
DESERT 2022, 27(1): 167-181 

DOI: 10.22059/JDESERT.2022.88514 

 

RESEARCH PAPER   

 

Mapping spatial patterns of plant species based on machine-

learning and regression models 
 

Hamidreza Keshtkar1,*, Paria Pourmohammad1 
 

 
1 Department of Arid and Mountainous Regions Reclamation, Faculty of Natural Resources, University 

of Tehran, Karaj, Iran  

 

Received: 25 July 2021, Revised: 23 December 2021, Accepted: 6 April 2022 
© University of Tehran  

 
Abstract 

Various statistical techniques have been used for species distribution modeling that attempt to predict 

the occurrence of a given species with respect to environmental conditions. The current study was 

conducted to compare the performance of three regression-based models (multivariate adaptive 

regression splines, generalized additive models, and generalized linear models) with three machine-

learning algorithms (random forest, artificial neural networks, and generalized boosted models). Also in 

this study, three sets of explanatory variables (climate-only, topography-only and combined topography-

climate) for each species (i.e. Achillea millefolium, Festuca rupicola, and Centaurea jacea) were 

quantified and the effect of the interaction of the predictor variables with the modeling approaches on 

determining the accuracy of the predictions was tested. Model accuracy was evaluated using the area 

under the curve (AUC) of the receiver operating characteristics and true skill statistics (TSS). It was 

found that regression-based approaches, especially generalized additive model, performed better than 

those of machine-learning. The results showed that the topography-climate variables were the most 

important for mapping potentially suitable habitats of target species. The response curves associated 

with these variables indicate that there are ecological thresholds for favorable growth of all plant species 

studied.  

Keywords: plant distribution; suitable habitats; explanatory variable; Data Mining. 

  

Introduction 

 

Spatial species distribution and the relationship between species and environmental factors have 

been studied for several years (Guisan and Zimmerman, 2000; Norberg et al., 2019). Linking 

environmental variables with the physiological tolerance threshold of species has made it 

possible to model the effect and consequences of environmental change on species and 

ecological systems (Naghipour et al., 2021). To implement such schemes, a proper 

understanding of the relationship between the species and environment is required. This 

understanding is usually achieved through theoretical and statistical methods which relate the 

environmental variables to the emergence of species. In addition, the relationships between 

species and the environment should be related to the structural characteristics of habitats using 

GIS data.  

     Ecologists commonly assume that the ranges of current geographic species represent the 

characteristics of the species’ habitats which support or limit their presence in a specific 

location. Accordingly, a range shift can be justified by measuring changes in the bioclimatic 

envelope (a set of biological and physical conditions suitable for the development and 

establishment of a particular species). In fact, species are under the influence of environmental 

change (Bateman et al., 2013). 
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Predicting geographical species distributions via statistical models has become essential in 

several aspects of biogeography, ecology and biology. Species distribution models (SDMs) are 

among the most appropriate methods to predict the impact of ecological factors on species 

distribution (Dirnböck et al., 2011; Naimi and Araújo, 2016). Using these models, researchers 

can predict a probability of existence species in a location where no occurrence data is known. 

SDMs are valuable tools for the evaluation and protection of regions degrading and losing their 

biodiversity due to various factors (Kosanic et al., 2018). Robertson (2003) suggested that the 

prediction provided by each model may present different conceptions of the potential 

distribution and biology of the target species. Despite that, it is essential to perfectly understand 

restrictions and ambiguities embedded in species distribution modeling to produce suitable and 

precise models (Zimmermann et al., 2010; Kumar, 2012; Zomer et al., 2015; Akhter et al., 

2017). 

     The number of predicting techniques used to model the distribution of plant species has 

increased considerably in recent years (Guisan et al., 2013) and some studies have been 

compered the performance of models for terrestrial species (e.g., Cianci et al., 2015; Duan et 

al., 2014). Currently, however, it is not clear how species distribution models (SDMs) vary in 

their ability to predict the spatial distributions of species (Oppel et al., 2012) and which 

techniques yield the most reliable predictions for distribution of plant species. 

     Recently, regression and machine learning techniques have been used more than other 

methods. Most of the regression models used to predict the geographic species distribution 

presents the highly interpretable and meaningful results. These models are usually restricted to 

binary data organizations that have a precise and regular sampling strategy; generalized additive 

models (GAM) is one such modeling method that has a specifically forceful performance when 

modeling species presence/absence data (Lehmann et al., 2002). Machine learning techniques 

include a variety of non-parametric methods able to compute regression or classification tasks 

using available information. These methods show some benefits with reference to statistical 

methods: they are capable of handling non-linear relationships among predictors, able to deal 

with complicated relationships among predictors that can occur in big data sets and capable of 

managing complicated and noise data (Thuiller et al., 2016).  

     Selection of environmental factors to apply as predictors is a major challenge in SDMs 

(Araujo and Guisan, 2006). Selection of predictors with direct effects on species distribution is 

the best solution to this problem (Austin, 2007). In some areas, it is not possible to include 

different types of predictor factors because of the limitation in availability of data (Bucklin et 

al., 2015). Because climate is a factor affecting species distribution, one subclass of SDMs 

comprises only climate (hereafter climate-only) predictors (Thuiller et al., 2016). Climate-only 

SDMs are essential to guiding future conservation efforts (Elith and Leathwick, 2009; Xu et al., 

2021), although the lack of sufficient information for determination of climate range in species 

distribution have caused some scientists to criticize climate-only models (Beale et al., 2008). If 

non-climatic variables are used along with climatic information, this problem could be solved 

(Austin and Van Niel, 2011). Although studies have incorporated climatic and topographic 

variables in modeling, few have examined the climate-only and topography-only models versus 

combined models. 

     The objective of the current study is to evaluate the performance of a number of presence-

absence distribution models using spatial distribution data of three plant species. Specifically, 

three regression methods and three machine-learning methods were compared. Considering that 

differences in predictive accuracy between methods depends upon the explanatory variables 

(Bucklin et al., 2015; Oppel et al., 2012; Rafiee et al., 2020; Rajpoot et al., 2020), three sets of 

explanatory variables (climate-only, topographic-only and combined topographic-climate) 

were quantified for each species and the differences among predictor variables interacting with 

the modeling approaches were tested to determine the accuracy of the predictions. The tolerance 
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range of the plant species to environmental change was investigated and the limiting factors 

and ecological drivers of the systems modeled were elaborated. Such knowledge could assist 

in the selection of predictors for practical SDM applications and provide information on which 

modeling techniques are the most useful for a group of species. 

 

Materials and Methods 

Study areas 

 

The area under study is in Free State of Thuringia and covers 6900 Km2. The average elevation 

is 486 m.a.s.l, with minimum and maximum altitudes of 114 m and 982 m , respectively. The 

climatic condition is of the continental type, with the mean annual precipitation of 604 mm, and 

the mean annual temperature of 8.6 °C (based on monthly data of 18 meteorological stations 

from 1960–2010). The soil parent material is mainly calcareous. 

 

Species and data preparation 

 

In this study, three native non-woody species were selected: 1) Achillea millefolium millefolium 

(A. millefolium), 2) Festuca rupicola (F. rupicola), and 3) Centaurea jacea (C. jacea). A. 

millefolium is an herbaceous and perennial plant in the family Asteraceae. The selected species 

comprise a balanced composition of occurrence frequencies, so that F. rupicola, A. millefolium, 

and C. jacea represent very common, relatively frequent, and relatively rare conditions, 

respectively. A total of 201 plots were available (Fig. 1), and the studied plant species (i.e. F. 

rupicola, A. millefolium, and C. jacea) occurred in 144, 102, and 58 plots, respectively. Field 

studies were done to record the occurrence points between 2013 and 2014.  

 

 
Figure 1. Spatial location of plots in study area 

 

Environmental predictors 

 

The set of quantitative topographic and climatic predictors selected covered the basic 

physiological requirements (i.e. nutrients, energy and water) of species. In total, 11 predictor 

variables (six climatic and five topographic) were calculated at 25-m in spatial resolution (Table 

1). The environmental variables used are described in Zimmermann and Kienast (1999) and 

Parviainen et al. (2008) and are only briefly discussed here. Digital elevation model (DEM) 
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was employed to extract all topographic factors. The Topographic Wetness Index (TWI) can 

provide suitable information about the local relative differences in moisture conditions (Balazy 

et al., 2019). The topographic position index (TPI), or difference from mean elevation (DIFF), 

is a useful measure that increasingly is used to express the exposure of a central point in space 

as compared to the surrounding terrain (Wilson and Gallant, 2000).  

 
Table 1. List of environmental variables which tested for multi-collinearity 

Variables Unit Details 

Topography   

Slope* Degrees Slope inclination 

Aspect* Degrees The compass direction that a slope face 

Elevation* m The elevation of a geographic locations 

Topographic wetness 

index* 

m It quantifies the role of topography for redistributing 

water in the landscape 

Topographic position 

index 

Unitless Identification of topographic features at various spatial 

scales 

Climate   

Mean annual temperature °C Average of annual temperature  

Mean summer 

temperature* 

°C 
Average temperature from April to September 

Sum annual precipitation mm Sum of annual precipitation 

Sum summer 

precipitation* 

mm 
Sum of precipitation from April to September 

Summer solar radiation* kJ×m-

2×day-1 

Sum of monthly average of daily global solar radiation 

from April to September 

Soil moisture index* mm Difference between precipitation and potential 

evapotranspiration 

 

     Temperature and precipitation data (1961-2010) were collected from the German 

Meteorological Service (https://www.dwd.de). Since topography strongly affects temperature 

and precipitation (Sartz, 1972), DEM was used as a co-variable to implement co-kriging 

interpolation method throughout the study area. Soil moisture variable was computed as the 

monthly difference between precipitation and potential evapotranspiration.  

 

Multi-collinearity analysis 

 

In this study, the Pearson correlation coefficient was run to address the multicollinearity 

problem between explanatory variables (Shrestha, 2020). Accordingly, variables that showed 

high correlation with other predictors (>|0.7|) were left out of the model. Finally, 8 

environmental predictors were kept for model calibration (marked with ‘*’ in Table 1), out of 

the original 11 variables. 

 

Calibration of statistical models 

 

Six predictive models (three regression methods and three machine-learning methods) were run 

and compared to predict species distributions, which are known to provide good predictions: 

(1) generalized linear models (GLMs; McCullagh and Nelder, 1989); (2) generalized additive 

model (GAM; Hastie and Tibshirani, 1990); (3) multivariate adaptive regression splines 

(MARS; Friedman, 1991); (4) generalized boosted models (GBMs, also known as boosted 

regression trees (BRT); Ridgeway, 1999); (5) random forest (RF; Breiman, 2001); (6) artificial 

neural networks (ANNs; Ripley, 1996). By relating the independent and dependent variables, 

http://en.wikipedia.org/wiki/Geographic
http://en.wikipedia.org/wiki/Location_(geography)
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all the models mentioned here can specify at what probability percentage a pixel will be hosting 

the target species.  

     GLMs and GAMs were fitted for each species with a binomial variance and a logit 

transformation. In both models, the selection of significant variables was done with an Akaike 

information criterion-based stepwise method (Akaike, 1998) in forward and backward 

directions. To calibration the GBMs a maximum number of 2500 trees and internal 3-fold cross-

validation procedure was used. MARS models were calibrated using a maximum interaction 

degree equal to 2. For RF model, we set 500 for the number of trees to grow (ntree), and for the 

number of input variables (mtry) we used the default value, which is the square root of 

variables’ number. For ANN model, the model optimized the number hidden layer (size) and 

the weight decay (decay) factor by cross validation based on area under the curve (AUC) of the 

receiver operating characteristic (ROC). To optimizing, the model test different values for 

“size” and “decay”, respectively, (2, 4, 6, 8) and (0.001, 0.01, 0.05, 0.1), and the one given the 

best AUC will be selected. All models were run in R (3.6) software using the biomod2 package 

(Thuiller et al., 2013). For each species, above models were fitted using three different sets of 

explanatory variables: (1) Topographic variable only (hereafter abbreviated ‘‘Topo’’; Table 1); 

(2) climate only (abbreviated ‘‘Clim’’; Table 1); and (3) Topo + Clim variables (abbreviated 

‘‘ALL’’). 

 

Assessment of model performance   

 

Since there was no independent data to assess the predictive ability of the model, repeated data-

splitting procedure was used. We used the formula presented by Huberty (1994) to determine 

the optimal ratio of training and testing data. This formula is limited to presence/absence 

models, and the ratio of required testing data is based on [1 + (p - 1)½]-1, where p is the number 

of predictor variables. Accordingly, training of the model was performed using 70% of random 

data samples (presences and pseudo-absences data) and remaining 30% was used to validation 

the model through AUC and TSS indices (Allouche et al., 2006). 

     The TSS evaluation value varies from 0 to 1, where a value of 0 can be interpreted as random 

predictions and value 1.0 indicates a perfect agreement (Franklin, 2009). The AUC value varies 

from 0 to 1, where a value below than 0.5 interprets that predictions are no better than random, 

values of 0.5–0.7 indicate low predictions, 0.7-0.9 indicate useful predictions, and >0.9 indicate 

excellent predictions (Franklin, 2009; Eskildsen et al., 2013). This index is calculated as 

specificity (proportion of correctly predicted presences) + sensitivity (proportion of correctly 

predicted absences)-1 (Franklin, 2009). The resampling technique (data-splitting) was repeated 

25 times for the models and the evaluation metrics averaged. We weighted the presence and 

pseudo-absence data in the modeling procedure so that both gave prevalence of 0.5. This equal 

prevalence prevents the model bias towards over-prediction of either presences or pseudo-

absences data (Isabelle et al., 2014).   

     For the final calibration of models, all of the data were used to the implementation of spatial 

projections. The predictive maps were developed for the target species after calibration of the 

models. Although continuous predictions need to be converted to a binary map (i.e. a species is 

either predicted present or absent), we used threshold classification according to the 

minimization of the absolute difference between sensitivity and specificity (Liu et al., 2005). 

To test whether the probability of the occurrence values for each species were predicted by the 

predictive models and whether the three sets of explanatory variables differed from each other, 

we used the non-parametric Wilcoxon’s signed-rank test (Phillips et al., 2009). 
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Results 

 

Multi-collinearity among variables 

 

All of the variables that were used for model calibration had correlation values <0.7. Table 1 

shows variables that were kept for modeling. All in all, one topography (Topographic position 

index) and two climate variables (Mean annual temperature and sum annual precipitation) were 

deleted from the study. Topography and climate variables showed almost no correlation with 

each other. 

 

Efficiency of distribution models   

 

The best model was selected based on the AUC and TSS measures. The mean AUC of the six 

models ranged from 0.64 (ANN) to 0.94 (GAM and MARS) and for the TSS index from 0.42 

(ANN) to 0.80 (GAM). All the three species were accurately classified by all the models except 

the ANN model, which was found to classify inadequately (Fig. 2). Table 2 presents the results 

of the different statistical techniques constructed with subsets of environmental variables which 

were applied to the F. rupicola, A. millefolium and C. jacea data sets. The Wilcoxon signed-

rank test showed that there were no statistical differences between the performance of the 

regression models (GLM, MARS and GAM; p > 0.05; Table 3).   

 
Table 2. Mean evaluation values of TSS (true skill statistics) and AUC (the area under the receiver-

operated characteristic curve) of six modeling techniques for predicting the distribution of three plant 

species based on three set of explanatory variables. TOPO= topography-only variables, CLIM= climate-

only variables, All= topo-climate variables. See Fig. 2 for the technique’s abbreviations 

Models 
 TOPO  CLIM  ALL 

 TSS AUC  TSS AUC  TSS AUC 

C. jacea          

RF  0.62 0.78  0.61 0.76  0.66 0.84 

ANN  0.42 0.65  0.47 0.67  0.55 0.73 

GBM  0.61 0.74  0.68 0.84  0.67 0.85 

GAM  0.65 0.78  0.70 0.87  0.71 0.90 

GLM  0.67 0.81  0.71 0.84  0.73 0.92 

MARS  0.63 0.76  0.67 0.79  0.70 0.87 

A. millefolium          

RF  0.63 0.77  0.65 0.80  0.69 0.84 

ANN  0.57 0.69  0.57 0.72  0.61 0.74 

GBM  0.62 0.75  0.68 0.80  0.72 0.89 

GAM  0.71 0.78  0.73 0.85  0.74 0.93 

GLM  0.66 0.76  0.71 0.84  0.69 0.83 

MARS  0.68 0.84  0.69 0.79  0.71 0.85 

F. rupicola          

RF  0.65 0.79  0.70 0.81  0.71 0.83 

ANN  0.49 0.64  0.53 0.68  0.56 0.73 

GBM  0.68 0.82  0.69 0.87  0.72 0.86 

GAM  0.72 0.87  0.75 0.93  0.80 0.94 

GLM  0.73 0.83  0.76 0.89  0.75 0.89 

MARS  0.71 0.89  0.76 0.92  0.79 0.94 

      

With the F. rupicola data set, the best performance was achieved by the MARS (AUC = 0.92; 

TSS = 0.76), although the GAM results were very similar. For C. jacea, the best performance 

was obtained by the GLM (AUC = 0.92; TSS = 0.73). The best projection was carried out by 
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the GAM (AUC = 0.93; TSS = 0.74) for A. millefolium. The results illustrate that the GAM 

method presented significantly more accurate predictions than all the machine-learning 

algorithms (Wilcoxon signed rank test; p < 0.05; Table 3 and Fig. 2). 

 

 
Figure 2. Comparison of AUC (a) and TSS (b) model evaluations between modeling techniques based 

on “All” explanatory variables. Each box-plot is built from three values (i.e. plant species). The boxes 

extend from the data's 1st to 3rd quartiles, box boundaries show the interquartile range and the 

horizontal bars in the box represent the median. RF=random forest, ANN=artificial neural networks, 

GBM=boosted regression trees, GAM=generalized additive models, GLM=generalized linear models, 

MARS=multivariate adaptive regression splines 

 

Comparison of models fitted with different explanatory 

 

All the models exhibited very good correctness in all three sets of the environmental variables 

(Table 2). Modeling with climate-only variables was significantly better than modeling with 

environment-only variables (Wilcoxon signed rank test; P < 0.001). Also, modeling using a set 

of climatic and environmental factors had a superior predictive ability than two other variable 

sets (Wilcoxon signed rank test from climate-only models; P < 0.01). According to these results, 

all further analyses examine only the models calibrated with both the climatic and topographic 

parameters (ALL).  

The most important predictor for modeling the distribution of F. rupicola was the mean summer 

temperature (Fig. 3), followed by the sum of the summer precipitation, slope and DEM. The 

results show that the mean summer temperature followed by the sum summer precipitation and 

slope are the most important predictors for modeling the distribution of C. jacea and A. 

millefolium. The soil moisture index (SMI) was the least important predictor for these two plant 

species. 

The response curves associated with these variables indicate that there may be ecological 

thresholds for the favorable growth of all plant species studied (Fig. 4). For example, the 

response curves for the best model (i.e. GAM) for F. rupicola indicated that the optimal value 

for the sum summer precipitation was 300-400 mm (Fig. 4-k). For the mean summer 

temperature, habitat suitability was low until the range increased to about 10°C (Fig. 4-l). It 

steadily increased to about 15°C, showing F. rupicola to have a stronger relationship with a 

higher summer temperature. The suitability of the habitat improved as the elevation decreased 

(<430 m) and the slope increased (>5°) (Fig. 4-j and i). 
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Figure 3. Importance of each predictor used in calibrated models for three species; F. rupicola (a), C. 

jacea (b) and A. millefolium (c). A high value (like Slope) represents a significant effect of the 

predictor in the model. DEM= digital elevation model; SLO= slope in degrees; ASP= aspect in 

degrees; TWI= topographic wetness index; SOL= sum of solar radiation for the growing season 

(April–September); PRE= sum precipitation over the growing season; TEM= mean temperature for 

the growing season; SMI= soil moisture index 

      

      

 
Figure 4. Response curves for A. millefolium (a-d), C. jacea (e-h) and F. rupicola (i-l) based on GAM 

for the four most important predictors. Frequency distribution of each predictor in study area is shown 

by black bands on x-axis 

 

Assessment of models among species 

 

An investigation of the distribution projections showed that all species obtained high 

assessment scores (except the ANN model for F. rupicola and C. jacea), with TSS values of 

0.61 to 0.80 (Table 2). Such a TSS value means that, on average, with a probability of 80% to 
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90%, the model was properly able to predict the presence and absence of the species. F. rupicola 

was the species that obtained the highest assessment score (TSS-mean=0.72). A. millefolium 

obtained an average score (TSS-mean= 0.69) and C. jacea reached a slightly lowe r assessment 

score than the other species (TSS-mean=0.67).  

 
Table 3. Statistical differences in the predictive performance of six different models for three plant 

species. Statistical tests of the differences among the predictive accuracies of different methods based 

on AUC scores were tested by Wilcoxon signed rank test (P-values) 

Models RF ANN GBM GAM GLM MARS 

RF - < 0.001 0.008 < 0.001 0.001 < 0.001 

ANN  - < 0.001 < 0.001 < 0.001 < 0.001 

GBM   - < 0.001 0.011 0.007 

GAM    - 0.016 0.091 

GLM     - 0.253 

 

Discussion and Conclusion 
 

This work presented an experimental study comparing the use of six statistical models (RF, 

ANN, GBM, GLM, GAM, and MARS) to predicting the spatial location of three individual 

plant species at a 25 m spatial resolution and investigated the impact that different sets of 

explanatory variables (climate-only, topography-only and topo-climatic) on model 

performance.  

     It was found in this study that the modeling method can determine spatial location of studied 

plant species for the purpose of conservation. Comparing the predictive power of SDMs, it was 

found that overall, the GAM model showed the best results (Fig. 2). This is consistent with the 

results of experiments performed by Leathwick et al. (2005) and Heikkinen et al. (2012) in the 

field of species distribution modeling. The performance of GBM and RF was acceptable but 

poorer than that of regression approaches when applied to the prediction of suitable habitats. 

The ANN modeling technique received lower evaluation scores. The MARS and GLM models, 

similar in performance to the GAM model, can then be considered as substitute mapping 

methods (Fig. 2 and Table 2). The findings of this study are in line with those obtained by 

Leathwick et al. (2005).  

Additionally, previous studies revealed that MARS is comparable to other regression 

techniques (i.e. GAM and GAM) in terms of function and capability (Guisan et al., 2007; Ibáñez 

et al., 2014). Despite relatively similar predictive accuracies in models, the quality of the 

predicted distributions can vary owing to different theory and assumptions behind these models 

(Guisan et al., 2013; Oppel et al., 2012). In the current study, for example, the MARS and the 

GAM model had similar predictive efficiency (Table 2), but varying patterns could be predicted 

for the spatial positions of plant species (Figs. 5, 6, and 7).      

     The predictor factors used in this study were selected to cover a wide range of the possible 

ecological parameters on the distributions of the modeled species. Climate variables, 

particularly temperature and precipitation in the growing seasons, and topographic factors such 

as elevation and slope, appeared as significant determinants across all modeling techniques 

(Fig. 4). These variables demonstrate initial environmental factors related to the physiological 

requirements of plants (Pearson et al., 2002; Al-Qaddi et al., 2016). The environmental layers 

used in the current study was based on literature and ecological expertise. Since the same 

datasets were used in the induction of all predictor models, this attribute does not invalid the 

comparisons performed. 

     Results of the current study show that the ALL scenarios (topo-climate variables) are the 

most important variables for predicting potential suitable habitats of target species. Conversely, 

models based only on TOPO predictors showed lower evaluation scores. Likewise, 
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simultaneous incorporation of topographic and climatic variables increased the models’ 

prediction power significantly (Wilcoxon signed rank test comparing ALL and CLIM models; 

P < 0.01). For example, under the ALL scenario, mean TSS for F. rupicola showed 2.7% and 

6% higher performance than CLIM and TOPO scenarios, respectively. Some earlier studies 

confirmed that topo-climate explanatory variables (ALL scenario) strongly predict habitat 

distribution of species (Engler et al., 2009; Kissling et al., 2010).  

 

 

 
Figure 5. Predicted environmental suitability maps for F. rupicola using six predictor algorithms. 

Axes represent the geographical location of the region. The map legend shows the probability of the 

species present per pixel (0-1000). See Fig. 2 for the algorithm’s abbreviations 

 

 

Predictive species modeling can provide good information about the habitat of species and their 

method of interacting with their environment. Response curves are one of the important 

components in species distribution studies, because they show the tolerance range for 

environmental changes by species. Using these relationships between factors, we can learn 

about the ecological drivers of the systems that we are modeling (Holcombe et al., 2010). The 

main factor in the models was temperature with a superior fitness for mean summer 

temperatures >14°C for all plant species, almost related to elevations above 430 m a.s.l. This 

result could not translate into a preference for lowland regions, because higher elevations are 

covered by forestland in the study area while target plant species can occur only in open lands.  

The predictive models indicated the most probable presence of plants is in the areas having an 

average rainfall of 350 mm and suggest that these plants tend to be present in semi-arid regions. 

This feature will help them to resist the reduction of rainfall caused by climate change. Keshtkar 

and Voigt (2016) showed that the three species (i.e. Achillea millefolium, Festuca rupicola, and 

Centaurea jacea) under the influence of the worst climate change scenario (i.e. RCP8.5) not 

only will not lose their land, but actually will increase their ranges. In addition, these plants are 

less sensitive to climate changes since because they still have the chance opportunity to migrate 
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to higher elevations and are thus less likely to face extinction. The absence of these plants in 

flat areas can be due to the fact that they have not had the opportunity to establish in these areas 

because they mainly are urban and agricultural land. In the event of a change in local and 

regional policies, and as the reduction of agricultural land and conversion to grassland, we will 

likely see the presence of these plants in such areas.  

 

 
Figure 6. Predicted environmental suitability maps for C. jacea using six predictor algorithms. See 

Fig. 5 for more details 

      

     Although most models used in this study represented the predictions well, there are some 

uncertainties in predictions of plant species. First, all the models are sensitive to the qualities 

and quantities of the predictor and response variables. Although most of the factors used in this 

study demonstrated good predictive abilities for the projections of the species suitable habitats, 

these species were likely to be affected by other factors, the impacts of which were neglected 

in this study. However, to reduce uncertainties in this research, a combination of environmental 

and climate variables was utilized to display a better performance compared with those using 

only climate variables (Barbet-Massin et al., 2012).  

     Second, the validity of adequate information on species used to run niche models is 

contingent upon the potential biases in the availability of adequate information on the presence 

or absence of species. Several studies have shown that if absence data is collected along with 

presence data, niche models would be strengthened and the results could be closer to reality 

(Wiens et al., 2009). In the current study, the true absence data of the species was not available. 

Collecting species data during the growing season and performing replications within several 

successive years, like what was done in this study, can significantly enhance the quality of the 

observed data (Wiens et al., 2009).   
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Figure 7. Predicted environmental suitability maps for A. millefolium using six predictor algorithms. 

See Fig. 5 for more details 

 

     All in all, the accuracy of the results obtained from the GAM model show that, at least at a 

regional level, informative suitable habitat maps for species can be produced. These can provide 

key information about the environmental tolerance of the studied plants that can be used to 

protect susceptible habitats, such as the semi-natural grasslands in Germany, from future 

invasion and the effect of climate change. 
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