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Abstract 

Most real-time speech signals are frequently disrupted by noise such as traffic, babbling, and 

background noises, among other things. The goal of speech denoising is to extract the clean 

speech signal from as many distorted components as possible. For speech denoising, many 

researchers worked on sparse representation and dictionary learning algorithms. These 

algorithms, however, have many disadvantages, including being overcomplete, 

computationally expensive, and susceptible to orthogonality restrictions, as well as a lack of 

arithmetic precision due to the usage of double-precision. We propose a greedy technique for 

dictionary learning with sparse representation to overcome these concerns. In this technique, 

the input signal's singular value decomposition is used to exploit orthogonality, and here the 

ℓ1-ℓ2 norm is employed to obtain sparsity to learn the dictionary. It improves dictionary 

learning by overcoming the orthogonality constraint, the three-sigma rule-based number of 

iterations, and the overcomplete nature. And this technique has resulted in improved 

performance as well as reduced computing complexity. With a bit-precision of Q7 fixed-point 

arithmetic, this approach is also used in resource-constrained embedded systems, and the 

performance is considerably better than other algorithms. The greedy approach outperforms 

the other two in terms of SNR, Short-Time Objective Intelligibility, and computing time. 
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Introduction 

The explosive amounts of massive data became the norm of the modern-day in many 

engineering disciplines and scientific areas. And this became a daunting challenge for 

computation as well as learning. To rise to this challenge, Sparse Dictionary Learning (SDL) 

framework provides a potential for representation learning by exploiting the consecration of 

dimensionality. Real data tends to lie in or near some low-dimensional subspaces or 

manifolds, even though the ambient dimension is often extremely large (Wang et al., 2020). 

The data matrix is given as ‘Y’ where Y ∈ R^nxp containing ‘n’ by ‘p’ samples and the aim is 

to find the dictionary D ∈ R^nxm and its associated sparse representation ‘W’ where W ∈ 

R^mxp, and the corresponding equation satisfying is given in equation (1) as  

Y=D*W                                                                         (1) 

The matrix data ‘Y’ represents a wide variety of signals like audio, images, genetics, etc., 

applications (Zhai et al., 2020), and the SDL is applied in neuroscience, image processing, 

audio or speech processing, etc.  

Sparse representation or sparse coding is representing a signal as a linear combination of 

elements/atoms a few, from the dictionary matrix containing overcomplete atoms. The sparse 

coefficient vector contains the useful atoms obtained from the dictionary to linearly combined 

with the original signal. The value of each access of the coefficient matrix is read as a weight 

that defines the linear combination fraction of each chosen atom (Tang et al., 2021). The two-

stage sparse algorithm is proposed by (Aharon et al., 2006), the sparse coding step is said to 

be the first stage and is based on the pursuit method. The second stage is a dictionary update 

step in which at an instant each column updation of the dictionary is done.  Later, methods 

related to dictionary learning were online-based adaptive learning algorithms. The Greedy 

Adaptive Dictionary (GAD) transform takes a similar approach, except that the atoms with 

the highest ℓ2-norm are removed first, and thus the algorithm produces signal approximations 

strongly as the number of atoms is reduced (Jafari & Plumbley, 2011). The sparse recovery is 

proposed by (Rubinstein et al., 2008) and it uses the orthogonal matching pursuit method, 

later an adaptive recovery algorithm is proposed (Beheshti et al., 2018). An offline and 

online-based K-means Singular Value Decomposition (KSVD) dictionary learning and the 

recovery algorithm for speech denoising using fixed-point arithmetic is presented in (Srinivas 

et al., 2020) using Orthogonal Matching Pursuit (OMP). The dictionary algorithms are 

analyzed (Srinivas et al., 2019), and in the variants of Singular Value Decomposition (SVD) 

like KSVD, Label Consistency-KSVD (LC-KSVD), and Rotate-KSVD (R-SVD) it is found 

that the best learning method is KSVD for metrics like Signal to Noise Ratio (SNR).  

The ℓ4-norm trait has long been recognized and employed in the search for (orthonormal) 

functions having similar properties. The ‘highest weight’ function maximizes the ℓ4-norm 

locally. It is the ‘most concentrated’ in measure of all the Laplacian eigenfunctions on the 

sphere. “Matching, Stretching, and Projection” also called ℓ4-norm is used for dictionary 

learning (Yuexiang Zhai et al., 2020; Zhai et al., 2020). 
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The main contribution of the work is speech enhancement using the ℓ1-ℓ2 norm 

approach, resulting in a sparsity augmented dictionary. Further, it can improve signal 

reconstruction significantly. It also reduced the computational time to learn the dictionary 

with sparse-based techniques. It is extended to fixed-point arithmetic and with this fixed-point 

Online dictionary learning, the memory utilization is reduced and also the load on the 

processor due to its non-overcomplete nature. We compared the existing techniques with the 

proposed using the metrics like the signal-to-noise ratio, peak signal-to-noise ratio, Short-

Time Objective Intelligibility, and Improve Signal-to-noise ratio and found that the proposed 

algorithm gave better results. 

The organization of the paper is as follows in Section 2, the speech denoising methods are 

introduced, and the greedy dictionary learning algorithm is elaborated in Section 3.  In 

Section 4, experiments are conducted and presented with results and in Section 5 the 

conclusions are made. 

Literature Review   

The potential steps involved in Speech denoising are dictionary learning and sparse recovery. 

When a signal is transformable then such signal is sparse and it is possible to learn a 

dictionary, a wavelet or a cosine transform for example can be chosen as such source. An 

initial dictionary is chosen in a random or transform domain and the K-SVD algorithm 

(Rubinstein et al., 2008) is used to train this initial dictionary. The learned dictionary is used 

in speech enhancement. ‘D0’ is the initial dictionary and learned to form an overcomplete 

dictionary in ‘k’ iterations. The dictionary ‘D’ and the sparse representation 'Г’ are 

simultaneously learned using KSVD and OMP algorithms, using the sensed input signal ‘X’. 

By ℓ2-norm minimization of (X-D*Г) as revealed in equation (2), for every i’th iteration the 

dictionary ‘Di’ is learned along with the sparse representation matrix 'Гi’.  

        ||      ||
 
              ‖    ‖                                                        (2) 

The column by column is considered to train the dictionary by using the KSVD 

algorithm. The signal ‘X’ columns are represented given the initial or the current dictionary 

sparsely to evaluate ‘Г’, the sparse representation matrix, and then the dictionary atoms are 

constructed given the generated sparse matrix. At each step, the cost function is optimized 

atom by atom while maintaining the sparse representation for each atom. The column vector 

in the sparse matrix representation ‘Г’ will have elements based on the sparsity ‘K' 

requirement. The dictionary is built column by column after the sparse matrix is obtained. The 

indices ‘I’ represent the non-zero items received from the sparse matrix and are utilized to 

find the error ‘E’. The indices for ‘I’ are derived from the input signal ‘X’, which employs the 

jth atom, and the updating is accomplished by maximizing the cost function as given in 

equation (3) 

 ||       || 
 
                (3) 
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In ‘ГI’ over both the atom and its associated row coefficient. The problem resulting is a 

simple approximation task given in equation (4). 

{    }  
      

   
 ||     ||

 

 
   Subject To  || ||                               (4) 

where ||   ∑            ||  is error matrix excluding the jth atom, the atom of ‘d’ is 

updated, and gT is the updated coefficient of ‘ГI’. A Singular Value Decomposition is used to 

address the problem. 

Greedy adaptive dictionary (GAD) learning (Jafari & Plumbley, 2011) is based on 

orthogonal transform. The sparsity index of a vector is defined as the ratio of ℓ1-norm and ℓ2-

norm of the vector or signal ‘X’. The smaller the value of this index the vector is sparser. The 

dictionary is updated by extracting the atoms from the signal or vector ‘X’. At each iteration, 

the residual matrix changes concerning the vector corresponding to the pth column of Rp. 

Initially, the residue is initialized to ‘X’. The dictionary is constructed by selecting the 

residual vector   
 
 with the lowest sparsity index (Bai et al., 2019; Chi et al., 2019; Geng & 

Wright, 2014; Huang et al., 2020; Ron Rubinstein, Alfred M. Bruckstein, 2010). Analytical 

and numerical examples introduced sequentially in convex algorithms illustrate that the ratio 

of ℓ1/ℓ2 penalty when computed produces both stable and sparse solutions (Repetti et al., 

2015; Yin et al., 2014).  The residual column of Rp with the lowest ℓ1 to ℓ2 norm ratio is 

given as equation (5) 

          
    

 {∥∥  
 
∥∥
 
 ∥∥  

 
∥∥
 
}                                 (5) 

And the p-th atom is normalized  ̂  
 

 as given in equation (6) 

    ̂  
 

 ∥∥ ̂  
 

∥∥
 
             (6) 

And the new residual is calculated from equation (7) and once it is calculated the ‘pth’ 

column is made dummy to reduce further processing. 

  
   

   
 
   ⟨     

 
⟩ for all columns k                               (7) 

Where,  ̂     is the speech signal approximation given as x(t) obtained at the pth iteration 

from equation (8) 

 
 ⏜                                                   (8) 

The framing process is reversed and     is the learned dictionary iteratively.  

Zhai et al. (Yuexiang Zhai et al., 2020) proposed a global strategy in the complete 

dictionary learning setting, which presents a formulation that can efficiently recover the 

sparse signal matrix ‘X’ once and for all known as Matching, Stretching, and Projection (MSP 

or ℓ4 -norm). An orthogonal dictionary is efficiently learned solving via optimization using ℓ4 

-norm given in equation (9) over the orthogonal group        entirely. 
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 ∥   ∥ 
    subject to   ∈                                      (9) 

where the sum of  th  powers are the ℓ4 -norm of a matrix means:   ∈      ∥  ∥ 
   

∑        
   Equation (10) shows the: 

   
    

 ∥  ∥ 
    subject to        ∈                                                         (10) 

where take full advantage of the ℓ4-norm of     promotes (Zhai et al., 2020) "sparsity"  or 

"spikiness" (over a sphere).  The sparsest points can be seen on the unit ℓ2-sphere. Equation 

(11) and equation (12) indicate the 4th norm of the dictionary and the random measurement 

   . 

            
    

            (11) 

  ∥∥   ∥∥ 
        

    
                     (12) 

The singular value decomposition of the     is obtained to get the  

                                      (13) 

Project      onto orthogonal group 

                                       (14) 

There are two critical issues involved in the implementation of speech enhancement using 

an embedded system and they are time and resources. One such resource is memory i.e., 

ROM. So, an Offline quantized learned dictionary is introduced to reduce memory utilization 

and it also reduces the computational load on the processor or microcontroller & time 

consumption. The quantized offline dictionary learning supports the fixed-point arithmetic as 

given in equation (15). As most embedded systems like hearing aids use fixed-point 

arithmetic so, a fixed-point offline KSVD dictionary learning is implemented (Srinivas et al., 

2020). 

Arithmetic designs with lower bit depth decrease the memory usage and the computation 

are also faster and are known that some controllers don’t support floating-point arithmetic. 

The decomposition of the matrix is done by altering the double-precision floating-point 

variables (x) to the integer variables       with ‘Qb’ format in which ‘b’ is the target bit-

precision shown in equation (15) and the matrix is updated until the error reduces.  

      
(             )

 
                                                                                           (15)            

Where, Qmax = 2b – 1, L = 2b and b = Target bit precision. This is used for quantization. 

The Batch-Orthogonal Matching Pursuit (OMP) (Elvira et al., 2021; Rubinstein et al., 

2008) algorithm is intended to represent a large number of sensed signals sparsely. The 

progressive Cholesky is used to minimize the amount of work required when inverting a 
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matrix. In each step, the greedy OMP algorithm chooses an atom that is highly associated 

with the current residue. 

To compute the residue Once a strongly correlated atom has been chosen, the residue is 

computed by projecting orthogonally on that atom. The greedy step is performed on kth 

column as  ̅              {|  |}, where         with D as the dictionary and X as the 

input signal the sparsity of the signal and the orthogonalization are performed using the 

Cholesky factorization (Rubinstein et al., 2008; Zhang et al., 2020). The equation (16) of 

Cholesky factorization i.e.,             ∈                 is given as  

   (
   
  

)  , with 

   (
   

  √     
), where                                                                           (16) 

The other part of the OMP involves using fixed-point arithmetic in the Cholesky 

decomposition. The sparse representation calculations using the Cholesky factorization, 

instead of double-precision as needed by (Aharon et al., 2006) and (Rubinstein et al., 2008) 

are implemented in fixed-point arithmetic (Srinivas et al., 2020).  

In this paper, an “Online Greedy Sparse” Dictionary Learning algorithm is proposed 

which is fast and effective. It takes less computational time and resources when compared to 

the sparse KSVD dictionary learning algorithm. Here dictionary learning is applied using the 

double-precision floating-point and also using fixed-point arithmetic. The fixed-point 

arithmetic is based on quantization introduced into the algorithms i.e., in both learning and 

recovery are proposed in a way that, can be potentially used in real-time processing 

applications. With simply integer Arithmetic and Logical Units, fixed-point arithmetic can be 

achieved in hardware (ALUs). And Section 3 describes the proposed greedy algorithm. 

Online SVD Greedy Dictionary Learning 

The invertibility of a matrix is convenient if the matrix is orthogonal. If the matrices are 

orthogonal (AAT = 1), computing the inverse is as simple as using the matrix transpose. 

Under the Bernoulli-Gaussian assumption, the problem of learning an arbitrary complete 

dictionary can be reduced to that of learning an orthogonal dictionary. So, Singular Value 

Decomposition (SVD) is used here to obtain orthogonal matrices. So an online SVD Greedy 

dictionary learning algorithm is proposed in which the SVD is performed before the learning 

process.   

                      (17) 

The residue is taken as the product of the most significant value of   singular values and 

the left and right orthonormal eigenvectors as shown in equation (18). 

                      (18) 
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The input noisy speech signal is formed as frames and it is decomposed into eigenvectors 

by using SVD. As the Singular Value Decomposition gives orthonormal columns i.e., left and 

right orthonormal eigenvectors, which is used as Residue. This Residue is used to formulate 

the Dictionary. This decomposed signal has now the basis vector orthogonal as shown in the 

Algorithm.   

Algorithm -- SVD Greedy Algorithm 

1. Input: Signal - X, Initial dictionary-D. 

2. Output: Dictionary-D. 

3. Initialize: Set D: = [ ] 

4. Find the SVD of X. 

5. From the Eigenvectors obtain the Residue - R. 

6. Find the size of columns (col) of the R. 

7. for length 1 to col repeat 

8. Using the lowest ℓ1 - ℓ2 norm the residual column of R
p
: 

9.          
    

 { ∥∥  
 
∥∥
 
   ∥∥  

 
∥∥
 
 } 

10. Set the p
th

 atom as the normalized  ̂  
 

 

11.     ̂  
  ∥∥ ̂  

 
∥∥
 
 

12. Add to the dictionary: 

13.    [       ]         {  } 
14. Compute the new residual  

15.   
      

    ⟨     
 ⟩ for all columns k 

16.   
  [ ] 

17. End  
  

The dictionary is learned from each column of the residue by the difference of ℓ1-norm 

and ℓ2-norm as in equation (19). The ℓ1- ℓ2-norm produces a sparse solution of a signal. 

residual column of Rp with lowest ℓ1 - ℓ2 norm: 

         
    

 { ∥∥  
 
∥∥
 
   ∥∥  

 
∥∥
 
 }                                      (19) 

The residue ‘R’ is obtained in each iteration at the ‘p
th

’ column from 

 ̅                                                 (20) 

where,     is the learned dictionary from equation 13 of the algorithm. The new residue is 

obtained by subtracting the prior residue with the  ̅ using equation (20) and thereby the 

residue is minimized for each column. The residue is updated and the ‘pth’ atom once learned 

is removed from the columns during further processing to reduce the computational 

complexity. The remaining columns are considered in calculating the ℓ1- ℓ2-norm and the 

minimum value column is taken to update the dictionary.  
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Results and Discussion 

The KSVD-based dictionary learning results are compared to that of our algorithm. Table.1 

shows the results with respective the signal to noise ratio (SNR) and other metrics in which 

the input noise is street noise of 0dB and the clean speech signal remains “The birch canoe 

slid on the smooth planks” called as “sp01” with the sampling rate of the signals 8KHz. Here 

two methods are compared concerning both floating-point and fixed-point forms. The noisy 

speech corpus (NOIZEUS) was used for evaluating the algorithms (Hu & Loizou, 2007). The 

enhanced speech signal was obtained by using SVD greedy dictionary algorithm (SVD-GDL) 

and compared to the KSVD algorithm and GAD algorithm for a street noise of 0dB. The 

OMP algorithm is used for sparse recovery. The SVD greedy algorithm with OMP recovery 

gave a better SNR (Signal to Noise Ratio).  

The computational complexity of the KSVD algorithm is running the iterations for K 

columns and with SVD having O(NK2max), so in total having O(NK3max). In the GAD 

algorithm, the computational complexity is over the signal length ‘n’, based on the difference 

between ℓ1 to ℓ2 norm and by ‘K’ maximum columns, so the computation is given by 

O(n2Kmax). In the MSP algorithm, with SVD having O(NK2max) computational complexity 

and is iterated for ‘p’ times then the overall computational complexity will be O(pNK2max). 

Now, for the proposed greedy algorithm, the computational complexity is with one-time SVD 

and with ‘N’ columns iterated for ‘Kmax’ terms giving rise to O(NK2max) + O(N2Kmax).  

 

Table 1 . Metrics Comparison for Sp01 Signal - 0dB Noise 

Sp04 Signal - street Noise – 0dB 

Method 
SNR 

(dB) 

PSNR 

(dB) 

MSE 

(10^-6) 

MAE 

(10^-3) 

Online Floating-Point GAD 1.67 19.21 1366 28.69 

Online Floating-Point Sparse KSVD 4.53 24.41 412 12.15 

Online L4 – MSP Dictionary Learning 5.45 25.30 336 10.90 

Online SVD Greedy Dictionary Learning 

(SVD-GDL) 
5.60 25.50 323 10.70 

 

Table 2 . Metrics Comparison for Sp01 Signal - 0dB Noise – Fixed-Point 

Sp04 Signal - street Noise – 5dB 

Method 
SNR 

(dB) 

PSNR 

(dB) 

MSE 

(10^-6) 

MAE 

(10^-3) 

Online Greedy Adaptive Dictionary Learning 

– with 8-bit fixed-point 
1.64 19.13 1326 28.69 

Online Sparse KSVD Learned Dictionary – 

with 8-bit fixed-point 
4.51 24.34 419 12.23 

Online L4 – MSP Dictionary Learning 

– with 8-bit fixed-point 
5.40 25.28 337 10.90 

Online SVD Greedy Dictionary Learning 

(SVD-GDL) – with 8-bit fixed-point 
5.58 25.40 327 10.73 
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Table 3 . Comparison of Computational Time 

Method Time Taken 

Online Floating-Point GAD 60 ms 

Online Floating-Point Sparse KSVD 8 sec 

L4 – MSP Dictionary Learning 100 ms 

Online SVD Greedy Dictionary Learning (SVD-GDL) 30 ms 
 

Table 4 . Comparison Speech Quality & Intelligibility 

Method STOI PESQ ISNR 

Online Floating-Point GAD 0.401 1.04 1.000 

Online Floating-Point Sparse KSVD 0.581 1.19 5.197 

L4 – MSP Dictionary Learning 0.586 1.42 6.128 

Online SVD Greedy Dictionary Learning (SVD-GDL) 0.589 1.44 6.262 

 

Fig.1. a. Speech Clean Signal (left), b. Speech Noisy Signal (right) 

 

Fig. 2. Denoised using sparse KSVD Speech Signals – a. Online & Floating-point (left), b. Online 

Fixed-point with 8-bit (right) 
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Fig. 3. Denoised using GAD Speech Signals – a. Fixed-point 8-bit (left), b. Online & Floating-point 

(right) 

 

Fig. 4. Denoised using MSP or L4 Speech Signals – a. Fixed-point 8-bit (left), b. Online & Floating-

point (right) 

Fig. 5 –Denoised using SVD-Greedy Speech Signals – a. Fixed-point 8-bit (left), b. Online & 

Floating-point (right) 
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Fig. 1 (a) is a clean speech signal and Fig. 1 (b) is a noisy speech signal with a street noise 

of 0dB at a sampling frequency of 8KHz. Fig. 2 (a) is denoised speech signals obtained after 

using a sparse KSVD-based Online dictionary learning algorithm and Fig. 2 (b) is denoised 

speech signals obtained after using a sparse KSVD-based 8-bit fixed-point dictionary learning 

algorithm. Fig. 3 (a) is denoised speech signals obtained after using a GAD-based Online 

dictionary learning algorithm and Fig. 3 (b) is denoised speech signals obtained after using an 

online GAD 8-bit fixed-point dictionary learning algorithm. Fig. 4 (a) is obtained after 

processing using 8-bit fixed-point MSP -based dictionary learning and Fig. 4 (b) is obtained 

after processing using MSP-based dictionary learning. Fig. 5 is proposed method i.e., (a) is 

obtained after processing using 8-bit fixed-point SVD-Greedy-based dictionary learning and 

Fig. 5 (b) is obtained after processing using SVD-GDL-based dictionary learning. 

In the resource-constrained embedded system also, the greedy algorithm when compared 

to the existing algorithms have an improved SNR for bit-precision of 8-bit. The fixed-point 

KSVD is approximately 1dB less than the online sparse KSVD and the online GAD algorithm 

with fixed-point is further less as shown in Tables 1 and 2. The online SVD greedy algorithm 

is slightly compared to that of the online sparse KSVD, GAD & MSP algorithms and the 

metrics show that the performance is better. Table.3 shows the computational time of 

dictionary learning algorithms, and it shows that our algorithm took less time when compared 

to existing algorithms when run on an Intel I7, 2.8GHz processor with 16GB RAM. The 

speech quality & intelligibility of denoised speech signal using the proposed & existing 

methods are shown in Table 4. The metrics used in Table 4 are perceptual quality measured 

by PESQ, Improved Signal to noise ratio (ISNR) and short-time objective intelligibility 

(STOI) which indicate the proposed is better. 

 Conclusion 

In this paper, the online greedy algorithm is compared with the existing dictionary learning 

algorithms and the results show that our algorithm is performing better. The proposed 

algorithm shows that a complete sparsifying dictionary is learned effectively and efficiently in 

the enhancement of speech signals. The existing algorithms are computationally complex but 

the online greedy dictionary learning algorithm is less computationally complex. The fixed-

point arithmetic for the resource-constrained devices, the online SVD greedy algorithm gave 

better performance when compared to the existing ones. Overall, dictionary learning using the 

proposed method provided better enhancement when compared to the existing algorithms. 
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