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INTRODUCTION

Human activities and industrialization have considerably increased the numbers of pollutant 
sources in water, soil, air and specially in groundwater. Many of them are subject of studies due 
to their importance or the damage they can cause to living organisms. Hence there is a need 
to provide fast contaminant remediation and quality monitoring of the groundwater system. 
The transport of a solute in porous media is traditionally modeled by the advection-dispersion 
equation (ADE).  The ADE can be solved numerically or analytically. Analytical solutions are 
still pursued by many scientists because they are relatively transparent with respect to model 
inputs and outputs, and they can provide better physical insights into the problems (Park & 
Zhan, 2001).  
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This study presents a new approach to solve the one-dimensional solute transport equa-
tion with variable coefficients and two input sources in a finite porous media. The me-
dium is divided into m-layers porous media with constant averages coefficients in each 
transport problem. The transport equations in layer i-1 and i are coupled by imposing 
the continuity of solute concentration and the dispersive flux at the interfaces of the 
layers. Unknown functions representing the dispersive flux at the interfaces between 
adjacent layers are introduced allowing the multilayer problem to be solved separately 
on each layer in the Laplace domain before being numerical inverted back to the time 
domain. The obtained solution was compared with the Generalized Integral Transform 
Technique (GITT) and numerical solutions for some problems of solute transport with 
variables coefficients in porous medium present in the literature. The results show a 
good agreement between both solutions for each of the studied problem. An example 
of application considering an advective-dispersive transport problem with a sinusoidal 
time-dependent emitting rate at the boundary was study in order to illustrate the effect 
of sinusoidal frequency on solute concentration. 
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Analytical solutions of ADE with variable coefficients in semi-infinite porous media abound 
recent years in the literature (Kumar et al., 2010; Jaiswal et al., 2011; Djordjevich & Savovic, 
2013; Singh et al., 2015; Sanskrityay et al., 2016; Das et al., 2017; Sanskrityay et al., 2018; Yadav 
& Kumar, 2018; Thakur et al., 2019; Chaudhary et al., 2020; Chaudhary & Sink, 2020). The 
solutions are obtained using change of variables and techniques such as the Laplace transform, 
Green function method. Alternatively, literature contains several analytical solutions of ADEs 
in finite porous media with constants or variables coefficients. Liu et al. (2000) presented how 
to implement the GITT to solve the one-dimensional (1-D) ADE in heterogeneous porous 
media with source/sink term, coupled with either linear or nonlinear sorption and decay. The 
GITT coupled with the LTT were used by Chen & Liu (2011) to solve analytically a 1-D ADE 
in a finite spatial domain with an arbitrary time-dependent inlet boundary condition. For a 
finite spatial domain, the 1-D ADE considering the sorption and desorption of solute, with 
arbitrary space dependent coefficients was solved analytically using the GITT (Skaggs et al., 
2007). Pérez Guerrero et al. (2009) presented a new analytical method to solve a 3-D ADE 
in a finite domain with time varying boundary condition for both transient and steady-state 
regimes using change of variables in combination with the Classic Integral Transform technique 
(CITT). Pérez Guerrero & Skaggs (2010) presented a general analytical solution for linear 1-D 
solute transport in heterogeneous porous media. They employed the integrating factor to obtain 
a transport equation that has a self-adjoint differential operator, and the solution was found 
using the GITT.  Chen et al. (2011) presented an analytical solution of two-dimensional ADE in 
cylindrical coordinates using a combination of the second kind finite transform method and the 
GITT. Recently, Bharati et al. (2017); Bharati et al. (2018) and Bharati et al. (2019) presented an 
analytical solution of solute transport with distance depending coefficients without source term 
using the GITT with a new regular Sturm-Liuville problem (SLP) with a self-adjoint operator to 
derive analytical solutions in a finite domain. Although the studies proposed novel approaches 
to solve the ADE, they have some limitations and difficulties to be applied in complex problems.

   Analytical solutions for layer media are not left out on the literature. The LLT was used by 
Al-Niami & Rushton (1979) to obtain analytical solutions of solute transport in finite layered 
media with constant boundary conditions. Leij et al. (1991) also applied the Laplace transform 
to derive an analytical solution to the 1-D ADE (without decay term) on a semi-infinite two-
layer medium with continuity of concentration and dispersive flux at the interfaces between 
adjacent layers. Moreover, Leij & van Genuchten (1995) used the LTT to obtain an approximate 
analytical solution to the 1-D ADE in semi-infinite two-layer medium. In each layer, solute 
concentration in the Laplace domain was approximated by an infinite series before the analytical 
inversion. Later Liu et al. (1998) used the GITT to solve a 1-D multi-layer for conservative 
solute transport problem in finite media with arbitrary time-varying inlet concentration. Their 
analytical solution   was found to be easily applied for an arbitrary number of layers. A few 
years later Pérez Guerrero et al. (2013) used the method of Liu et al. (1998) to obtain analytical 
solution of ADE for a non-conservative solute transport with constant inlet boundary. One of 
the difficulties encountered when applying the integral transform to this type of problem is the 
determination of the eigen-functions and the resolution of the transcendental equation.

To overcome the difficulties encountered when solving multilayer problem using the GITT, 
some authors have had the idea of reutilizing the Laplace transform while introducing unknown 
functions at each interface. The consequence of this approach is the transformation of the multi-
layer problem into several isolated layer problems which can be solve easily with the help of 
Laplace transform. Among these recent works, we can cite (Carr & Turner, 2016; Rodrigo & 
Worthy, 2016; Zimmerman et al., 2016; Carr, 2020; Carr, 2021). 

The aim of this study is to extend the work of Carr (2020) to solve the 1-D ADE of conservative 
and reactive solute with space and time dependent coefficients and two inputs localized at the 
boundaries of the domain. More precisely, we intend to show that the multilayer model can 
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reproduce the concentration profiles for this type of problems whatever the expressions of the 
coefficients in the ADE and the forms of the boundary and initial conditions. This will allow 
in the future to solve the ADE problems in a finite porous media with variables coefficients 
without many difficulties like those related to the transcendental equation. To our knowledge, 
no other study in the literature has ever been conducted on this issue. This approach is all the 
more innovative in that it circumvents the difficulties encountered when using conventional 
approaches and also overcomes their limitations.

MATERIALS AND METHODS

In this paper, we consider a 1-D pollutant transport problem in space and time dependent 
transport velocity and dispersion coefficient in heterogeneous structure. The mathematical 
formulation of the ADE for solute transport in 1-D flow under linear equilibrium sorption can 
be written in general form as:

( ) ( , ) ( , ) ( ) ( , )
C C

R x D x t v x t C x C x t
t x x

µ γ
∂ ∂ ∂

= − − +
∂ ∂ ∂

 
  

                                                                                     (1)

which describes processes of advection, dispersion, equilibrium sorption, and decay. In Eq. 
(1), ( )R x  is the linear retardation factor, ( , )C x t  3[ ]ML− is the aqueous solute concentration 
of the dispersing pollutant mass at a position [ ]x L  of the medium and at a time [ ]t T , ( )xµ  
is the first order decay rate per volume of aqueous solution under linear sorption 1[ ]T − ,  the 
non-homogeneous term ( , )x tγ represents  an arbitrary space and time variable  zero-order 
production. The left-hand side of Eq. (1) represents change in solute concentration in liquid with 
time in linear equilibrium sorption. The right-hand side of the Eq. (1) represents the influence 
of the dispersion on the solute concentration distribution by the first term and the change of the 
solute concentration due to advective solute transport by the second term.  The third term of 
the right-hand represents the first-order decay of solute in the medium. The fifth term represent 
the zero-order production ( ( , ) 0)x tγ > or sink ( ( , ) 0)x tγ <  for solute which represents internal/
external production or sink of the solute in the medium. 

Two phenomena are responsible to solute spreading, the mechanical dispersion and the 
diffusion. Generally, both ( , )D x t and ( , )v x t  are assumed to be functions of space and time. 
The expression of each parameter depends on the properties of the geological formation.  For 
study, many theories are used for the spatio-temporal dependence of the velocity and dispersion 
coefficient (e.g. Scheidegger 1957; Rumer 1962; Freeze & Cherry 1979). The velocity and 
dispersion coefficient are expressed by single function on space and time-dependent as follow:

0 2 2( , ) ( ) ( )v x t v h x ptϕ=   ( )*
0 1 1( , ) ( ) ( )D x t D D h x ptτ ϕ= +                                                      	    (2)

                                                      
whereτ  is the tortuosity, 2 1

0[ ]D L T − , * 2 1[ ]D L T − and 1
0[ ]v LT −   are respectively constant 

mechanical dispersion coefficient, molecular diffusion coefficient and velocity in a steady flow 
domain through a homogeneous porous medium. 1( )h x  and 2 ( )h x  are the non-dimensional 
space dependent functions for velocity and dispersion, respectively. 1[ ]p T − is a coefficient 
whose dimension is inverse of the time variable, it represents the unsteady parameter. The 
unsteady functions 1( )ptϕ  and 2 ( )ptϕ   are expressions in non-dimensional variable ( )pt . P=0 
corresponds to the temporally independent parameters.  Generally, the expressions of unsteady 
functions are chosen such that 

                                        Pollution  Proof  Check 

Application of the Multilayer Analysis to Contaminant Transport along Porous 
Media Flow with Variable Coefficients and two-input Sources  

 
 

 Proof Corrections 

1. Page 224: in the place of ( )j ptϕ  please write ( )j ptϕ  in the phrase “Generally, the 

expressions of unsteady functions are chosen such that  ( ) 0j ptϕ =  for  0p = or 0t = .” 

2. Page 225: in the place of multi-layered analysis please put multi-layer analysis. Remove 
the “ed” termination.  

3. Page 227: in Eq. (18) please replace , 1( , 0) ;i j i i iC X f l X l−= ≤ ≤ by 

1( , 0) ;i i i iC X f l X l−= ≤ ≤ . 
4. Page 228: the line after Eq. (29) you have omitted N in the phrase  “where N is even, 

N  is the set of positive odd integers less than N …. 

5. Page 229 : the line after Eq. (32) please replace 0
iC  by 0

lC  “where 0
iC   is the uniform … 

the solute distribution in the solid phase.  

6. Page 230: Caption of Table 1is “Transport parameters, geometry and initial conditions for 

problem 1”, please remove “for five and two layers” . 

7.  Page 237: Over all, figures 7.c and 7.d also illustrate the amplitude of the periodic time 
dependent concentration is quickly attenuate in the case of  10.5 dayω −=  than 

10.25 dayω −= .  Replace the 10.5 dayω −= second by 10.25 dayω −= .  
8. Page 239 Apendix: Pleae remove (3) in the phrase after Eq. A4d “with each problem 

coupled together by imposing continuity of concentration at the interfaces between 
adjacent layers (3)   “ 
 

( ) 0i ptϕ =  for  0p = or 0t = . The former case represents the 
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proposed by Chen et al. (2017) and Kumar et al., (2019):

0( , ) ( ) ( )x t P x q tγ γ=                                                                                                                                      (3)

where 0γ  is the uniform zero-first order production coefficient 3 1[ ]ML T− − .  
Using Eqs. (2) and (3) in Eq. (1) leads to the following transport equation: 

0 1 0 2 0( ) ( )1 2( ) ( ) ( ) ( )   ( ) ( )x h x h x
C CR x D pt v pt C x C P x q tx xt

ϕ ϕ µ γ 
 
 

∂ ∂ ∂= − − +∂ ∂∂
                                                      (4)

            

The formulation of our problem to be complete by assuming a set of initial and boundary 
conditions. Initially, the porous medium is supposed to contain a background pollutant 
concentration with arbitrary distribution which can be expressed as a linear combination of 
some input contaminant concentration in liquid phase and solid phase, respectively. The initial 
concentration may be written in general form as:

(0, ) ( ) ( ) ( )l SC t f x f x f x= + =                                                                                                                         (5)

In this study, we consider the solute transport to be affected at the two ends of the domain (two 
pollutants sources). A general robin boundary condition with flexible input source distribution 
are taken into consideration at the porous medium. Thus, boundary conditions are written in 
general form as follow:

0 0 0
(0, )(0, ) ( ), 0C ta C t b g t t
x

∂
− = ≥

∂
                                                                                                      (6)

( , )( , ) ( ), 0L L L
C L ta C L t b g t t

x
∂

− = ≥
∂

                                                                                                          (7)

where [ ]L L  is the length of the porous medium. 
In the boundary conditions Equations (6) and (7), 0a , 0b , La  and Lb are constants and 0 ( )g t  

and ( )Lg t  are arbitrary specified functions of time with the subscripts 0 and L denoting the 
inlet ( 0x = ) and outlet ( x L= ), respectively (Figure 1). It is important to note that 0b  and Lb  
must be both nonnegative, at least one of 0a  or 0b  must be nonzero and at least one of La  and 

Lb  must be nonzero.
The multi-layer analysis is performed in the advection-dispersion transport problem with 

variable parameters formulated in Eqs. (4)-(7). The solution method begins with transforming 
the transport problem with variable coefficients into m-transports problems with time dependent 
coefficients. For this aim, the porous medium is divided into m-layers porous media partitioned 
as 0 1 2 10 ... m mx x x x x L−= < < < < < =  (Figure 1). The pollutant concentration in layer i is denoted 
by ( , )iC x t  ( 1,...,i m= ) where 1[ , ]i ix x x−∈  represents the distance from the inlet at 0x = . The 

 

Fig. 1. Partitioning of heterogeneous medium into m-layers media with constant coefficients. 

   

Fig. 1. Partitioning of heterogeneous medium into m-layers media with constant coefficients.
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governing solute transport equation in Eq. (4) may be expressed in the ith-layer as:

2

1 2 12( ) ( ) ( ),i i i
i i i i i i i i

C C C
R D pt v pt C x x

t x x
q t xϕ ϕ µ γ −

∂ ∂ ∂
= − − ≤ ≤

∂ ∂ ∂
+                                                                      (8)           

where the coefficients 2 1[ ]Di L T − , 1[ ]iv LT − , 1[ ]i Tµ −   and 3 1[ ]i ML Tγ − −  are the constant average 
value of  coefficient for in the layer i  (Moreira et al., 2006; Moreira et al., 2009;  Moreira et al., 
2010; Ema’a Ema’a et al., 2015), defined in general form by:

11

1 ( )
i

i

x

i
i i x

x dx
x x

η η
−−

=
− ∫                                                                                                                            (9)

The solute transport Eqs. (8) are subject to the following initial and boundary conditions in 
each layer: 

1( ,0) ;i i i iC x f x x x−= ≤ ≤                                                                                                                       (10)

1
0 1 0 0

(0, )(0, ) ( ), 0C ta C t b g t t
x

∂
− = ≥

∂
                                                                                                         (11)

(0, )(0, ) ( ), 0m
L m L L

C ta C t b g t t
x

∂
− = ≥

∂
                                                                                                (12)

where  
11

1 ( )
i

i

x

i
i i x

f f x dx
x x

−−

=
− ∫  

 In order to relate the concentration of layer i to that of layer i+1, we assume the continuity of 
the concentration and dispersive flux at the interfaces between adjacent layers:

1( , ) ( , )i i i iC x t C x t+=                                                                                                                                 (13)

1
1 1( , ) ( , )i i

i i i i i i
C CD x t D x t
x x

θ θ +
+ +

∂ ∂
=

∂ ∂
                                                                                                      (14)

Let us introduce a new space and time variables, X  and T , respectively, defined as Kumar 
et al. (2011):

2 2

1 1

( ) ( )
( ) ( )

pt ptX dx x
pt pt

ϕ ϕ
ϕ ϕ

= =∫                                                                                                                     (15)

2
2

1

( )
( )

ptT dt
pt

ϕ
ϕ

= ∫                                                                                                                                       (16)

Since 1( )ptϕ  and 2 ( )ptϕ  are dimensionless functions, T as the same dimension of that of 
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time variable t . Moreover, the selection criteria for ( )j ptϕ  verify that 0T =  at 0t = . So the 
nature of the initial condition does not change in the new time domain. The advection-diffusion 
problem in Eq. (8) reduces to one with constant coefficients which is:

2

12 ( )i i i
i i i i i i i i

C C C
R D v k C l X l

T X X
Tγ −

∂ ∂ ∂
= − − + ≤ ≤

∂ ∂ ∂
                                                                                  (17)

where 
2
2

1

( )
( )i i

ptk
pt

µ
ϕ
ϕ

=  

The conditions in Eqs. (11) - (15) may be written in terms of new independent variables as:
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                                                                                                                (18)

1
0 1 0 0

(0, )
(0, ) ( ), 0

C T
a C T b g T

X
T∂

− = >
∂

                                                                                                             (19)

(0, )
(0, ) ( ), 0m

L m L L
C T

a C T b g T
X

T∂
− = >

∂
                                                                                            (20)

1( , ) ( , )i i i iC l T C l T+=                                                                                                                                 (21)

1
1 1( , ) ( , )i i

i i i i i i
C C

D l T D l T
X X

θ θ +
+ +

∂ ∂
=

∂ ∂
                                                                                                          (22)

Following the generalized semi-analytical method for solving multilayer transport model 
proposed by Carr (2020) as detailed in Appendix A, the pollutant concentration in layer i in the 
Laplace domain can be expressed as:

1 1 0 1 1 1( , ) ( , ) ( ) ( , ) ( ) ( , ),C X s A X s G s B X s G s P X s= + +                                                                                     (23)

 
1( , ) ( , ) ( ) ( , ) ( ) ( , ), 2,..., 1i i i i i iC X s A X s G s B X s G s P X s i m−= + + = −                                              (24)

                                                

1( , ) ( , ) ( ) ( , ) ( ) ( , )m m m m L mC X s A X s G s B X s G s P X s−= + +                                                                         (25)

where the functions ( , )iP X s  , ( , )iA X s and ( , )iB X s  ( 1,...,i m= ) are defined in Table 1 of 
Carr (2020).

The determination of  unknow interface functions ( )iG s  ( 1,..., 1i m= − ) becomes possible by 
imposing continuity of concentration in the Laplace domain ( ( , )iC X s ) in each interface layers  
(Carr and Turner 2016; Rodrigo and Worthy 2016; Carr and March 2018, Carr 2020, Carr 2021): 

1( , ) ( , )i ii iC l s C l s+=                                                                                                                                   (26)

Substituting Eqs. (23)–(25) into the system of Eqs. (26), the result is a linear system which 
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can be expressed in matrix form as:

Ay = b                                                                                                                                                     (27)

where y is a column matrix with elements ( )iG s , elements of ( 1) ( 1)m m− × − tridiagonal 
matrix A ({ } ( 1) ( 1)m m

ija − × −∈ ) and ( 1)m − -length vector b  ( ( 1)m
ib −∈ )  ( 1,..., 1i m= − ), are 

given by: 

1,1 1 1 2 1( , ) ( , ),a B l s A l s= −
1,2 2 1( , ),a B l s= −

, 1 ( , ), 2,..., 2,i i i ia A l s i m− = = −

, 1( , ) ( , ), 2,..., 2,i i i i i ia B l s A l s i m+= − = −

, 1 1( , ), 2,..., 2,i i i ia B l s i m+ += = −

1, 2 1 1( , ),m m m ma A l s− − − −=

1, 1 1 1 1( , ) ( , ),m m m m m ma B l s A l s− − − − −= −

1 2 1 1 1 1 0( , ) ( , ) ( , ) ( ),ib P l s P l s A l s G s= − −

1( , ) ( , ), 2,..., 2,i i i i ib P l s P l s i m+= − = −

1 1 1 1 1( , ) ( , ) ( , ) ( ),m m m m m m m Lb P l s P l s B l s G s− − − − −= − −

The solution of solute concentration for ith layer− ( ( , )iC X T ) in the time is obtain using the 
inversion Laplace transform  ( , )iC X s  given by:

{ }1 1( , ) ( , ) e ( , )
2

st
i iiC X T L C X s C X s ds

iπ
−

Γ
= = ∫                                                                                     (28)

 

where Γ  represents a Hankel contour that begins 0i−∞ −  , winds around the origin and 
terminates at 0i−∞ +  (Trefethen et al. 2006). The integration of Equation (28) in the complex 
domain is obtained by introducing the complex variable z st= , and using residue calculus 
approach described by Trefethen (see Trefethen et  al. (2006) for full details) to numerically 
invert the Laplace transform:

{ }1 2( , ) ( , ) ( , )
N

i ii e k k
k

C X T L C X s R w C X s
T

−

∈

  = = −  
  
∑


                                                                                           (29)

where N is even,  is the set of positive odd integers less than N , /k ks z t= and kw , kz  ∈ ℂ are 
the residues and poles of the best (N, N) rational approximation to ez  on the negative real line. 
Both wk and zk are constants, which are independent of x and t and computed using a supplied 
MATLAB function (Trefethen et al. 2006, Fig 4.1). 



Tjock-Mbaga et al.229

 RESULTS AND DISCUSSION 
Validation of the multilayer model

We now demonstrate the capabilities of multilayer analysis to produce the correct results 
using tests cases problems selected in the literature.  The input boundaries conditions in each 
end of the domain can be a robin type or a Dirichlet type. There for, four combinations of input 
boundary are considered. A MATLAB code implementing our semi-analytical solution and 
producing the results in this section is an adaptation of MATLAB code download from githu 
b.com/elliotcarr /Carr2020a.

● Case 1: Dirichlet- Dirichlet (D-D) boundaries
For this combination of input boundary, the following advection dispersion problem in 

groundwater reservoir with steady flow is considered:

0 0 0(1 ) (1 ) exp( ( )) exp( )   x
C CnR D ax u ax C C x tx xt

µ β λγ 
 
 

∂ ∂ ∂= + − + − + − − −∂ ∂∂
                                        (30)

 obtained by setting 1( ) (1 )nh x ax= + , 2 ( ) (1 )h x ax= + , ( ) ( ) 11 2pt ptϕ ϕ= = , ( ) exp( )q t tλ= −
and ( ) exp( ( ))p x x β= − − .

The time-dependent linear equilibrium between the solute substance in the solid–liquid 
phase given by Sim & Chrysikopoulos (1996) and Singh & Das (2015) is considered for this 
problem:

dS Fk C=                                                                                                                                                (31) 

where F  represents the mass fraction of sorption particles where sorption is instantaneous, 
dK  is referred to as the distribution coefficient 3 1[ ]L M − . 

d bFK fR ρθ
η

= +  (Chaudhary et al., 2020) and  1[ ]a L− represents  the heterogeneity parameter, ( , )S x t
3[ ]ML− is the solid phase concentration, θ  is the volumetric water content, bρ is the bulk density 

of porous media 3ML−   , η  is the porosity of the porous media, l s b dFkµ µ µ ρ= +  ( lµ  and sµ  
are the first order decay rate of the liquid an solid phases concentration respectively 1[ ]T − ). 

 The expressions of groundwater velocity and the dispersion coefficient follow the dispersion 
theory according to which the dispersion is proportional to the nth-power of the space velocity 
( nD uα ) (Freeze & Cherry,  1979), where n  is considered as 1.0 , 1.5 , and 2.0 , respectively.

In this problem, if the solute distribution coefficient dK  is negligible (i.e. 0dK ≈ ), the 
retardation factor R becomes equal to water content θ . Since water content (θ ) is less than 1, 
so the retardation factor R becomes less than 1 for the case mentioned above, this indicates that 
only a fraction of liquid phase concentration participates in the transport mechanism.

For short special domain, Chaudhary et al. (2020) proposed to use exp( sec( ))xλ−  as 
distribution of background concentration in the liquid phase because, its decreasing rate is much 
slower than exponential and could well represent slow movement of groundwater. Therefore, 
the following initial condition is considered:

0(0, ) ( ) exp( sinh( )) s
l iC t f x C x Kλ= = − +                                                                                                (32)

where 0(0, ) ( ) exp( sinh( )) s
l iC t f x C x Kλ= = − +0 3[ ]iC ML−  is the uniform solute distribution in the liquid phase and 3[ ]s

iK ML−  is the 
solute distribution in the solid phase.

The input parameters values used are given by Singh & Kumari (2014), 0 0.01 /lC mg L=
, 0.01 /i

sK mg L= , 0 0.01 /u m year= , 2
0 0.01 /D m year= ,  * 20.002 /D m year= , 0.8f =

, 0.5F = 0.01dK = , 0.13 /s yearµ = , 0.0027 /l yearµ = , 0.5 /a m= . 3 mβ =  and the 
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uniform source term 0 0.02 /q mg L year= . The gravel and sandstone geological formations are 
considered here with average porosity η  and bulk density  as follows (Manger, 1963; Freeze 
& Cherry, 1979) : 0.3η =  (sandstone), 0.5  (gravel) ; 2.49bρ = (sandstone), 2.68  (gravel).  

The medium is divided into four layers and the constants average values are calculated for each 
coefficient with the formula in Eq. 10. The transport parameters in each layer, initial conditions 
and boundary conditions for each are provided in Tables 1 and 5. 

Figures 2 and 3 illustrate the comparison of pollutant concentration for the multilayer 
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Table 1. Transport parameters, geometry and initial conditions for problem 1 for five and two layers. 
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1  

1  
2  
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0.3   
0.5  
0.7  
1  
  

1 0.00224  
0.00264   
0.00296   
0.00336

0.0112  
0.0132   
0.0148   
0.0168

0.02332   
0.01813  
0.014841  
0.01158

0.4  
0.4   
0.4  
0.4  

0.0036788   
0.0036788   
0.0036789  
0.0036789

1  
2   
3  
4  

1.5  0.002374   
0.003034  
0.003602  
0.004358

0.0112  
0.0132  
0.0148  
0.0168

0.02332   
0.01813  
0.014841  
0.01158

0.4  
0.4  
0.4  
0.4   

0.0036788   
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0.0036789  
0.0036789

1  
2  
3   
4  

2  0.002518   
0.003489  
0.004385  
0.005654

0.0112  
0.0132  
0.0148  
0.0168

0.02332   
0.01813  
0.014841  
0.01158

0.4  
0.4   
0.4  
0.4  

0.0036788   
0.0036788   
0.0036789  
0.0036789

Table 1. Transport parameters, geometry and initial conditions for problem 1.
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Table 2. Transport parameters, geometry and initial conditions for problem 2. 
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0.720685  
0.747619  
0.791408  
0.8472546  
0.892804  
0.9216852  

0.6060  
0.6210  
0.6450  
0.6750  
0.6990  
0.7140 

0.6060  
0.6210  
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0.6750  
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1 
1 
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0  
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0.4  
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0  
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Table 2. Transport parameters, geometry and initial conditions for problem 2.
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Table 3. Transport parameters, geometry and initial conditions for problem 3. 
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0  
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0  
0  
0  

Table 3. Transport parameters, geometry and initial conditions for problem 3.
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Table 4. Transport parameters, geometry and initial conditions for example of application. 
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Table 4. Transport parameters, geometry and initial conditions for example of application.
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Table 5. Boundary values parameters for each problem. 
 

  

Problems 
0a  0b  La  Lb  0 ( )g t  ( )Lg t  

1  Dirichlet-Dirichlet 1 0  1 0  0 exp( 0.002 )C t  00.5 exp( 0.002 )C t  

2  Robin-Dirichlet 1v  1D  1 0  0C  00.5C  
     Dirichlet-Robin 1 0  mv  mD  0C  00.5C  

3    Robin-Robin  1v  1D  mv  mD  exp( )a bC C t   0.5[ exp( )]a bC C t   
   Example of application 

1v  1D  1 0  0 (1 sin( ))C t  00.25 (1 sin( ))C t  

Table 5. Boundary values parameters for each problem.

 

Fig. 2. Comparison of the multilayer solution and the GITT solution for problem 1, in sandstone 
geological formation, for different values of n. 

   

Fig. 2. Comparison of the multilayer solution and the GITT solution for problem 1, in sandstone geological for-
mation, for different values of n.
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solution and the GITT solution (Bharati et al., 2017; 2018; 2019). The solids lines represent the 
concentration for the multilayer solution and the circles symbols represent the concentration 
for the GIIT solution. The curves show that, for each value of n and both geological formations, 
the solute concentration in the reservoir at each time increases with traveling distance from 
approximate value of 1.0 /mg L  at 0x m=  to a maximum value of concentration, then 
decreases back to 0.5 /mg L  at the end of the domain. This build-up of concentration is due 
to the concentration effect of the additional source term in the reservoir that decreases with 
distance. The solute build-up depends on the geological formation and on the value of n, for a 
fixed time. The distance concerned by the solute build-up is very important due to the presence 
of two contaminant sources, each acting separately at the boundary of the reservoir. The 
comparison between the multilayer solution and the GITT solution show that, both solutions 
are in good agreement as shown by the higher value of maximum error between both solutions 
in Table 6.  

● Case 2: Robin- Dirichlet (R-D) or Dirichlet-Robin (D-R) boundaries
For this combination of inputs boundary, the following Problem of solute transport in 

groundwater with spatio-temporal dependent coefficients, without adsorption is considered:

0 0 )   (1 ) ( ) (1 ) (x
C CnD ax pt u ax pt Cx xt

ϕ ϕ 
 
 

∂ ∂ ∂= + − +∂ ∂∂
                                                                              (33)

 

Fig. 3.  Comparison of the multilayer solution and the GITT solution for problem 1, in gravel 
geological formation, for different values of n. 

   

Fig. 3.  Comparison of the multilayer solution and the GITT solution for problem 1, in gravel geological formation, 
for different values of n.
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corresponding to 1( ) (1 )nh x ax= + , 2 ( ) (1 )h x ax= + , ( ) ( ) ( ) exp( 0.01 )1 2pt pt pt tϕ ϕ ϕ= = = −  and 
1R = .  The same problem was studied by Bharati et al. (2018) in case of steady flow. For those 

choice of unsteady functions, X x=  and 100(1 exp( 0.01 ))T t= − − .
 This problem considers solute transport along porous media flow with spatial dispersivity in 

fractal & Euclidean framework.  For the illustration, only the fractal framework of dispersivity 
is considered ( 1.5n = ). Initially, the porous medium is considered solute free, the decay rate 
and zero order production are considered to be zero. We consider also two cases of problem 
studied by Bharati et al. (2018) concerning Peclet number greater than one and Peclet 
number less than one. Recall that the Peclet number is defined as follow 0

0

v LPe
D

= . For 1Pe >
, it represents advection dominated solute transport while for 1Pe <  it represents dispersion 
dominated solute transport. The input parameters used for this problem are (Bharati, 2018): 

10.2a km−= , 0 0.6 /v km year= , 2
0 0.71 /D km year=  (for Peclet number less than 1) and 

0 0.71 /u km year= , 2
0 0.6 /D km year= (for Peclet number greater than 1). 

The medium is divided into six layers and the constants average values are calculated for 
each coefficient with the formula in Eq. 10. The transport parameters for each layer are shown 
in Table 2 and the conditions in Table 5.  Figure 4 (a, b, c and d) compares the multilayer 
solution obtained for six layer and the MATLAB solver pdepe numerical solution for the 
original problem, for Robin-Dirichlet boundaries (a, b) and Dirichlet-Robin boundaries (c, d), 
respectively. The curves are obtained for two values of the Peclet number representing the two 
descriptions of transport mentioned above. The common values for Figures (4.a) and (4.c) are 

0 0.71 /v km year=  and 2
0 0.6 /D km year= and for Figures (4.b) and (4.d) 0 0.6 /u km year=

and 2
0 0.71 /D km year= . The curves illustrate that for the Robin-Dirichlet boundaries, 

6 
 

 
Table 6. Maximum errors. 

                                   
 Problem 1 

 
Sandstone Gravel 

1n   1.5n  2n  1n  1.5n   2n   
1t year  0.0038  0.0034  0.0028  0.0034  0.0032  0.0028  

2t years  0.0074  0.0068  0.0075  0.0067  0.0067  0.0083  

3t years  0.0119  0.0118  0.0125  0.0102  0.0108  0.0135  
4t years  0.0184  0.0179  0.0196  0.0153  0.0167  0.0204  

5t years  0.0342  0.0356  0.0364  0.0328  0.0352  0.0356  

Problem 2 

 (a) (b) (c) (d) 
0.05t day  0.008  0.0072  0.00302  0.0027  

0.1t day  0.00557  0.00554  0.0067  0.00183  

0.15t day  0.0083  0.0084  0.0083  0.00153  

0.25t day  0.0112  0.0106  0.0076  0.00201  

0.5t day  0.0124  0.0114  0.0054  0.00323  

Problem 3 

0.5t day  1t day  2t days  3t days  4t days  

0.0023  0.0082  0.0056 0.0032 0.0033  

Table 6. Maximum errors.
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the solute concentration decreases slightly with traveling distance from a value imposed by 
the boundary condition at 0x m=  to a minimum value of concentration, then increases to 
0.5 value at the end of the domain. While for the Dirichlet-Robin boundaries, the pollutant 
concentration decreases with traveling distance from a value of 1.0  at 0x m=  to a minimum 
value of concentration, then increases to a concentration value at the end of the domain given 
by the outlet input boundary. These pollutant concentration strengths in both boundaries 
combination is due to the presence of the two input sources localized at the boundaries of the 
domain. The curves also demonstrate that both solutions are in excellent agreement for each 
choice of the pairs of values 0u and 0D , as shown by the higher value of maximum error between 
both solutions in Table 6.  These results verify that the multilayer model reproduces well the 
original model in heterogeneous medium. 

● Case 3: Robin- Robin (R-R) boundaries
In this case, we consider the following steady state flow transport problem with space variable 

dispersion coefficient, velocity, decay coefficient and retardation factor studied by Liu et al. 
(2000):

( ) ( ) ( ) ( ) ( )
C C

R x D x v x C x C x
t x x

µ γ
∂ ∂ ∂

= − − +
∂ ∂ ∂

 
 
 

                                                                                           (34)

For this problem, the studied porous medium of length 20L cm=  has the following properties, 

 

Fig. 4. Comparison of the multilayer solution and the GITT solution for Problem 2. 

   

Fig. 4. Comparison of the multilayer solution and the GITT solution for Problem 2.
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( ) 2.4 0.04R x x= + , ( ) 14 0.2 /v x x cm d= − , 2( ) 10 0.1 /D x x cm d= − , 1( ) (0.1 0.01 )x x dayµ −= − +  
and ( ) 0.001 0.01x xγ = + .  A Robin type concentration with time variable input concentration 
are imposed at the boundaries ( 0, 0,

0, ( ) 0.6exp( )L L
L a bg t C C t= + − ). The parameters 0,L

aC  and 0,L
bC  

are chosen such that the input concentration must be equal to 1 at 0t =  at the inlet ( 0 0.4aC = and 
0 0.6bC = ) and 0.5 at the outlet ( 0.2L

aC = and 0.3L
bC = ).  A zero-initial pollutant concentration 

is assumed. The porous medium is divided into six layers, the parameters values obtained for 
each layer are shown in Table 3. The numerical solution using the MATLAB solver pdepe and the 
multilayer solution obtain six layers are compared in Fig. 5. It emerges for the curves that both 
solutions are in good agreement at all the time at all the positions. Thus, the multilayer is able 

 
Fig. 5. Comparison of the multilayer solution and the GITT solution for Problem 3. 

   

Fig. 5. Comparison of the multilayer solution and the GITT solution for Problem 3.

 

Fig. 6. Effect of unsteady parameter on solute concentration obtained with multilayer model. 

   

Fig. 6. Effect of unsteady parameter on solute concentration obtained with multilayer model.



Pollution 2023, 9(1): 222-242236

to reproduce the solute concentration in heterogeneous porous media for this type of problem. 
As illustrated in Figs. (2) and (3), the accuracy of the multilayer model depends to the 

observed time in the case of time dependent production term. Now we investigate the effect of 
unsteady parameter to the multilayer model.

Fig. 6 illustrates the effect of unsteady parameter on solute concentration pattern in case 1 
for a fractal dispersivity at 3t years= . For the illustration, the gravel geological formation is 
considered. The concentrations are plotted for four values of unsteady parameter ( 0.01p = , 0.05 , 
0.1and 10.2 yr− ). The figure elucidates that the concentration level at all the positions decreases 
with the increasing value of unsteady parameter for this type of time production function. We 
also observe that the accuracy of the multilayer model decreases with the increasing value of 
p . However, whatever the value of p , the RMSE remains in an acceptable zone such that the 

multilayer model can be used in the case of time dependent production term.

Example of application
An example of application that is rarely noted in the literature but haves many real world 

hydrological applications are discussed below. Special attention is paid to periodically time-
dependent boundary at the source. This example considers an advective-dispersive transport 
problem with a sinusoidal time-dependent emitting rate at the boundary 0, 0,( ) (1 sin( ))L Lg t C tω= +
. Where 1[ ]Tω − is the frequency of the sinusoidal boundary input. In this application we do not 
consider the zero-order production and initial distribution. Such example application can be 
used for the prediction of biochemical oxygen demand (BOD) concentration in groundwater 
with two input sources, resulting from waste leachate of periodical landfills discharge 
concentration. We consider a combination of Robin-Dirichlet boundaries.  Also, we consider a 
medium in which the dispersion coefficient is proportional to the velocity ( 1n = ). The following 
transport parameters are used for this application example (Chen et al., 2017) 1

0 1v m day−=
,  2 1

0 2D m day−= , 1 1a = , 0.005a m−= . The value of a  is chosen such that the groundwater 
velocity remains less than 12 m day− , which is the highest value of groundwater velocity (Bharati, 
2017). The medium is devised into six layers as shown in Table 4.   Fig. 7.a and 7.b depicts the 
temporal evolution of the spatial concentration profiles for frequency of the sinusoidal periodic 
input function 0.5ω = and 10.25 day−  respectively. For 10.5 dayω −= ,  ( )g t  has the maxima 
at 4 3t kω π π= − ,  inflection point (from positive to negative) at 4 2t kω π π= − , minima at 

4t kω π π= − , and inflection point (from negative to positive) at 4t kω π= , respectively. While, 
for 10.25 dayω −=   ( )g t  has the maxima at 8 6t kω π π= − ,  inflection point (from positive 
to negative) at 8 4t kω π π= − , minima at 8 2t kω π π= − , and inflection point (from negative 
to positive) at 8t kω π= , respectively . Figure 7.a clearly demonstrates that, the pollutant 
concentration exhibits four different strength corresponding to the four particulars points of 
the input function. Also, the periodic boundary input affects only the concentration profile near 
the inlet boundary. The periodic amplitudes of the concentration profile are quickly attenuated 
due to the heterogeneity of the medium causing a higher dispersion process which result is the 
mitigation of the concentration wave. 

Figure 7.b illustrate the pollutant concentration distribution profiles at the same time used in 
Figure 7.a. The curves shown that for the time corresponding to the particular points on input 
function i.e. ( 2tω π= , 4π , 6π  and 8π ), the concentration profiles are similar to those of 
Figure 7.a for corresponding times. But the pollutant concentration level at these times is higher 
for 10.25 dayω −=  in comparison to 10.5 dayω −= .  Each of the other time has its own pollute 
concentration distribution. However, the concentration wave mitigates far to the inlet boundary 
for 10.25 dayω −=  in comparison to 10.5 dayω −= .

Figures 7.c and 7.d show the concentration breakthrough curves at different locations 
for 10.5 dayω −=  and 10.25 dayω −= respectively. These curves clearly illustrate that for 
intermediate positions, the periodic time-dependent concentration wave only presents near 
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the inlet boundary for 10.5 dayω −= . While for 10.25 dayω −= , the periodic time-dependent 
concentration wave presents in each of intermediate positions. However, at the far end of 
the domain ( 60x m= ), the concentration for both values of ω presents the periodic time-
dependent concentration wave given by the input function at this point. Over all, figures 7.c 
and 7.d also illustrate the amplitude of the periodic time dependent concentration is quickly 
attenuate in the case of 10.5 dayω −=  than 10.5 dayω −= . 

In summarize, the frequency of the periodic boundary input at the inlet and the location 
influences the effect of the dispersion process on the propagation of the periodic concentration 
wave. But, the second input concentration at the outlet of the domain does not influence this 
process, it just influences the concentration pollutant level.  

CONCLUSION

In this paper, the multilayer model was applied to solve a 1-D ADE with variable coefficients 
under general initial and boundary conditions. The ADE with variable coefficients is transformed 
into a set of m-equations with time dependent coefficients, coupled by the continuity of the 
concentration and the flux in the interfaces of layer adjacent. After introducing novel space and 
time variables, analytical solution is obtained in each separately layer in the Laplace domain before 
being numerically inverted in the original time domain. Analytical solution for this hypothetical 
scenario, based on the assumption of two input sources localized at the boundary was verified 
with using three tests cases of advection-dispersion problems with combination of two type of 
input boundaries. The accuracy of the methodology used is checked by comparing the results 
from the derived semi-analytical solutions the with those predicted by the previous analytical 

 

Fig. 7. Pollutant concentration trend (a) and (b) and breakthrough curves (c) and (d) for 
biochemical oxygen demand (BOD) concentration in groundwater with two input sources 

involving a sinusoidal time-dependent emitting rate. 
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methods as the GITT and those predicted by using numerical solution. Results show that for 
the four combination of input boundary, the multilayer analysis reproduces perfectly the solute 
distribution for the original transport problem in heterogeneous media. It accomplishes the 
validation of the mathematical formulations and analytical procedures obtaining the solutions. 
This approach is innovative and is all the more interesting because it can solve complex ADE 
without any difficulties. The prediction of the method to BOD demand show that the frequency 
of the sinusoidal input distribution considerably affects the solute distribution pattern. Our 
derived solution is quite general in that it can be applied to problems with variabe coefficient 
involving an arbitrary time-varying boundary conditions. The obtained solution can be used as 
a preliminary tool for analytical analyses and may helpful to predict the pollutant concentration 
distribution in the real case of two input contaminants sources. In future works, the methodology 
will be extended to one-dimensional multispecies transport problem with variables coefficients.

Appendix : Analytical Solution of the multilayer transport problem in the Laplace domain
In order to solve the multilayer transport model Eqs. (12)–(16), the model is reformulated into 

m  isolated single-layer problems (Carr and Turner 2016; Rodrigo and Worthy 2016; Zimmerman 
et al. 2016, Carr 2020, Carr 2021). After, unknown functions of time, ( )( 1,..., 1)ig t i m= −  are 
introduce, to denote the following scalar multiple of the (negative) dispersive flux at the layer 
interfaces (Carr and Turner 2016; Rodrigo and Worthy 2016, Carr 2020, Carr 2021):

( ) ( , )i
i i i i

Cg T D l T
X

θ ∂
=

∂
                                                                                                                                 (A1) 

yields Eqs. (12)-(16)  for the multilayer transport to be written in the following equivalent 
model in each layer:

·	 First layer ( 1i = )

2
1 1 1

1 1 1 1 1 12 ( ), 0i
C C CR D v k C T X l
T X X

γ∂ ∂ ∂
= − − + ≤ ≤

∂ ∂ ∂
                                                                             (A2a)

1 1 1( , 0) ; 0C X T f X l= = < <                                                                                                                       (A2b)

1
0 1 0 0

( 0, )( 0, ) ( ), 0C X Ta C X T b g T T
X

∂ =
= − = ≥

∂
                                                                                       (A2c)

1 1
1 1 1

( , ) ( ), 0C X l tD g T T
X

θ ∂ =
= ≥

∂
                                                                                                         (A2d)    

·	 Intermediary layer ( 1,..., 1i i m= = − )

2

12 ( ),i i i
i i i i i i i i

C C CR D v k C X l X l
T X X

γ −

∂ ∂ ∂
= − − + ≤ ≤

∂ ∂ ∂
                                                                             (A3a)

1( , 0) ;i i i iC X T f l X l −= = < <                                                                                                                       (A3b)

1 1( , ) ( ), 0i
i i i i

CD X l T g T T
X

θ − −

∂
= = ≥

∂
                                                                                                    (A3c)
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( , ) ( ), 0i i
i i i

C X l TD g T T
X

θ ∂ =
= ≥

∂
                                                                                                         (A3d)    

·	 Last layer ( i m= )

2

12 ( ),m m m
m m m m m m m m

C C CR D v k C T l X l
T X X

γ −

∂ ∂ ∂
= − − + ≤ ≤

∂ ∂ ∂
                                                                         (A4a)

1( , 0) ;i i i iC X T f l X l −= = < <                                                                                                                       (A4b)

1 1( , ) ( ), 0m
m m m i

CD X l T g T T
X

θ − −

∂
= = ≥

∂
                                                                                                    (A4c)

( , ) ( , ) ( ), 0m
L L L

Ca C X L T b X L T g T T
X

∂
= + = = ≥

∂
                                                                                          (A4d)   

 with each problem coupled together by imposing continuity of concentration at the interfaces 
between adjacent layers (Carr and Turner 2016; Rodrigo and Worthy 2016; Carr and March 
2018, Carr 2020, Carr 2021).

Taking the Laplace transform of transport problem in each isolated single-layer Eqs. (A2a)-
(A2d), (A3a)-(A3d), (A4a)-(A4d) yield:

2
1 1

11 1 1 1 1 1 12 ( ) ( ), 0i
d C dCD v k sR C R f s X l
dX dX

γ− − + + + ≤ ≤                                                                              (A5a)

1
10 0 0

( 0, )( 0, ) ( )dC X sa C X s b G s
X
=

= − =
∂

                                                                                                   (A5b)

1 1
1 1 1

( , ) ( )dC X l sD G s
dX

θ =
=                                                                                                                       (A5c)   

2

12 ( ) ( ) ,i i
i ii i i i i i i i

d C dCD v k sR C s R f l X l
dX dX

γ −− − + + + ≤ ≤                                                                              (A6a)

1 1( , ) ( )i
i i i i

dCD X l s G s
dX

θ − −= =                                                                                                                          (A6b)

( , ) ( )i i
i i i

dC X l sD G s
dX

θ =
=                                                                                                                   (A6c)  

2

2

1

( )

( ) ,

m m
mm m m m

m m i m m
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dX dX
s R f l X lγ −

− − + =

− − ≤ ≤
                                                      �     (A7a)
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1 1( , ) ( )m
m m m i

dCD X l s G s
dX

θ − −= =                                                                                                           (A7b)

( , ) ( , ) ( )m
mL L L

dCa C X L s b L L s G s
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= + = =                                                                                                         (A7c)  
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