∑
j=1,j ̸=k

λkjX
(r)
j +X

(r)
k SkX

(r)
k +Qk.
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Using iteration (2) leads us to

Rk(X
(r)
1 , ..., X

(r)
N ) =

(
Dk − SkX

(r)
k

)T
X

(r)
k +X

(r)
k

(
Dk − SkX

(r)
k

)
−
(
Dk − SkX

(r)
k

)T
X

(r+1)
k

−X
(r+1)
k

(
Dk − SkX

(r)
k

)
− ω

k−1∑
j=1

λkj

(
X

(r+1)
j −X

(r)
j

)
or (

Dk − SkX
(r)
k

)T (
X

(r)
k −X

(r+1)
k

)
+
(
X

(r)
k −X

(r+1)
k

)(
Dk − SkX

(r)
k

)
= Rk(X

(r)
1 , ..., X

(r)
N ) + ω

k−1∑
j=1

λkj

(
X

(r+1)
j −X

(r)
j

) (6)

In (6), we put down k = 1 and thus

R1(X
(r)
1 , ..., X

(r)
N ) =

(
D1 − S1X

(r)
1

)T (
X

(r)
1 −X

(r+1)
1

)
+
(
X

(r)
1 −X

(r+1)
1

)(
D1 − S1X

(r)
1

)
.

Since D1−S1X
(r)
1 is asymptotically stable and X

(r)
1 −X

(r+1)
1 ≥ 0, we conclude that R1(X

(r)
1 , ..., X

(r)
N ) ≤

0. With k = 2 in (6), we find(
D2 − S2X

(r)
2

)T (
X

(r)
2 −X

(r+1)
2

)
+
(
X

(r)
2 −X

(r+1)
2

)(
D2 − S2X

(r)
2

)
= R2(X

(r)
1 , ..., X

(r)
N ) + ωλ21

(
X

(r+1)
1 −X

(r)
1

)
,

which means

R2(X
(r)
1 , ..., X

(r)
N ) + ωλ21

(
X

(r+1)
1 −X

(r)
1

)
≤ 0

R2(X
(r)
1 , ..., X

(r)
N ) ≤ ωλ21

(
X

(r)
1 −X

(r+1)
1

)
.

The following inequalities are proved in a similar way:

Rk(X
(r)
1 , ..., X

(r)
N ) ≤ ω

k−1∑
j=1

λkj

(
X

(r)
j −X

(r+1)
j

)
, k = 3, ..., N.

The induction process for proving (i) and (ii) is now complete. Matrix sequences {X(l)
1 }∞0 , ..., {X(l)

N }∞0
converge and their limit matrices X+

1 , ..., X+
N complete a solution to the system of Riccati

equations Rk(X1, ..., XN ) = 0 with x+k ≥ X̃k for k = 1, ..., N . Since all matrices Dk −SkX
(l)
k (k =

1, ..., N ; l = 1, ...) are asymptotically stable, corresponding limit matrices Dk −SkX
+
k are sta-

ble.
Now, we are assuming that Rk(X̃1, ..., X̃N ) > 0. Reaching the limit in (4) when r → ∞, we
get(
Dk − SkX

+
k

)T (
X+

k − X̃k

)
+
(
X+

k − X̃k

) (
Dk − SkX

+
k

)
= −Rk(X̃1, ..., X̃N )−

k−1∑
j=1

λkj

(
X+

j − X̃j

)
−

N∑
j=k+1

λkj

(
X+

j − X̃j

)
−
(
X+

k − X̃k

)
Sk

(
X+

k − X̃k

)
.
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We consider the last equality consecutively for k = 1, ..., N . We know that X+
k − X̃k ≥ 0

and the right-hand sides will be negative definite because Rk(X̃1, ..., X̃N ) are positive defi-
nite. Thus, it follows (from Lyapunov equation’s properties) that matrices Dk −SkX

+
k are

asymptotically stable for k = 1, ..., N . □

3 Maximal solution
In this section, we establish a link between the optimization problem and solution X+.
Consider the following optimization programing problem:

max tr

(
N∑
i=1

Xi

)
S. to : Ri(X1, ..., XN ) ≥ 0, for i = 1, ..., N,

(7)

Lemma 3.1 The maximal solution X+ ∈ Hn for CARE (2) is the unique solution of
programming problem (7). Furthermore, since Dk and Xk are symmetric, (7) can be
rewritten as follows:

max tr

(
N∑
i=1

Xi

)
DkXk +XkDk +Qk +

N∑
j=1,j ̸=k

λkjXj Xk

Xk S−1
k

 ≥ 0

(8)

Proof: By Theorem ??, X+ ∈ Hn, R
(
X+

)
= 0 (thus, constraints (7) are satisfied for X+),

and X+ ≥ X̃ for any X̃ satisfying constraints (7), which implies that

tr

(
N∑
i=1

X+
i

)
≥ tr

(
N∑
i=1

X̃i

)

and so, the optimal solution is given by X+. Since Dk are symmetric, from Schur’s
complement X̃ =

(
X̃1, ..., X̃N

)
satisfies constraints (8) if and only if X̃ ∈ Hn and DkXk +

XkDk+Qk+
N∑

j=1,j ̸=k
λkjXj−XkSkXk ≥ 0. □

In [17], the following CARE is considered:

Rk = XkCkXk −XkDk −AkXk +Bk +
∑
j ̸=k

ekjXj = 0, (9)

where k ∈ {1, 2, ...,m}, ekj are positive real constants, and Ak, Bk, Ck, Dk ∈ Rn×n are constant
matrices.
To state the theorem presented in [17], we start with some definitions. Let Rn×n represent
the set of n × n real matrices. For A ∈ Rn×n, AT is the transpose matrix of A. We write



119 H. Alimorad / JAC 54 issue 1, June 2022, PP. 109 - 123

A > 0(A ≥ 0) if matrix A is positive (nonnegative), i.e., aij > 0(aij ≥ 0) for all i, j = 1, 2, ..., n.
If A − B is positive (nonnegative), then we write A > B(A ≥ B). ∥.∥ defines the matrix
norm. A is called a Z-matrix if all its off-diagonal elements are non-positive. Obviously,
any Z-matrix A can be written as sI −B with B ≥ 0. A Z-matrix A is called an M-matrix
if s > ρ(B), where ρ(.) is the spectral radius. It is called a singular M-matrix if s = ρ(B).
The symbol ⊗ indicates the Kronecker product [17].
Theorem 3.1 For the coupled algebraic Riccati equation (9), let Bk > 0, Ck > 0 and
I⊗Ak+DT

k ⊗ I is an M-matrix . If there exists a positive matrix group X = (X1, X2, ..., Xm),
such that:

Rk(X) ≤ 0,

then (9) has a minimal positive solution group S = (S1, S2, ..., Sm), such that S ≤ X.

If X =
(
X

(0)
1 , X

(0)
2 , ..., X

(0)
m

)
= (0, 0, ..., 0), then sequence {X(l)

k } defined by X
(l+1)
k = X

(l)
k −(

R′

X
(l)
k

)−1

R
(
X

(l)
k

)
has the following relation:

X
(0)
k < X

(1)
k < ..., lim

l→∞
X

(l)
k = Sk.

Furthermore, for k = 1, 2, ...,m:

MSk
= I ⊗ (Ak − SkCk) + (Dk − CkSk)

T ⊗ I

is either an M-matrix or a singular M-matrix. To see the details of the proof, refer to [17].
Lemma 3.2 Maximal solution S∗ for CARE (9) is the unique solution of the following
programming problem:

min tr

(
m∑
k=1

Xk

)
XkCkXk −XkDk −AkXk +Bk +

∑
j ̸=k

ekjXj ≤ 0

Xk ≥ 0, k = 1, 2, ...,m.

(10)

Proof: By Theorem 3.1, R (S) ≤ 0 (thus, constraints (10) are satisfied for S), and S ≤ X

for any X satisfying the constraints, which implies that

tr

(
m∑
k=1

Sk

)
≤ tr

(
m∑
k=1

Xk

)

and so, the optimal solution is given by S. □

4 Numerical examples
Now, to show the efficiency of our method, we solve some numerical examples. It is worth
mentioning that these examples are taken from [10, 17].
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Example 4.1 [17], Consider equations (9) with m = n = 2 and [eij ] =

(
1 1

1 1

)
,

A1 =

(
5 −2

−1 6

)
, B1 =

(
1 1

1 1

)
, C1 =

(
3 4

2 1

)
D1 =

(
5 −1

−2 4

)

A2 =

(
4 −6

−1 3

)
, B2 =

(
1 2

3 1

)
, C2 =

(
5 2

3 4

)
D2 =

(
4 −2

−2 1

)
Applying lemma 3.2, we have:

min tr(X1 +X2)

S. to : X1C1X1 −X1D1 −A1X1 +B1 + e12X2 ≤ 0;

X2C2X2 −X2D2 −A2X2 +B2 + e21X1 ≤ 0;

X1 ≥ 0, X2 ≥ 0

where X1 =

(
x11 x12

x21 x22

)
, X2 =

(
y11 y12

y21 y22

)
.

This problem has no feasible solution; So, equations (9) have no positive solution in this
case.

Example 4.2 [17], Consider equations (9) with m = n = 2 and [eij ] =

(
1 1

1 1

)
:

A1 =

(
5 −1

−1 4

)
, B1 =

(
36
7 16

18 33

)
, C1 =

(
1
4

1
8

1
5

1
7

)
D1 =

(
8 −2

−1 6

)

A2 =

(
9 −1

−2 10
3

)
, B2 =

(
3
20 9

1 1
2

)
, C2 =

(
1
4

1
2

1
3

1
5

)
D2 =

(
10 −1

3

−1 3

)
Applying lemma 3.2, the feasible solution is:

X1 =

(
0.9332 2.6056

2.3697 5.1380

)
, X2 =

(
0.1510 1.1799

0.4121 1.5206

)

Example 4.3 [17], Consider equations (9) with m = n = 3 and [eij ] =

0.8 0.1 0.1

0.1 0.8 0.1

0.1 0.1 0.8

:

A1 =

11 −1 −2

−3 8 −2

−1 −2 9

 , A2 =

18 −1 −0.5

−2 9 −3

−1 −1 8

 , A3 =

 9 −2 −1

−1 8 −1

−2 −2 14



B1 =

5 9 4

9 8 9

2 10 10

 , B2 =

24 23 0.5

6 2 20

0.3 10 20

 , B3 =

 7 5 1.5

1.5 6 1

0.5 1.5 1.8


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C1 =


1
12

1
12 1

1
14

1
18

1
12

1
13

1
14

1
15

 , C2 =


1
13

11
5

1
12

1
14

1
16

1
13

1
17

1
14

1
12

 , C3 =


1
12

1
13

1
14

1
15

1
13

1
16

1
19

1
18

1
17



D1 =

 9 −2 −2

−1 7 −1

−2 −3 10

 , D2 =

12 −1 −2

−2 11 −3

−1 −3 16

 , D3 =

10 −1 −4

−2 14 −2

−2 −1 12


Applying lemma 3.2, the feasible solution is:

X1 =

0.4467 0.8672 0.4218

0.8823 1.2637 0.8941

0.4083 1.1003 0.7835

 , X2 =

0.9471 0.9473 0.2847

0.5750 0.5830 1.1437

0.2590 0.8311 1.0648

 X3 =

0.4543 0.2886 0.2102

0.1749 0.3153 0.1446

0.0967 0.1122 0.1276


Example 4.4
[10], Consider equations (2) with matrix coeffients Dk = Ak + 1

2λkkI, Sk = BkR
−1
k Bk, where

A1 =


−2.1051 −1.1648 0.9347 0.5194

−0.0807 −2.8949 0.3835 0.8310

0.6914 10.5940 −36.8199 3.8560

1.0692 13.4230 22.1185 −13.1801

 , B1 =


0.7564

0.9910

9.8255

7.2266



A2 =


−2.6430 −1.2497 0.5269 0.6539

−0.7910 −2.8570 0.0920 0.4160

21.0357 22.8659 −26.4655 −1.7214

27.3096 7.8736 −3.8604 −29.5345

 , B2 =


0.3653

0.2470

7.5336

6.5152



Q1 = Q2 =


1 0 1 0

0 0 0 0

1 0 1 0

0 0 0 0

 , Π =

(
−2 2

1.5 −1.5

)
, R1 = R2 = 1.

Applying RMNM with X(0) = 0 and ω = 0.7, we compute the following two solutions to
the given system after 4 iterations.

X1 =


0.2408 0.0705 0.0393 0.0182

0.0705 0.0308 0.0085 0.0064

0.0393 0.0085 0.0157 0.0025

0.0182 0.0064 0.0025 0.0016

 , X2 =


0.5026 0.1343 0.0518 0.0097

0.1343 0.0485 0.0138 0.0026

0.0518 0.0138 0.0193 0.0002

0.0097 0.0026 0.0002 0.0003

 ,

5 Conclusion
In this study, a new iterative method for computing a Hermitian solution to a system
of coupled algebraic Riccati equations was presented. To do this, we compared the re-
sults from these experiments with those of other studies. Our new iterations method
has properties which were proved in Theorem 2.1. Also, we established a link between
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the optimization problem and CARE solution. Finally, we offered some corresponding
numerical examples to demonstrate the effectiveness of the derived iteration method.
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and its supplementary information files.
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