تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,092,373 |
تعداد دریافت فایل اصل مقاله | 97,196,265 |
Pre- and Post-partum Serum Concentration of Adiponectin, Leptin, and Ghrelin and Their Ability to Predict the Reproductive Performance and Milk Production Indexes in Holstein Dairy Cows | ||
Iranian Journal of Veterinary Medicine | ||
مقاله 4، دوره 17، شماره 3، مهر 2023، صفحه 217-230 اصل مقاله (2.79 M) | ||
نوع مقاله: Original Articles | ||
شناسه دیجیتال (DOI): 10.32598/ijvm.17.3.1005266 | ||
نویسندگان | ||
Mohsen Ketaby؛ Majid Mohammad-Sadegh* | ||
Department of Clinical Sciences, Faculty of Veterinary Medicine, Garmsar Branch, Islamic Azad University, Garmsar, Iran. | ||
چکیده | ||
Background: Adiponectin, leptin, and ghrelin are metabolism regulatory factors affecting milk production and reproductive performance. Objectives: This study aimed to investigate the adiponectin, leptin, and ghrelin serum concentration in predicting Holstein cows’ reproductive and milk production indexes in the post-partum period. Methods: In this research, 45 clinically healthy and pregnant Holstein dairy cows were randomly selected near the forthcoming calving. Blood samples were taken from the jugular veins of cows 15 days before and after parturition, and serum concentrations of adiponectin, leptin, ghrelin, and some other metabolic biochemical parameters were measured. The animals were monitored for milk production and reproductive parameters for 3 consecutive months. Results: Findings showed no significant difference in adiponectin concentration between the pregnant and non-pregnant cows following the first artificial insemination (AI); however, pre- and post-partum serum concentrations of leptin, ghrelin, and insulin were higher in conceived cows following the first AI (P<0.05). A significant negative correlation was found between post-partum serum adiponectin concentration, the number of services before conception, and mean milk production levels (P<0.05). However, adiponectin did not have a long-lasting effect on the reproductive and milk production indexes because of other studied variables. Conclusion: It was concluded that the post-partum increased serum adiponectin and ghrelin and decreased leptin concentrations could not predict the reproductive and milk production indexes. | ||
کلیدواژهها | ||
Adiponectin؛ Ghrelin؛ Leptin؛ Milk production indexes؛ Reproductive indexes | ||
عنوان مقاله [English] | ||
غلظت سرمی ادیپونکتین، لپتین و گرلین قبل و بعد از زایمان و توانایی آنها در پیش بینی عملکرد تولید مثلی و شاخص های تولید شیر در گاوهای شیری هلشتاین | ||
نویسندگان [English] | ||
محسن کتابی؛ مجید محمدصادق | ||
گروه علوم درمانگاهی، دانشکده دامپزشکی، واحد گرمسار، دانشگاه آزاد اسلامی، گرمسار، ایران . | ||
چکیده [English] | ||
زمینه مطالعه: ادیپونکتین، لپتین و گرلین عوامل تنظیم کننده متابولیسم هستند که ممکن است بر تولید شیر و عملکرد تولید مثلی تأثیر بگذارند. هدف: هدف از این مطالعه بررسی توانایی غلظت سرمی ادیپونکتین، لپتین و گرلین در پیش بینی شاخصهای تولیدمثلی و تولید شیر گاوهای هلشتاین در دوره پس از زایمان بود. روش کار: در این مقاله چهل و پنج راس گاو شیری هلشتاین از نظر بالینی سالم و آبستن در نزدیکی زایش به طور تصادفی انتخاب شدند. در پانزدهمین روز قبل و بعد از زایمان از ورید گردن گاوها نمونه خون گرفته شد و غلظت سرمی ادیپونکتین، لپتین و گرلین و برخی دیگر از پارامترهای بیوشیمیایی متابولیک اندازهگیری شد و حیوانات در سه ماه متوالی از نظر تولید شیر و پارامترهای تولیدمثلی پایش شدند. نتایج: یافته ها نشان داد که تفاوت معنی داری در غلظت ادیپونکتین بین گاوهای باردار و غیر آبستن پس از اولین تلقیح یافت نشد. با این حال، غلظت سرمی لپتین، گرلین و انسولین قبل و بعد از زایمان در گاوهای آبستن پس از اولین تلقیح بالاتر بود (P>0/05). بین غلظت سرمی ادیپونکتین پس از زایمان و تعداد تلقیح به ازای آبستنی و میانگین سطح تولید شیر همبستگی منفی معنیداری مشاهده شد (P>0/05). با این حال، همبستگی ادیپونکتین به دلیل سایه سایر متغیرهای مورد مطالعه نتوانست تأثیر پایداری بر شاخصهای تولید مثل و تولید شیر داشته باشد. نتیجهگیری نهایی: از این تحقیق نتیجه گیری شد که افزایش ادیپونکتین و گرلین سرم و کاهش غلظت لپتین پس از زایمان در شرایط این مطالعه قادر به پیش بینی شاخص های تولید مثلی و تولید شیر نبود. | ||
کلیدواژهها [English] | ||
ادیپونکتین, گرلین, لپتین, شاخص های تولید شیر, شاخص های تولید مثل | ||
اصل مقاله | ||
1. Introduction Ghrelin (the hunger hormone) and adipocyte-derived cytokines (adipokine) such as leptin (satiety hormone) and adiponectin (Kubota et al., 2007), cholecystokinin, and the glucagon-like peptide 1, which also may stimulate insulin secretion are among the hormones that affect appetite and feed intake, respectively (Allen & Piantoni, 2013). It seems that adiponectin may control appetite by its effect on the hypothalamus satiety center (Kubota et al., 2007). Adiponectin is one of the most abundant plasma proteins (making up about 0.01% of all plasma proteins). The main known function of adiponectin is in fats and carbohydrate metabolism. The effects of adiponectin on the reproductive function to some extent that some researchers have discussed are common disorders associated with pregnancy (gestational diabetes mellitus, preeclampsia, preterm birth, and abnormal intrauterine growth) and the potential of adiponectin to serve as biomarkers for these disorders (Choi et al., 2020; Pheiffer et al., 2021).
The ratio of adiponectin to leptin (1.8306±0.44 and 2.7608±0.33, P<0.001) and leptin to ghrelin (0.51812±0.025 and 0.28340±0.02, P<0.001) before and after parturition were also analyzed, and showed some differences, too (Figure 1).
A comparison of biochemical parameters between the ketotic (high βHBA) and non-ketotic (low βHBA) cows revealed that the pre-partum adiponectin concentration and pre- and post-partum glucose, urea, and creatinine concentrations had no differences (P>0.05). However, post-partum adiponectin concentration and pre- and post-partum leptin, ghrelin, and insulin concentrations showed lower levels in ketotic cows (Figure 3) (P<0.05).
References Akgul, G., Mecitoglu, Z., Kucuksen, D. U., & Senturk, S. (2018). Comparison of adiponectin levels and some metabolic parameters in dairy cows with subclinical and clinical ketosis. Medycyna Weterynaryjna, 74(3), 182-186. [DOI:10.21521/mw.6047] Al-Thuwaini, T. M. (2022). Adiponectin and its physiological function in ruminant livestock. Reviews in Agricultural Science, 10, 115-122. [DOI:10.7831/ras.10.0_115] Allen, M. S., & Piantoni, P. (2013). Metabolic control of feed intake: Implications for metabolic disease of fresh cows. Veterinary Clinics: Food Animal Practice, 29(2), 279-297. [DOI:10.1016/j.cvfa.2013.04.001][PMID] Artunc, F., Schleicher, E., Weigert, C., Fritsche, A., Stefan, N., & Haering, H. U. (2016). The impact of insulin resistance on the kidney and vasculature. Nature Reviews Nephrology, 12(12), 721-737. [DOI:10.1038/nrneph.2016.145][PMID] Azarbayejani, R., & Mohammadsadegh, M. (2021). Glucose, insulin, and cortisol concentrations and glucose tolerance test in Holstein cows with inactive ovaries. Tropical Animal Health and Production, 53(1), 41. [DOI:10.1007/s11250-020-02448-7][PMID] Beasley, J. M., Ange, B. A., Anderson, C. A., Miller Iii, E. R., Holbrook, J. T., & Appel, L. J. (2009). Characteristics associated with fasting appetite hormones (obestatin, ghrelin, and leptin). Obesity, 17(2), 349-354. [DOI:10.1038/oby.2008.551][PMID][PMCID] Choi, H. M., Doss, H. M., & Kim, K. S. (2020). Multifaceted physiological roles of adiponectin in inflammation and diseases. International Journal of Molecular Sciences, 21(4)1219. [DOI:10.3390/ijms21041219][PMID][PMCID] Clempson, A. M., Pollott, G. E., Brickell, J. S., Bourne, N. E., Munce, N., & Wathes, D. C. (2011). Evidence that leptin genotype is associated with fertility, growth, and milk production in Holstein cows. Journal of dairy science, 94(7), 3618–3628. [DOI: 10.3168/jds.2010-3626] [PMID] Committee on Animal Nutrition. (2001). Nutrient Requirements of Dairy Cattle. National Academy Press. [Link] Constable, P. D., Hinchcliff, K. W., Done, S. H., & Grünberg, W. (2017). Veterinary medicine: A textbook of the diseases of cattle, horses, sheep, pigs and goats. Amsterdam: Elsevier Health Sciences. [Link] De Koster, J., Urh, C., Hostens, M., Van Den Broeck, W., Sauerwein, H., & Opsomer, G. (2017). Relationship between serum adiponectin concentration, body condition score, and peripheral tissue insulin response of dairy cows during the dry period. Domestic Animal Endocrinology, 59, 100-104. [DOI:10.1016/j.domaniend.2016.12.004][PMID] De Koster, J. D., & Opsomer, G. (2013). Insulin resistance in dairy cows. The Veterinary Clinics of North America Food Animal Practice, 29(2), 299–322. [DOI:10.1016/j.cvfa.2013.04.002][PMID] D'Occhio, M. J., Baruselli, P. S., & Campanile, G. (2019). Influence of nutrition, body condition, and metabolic status on reproduction in female beef cattle: A review. Theriogenology, 125, 277–284. [DOI:10.1016/j.theriogenology.2018.11.010][PMID] Dos Santos, E., Pecquery, R., de Mazancourt, P., & Dieudonné, M. N. (2012). Adiponectin and reproduction. Vitamins and Hormones, 90, 187–209. [DOI:10.1016/B978-0-12-398313-8.00008-7] [PMID] Duehlmeier, R., Noldt, S., & Ganter, M. (2013). Pancreatic insulin release and peripheral insulin sensitivity in German black headed mutton and Finish Landrace ewes: Evaluation of the role of insulin resistance in the susceptibility to ovine pregnancy toxemia. Domestic Animal Endocrinology, 44(4), 213-221. [DOI:10.1016/j.domaniend.2013.01.003][PMID] Elis, S., Coyral-Castel, S., Freret, S., Cognié, J., Desmarchais, A., & Fatet, A., et al. (2013). Expression of adipokine and lipid metabolism genes in adipose tissue of dairy cows differing in a female fertility quantitative trait locus. Journal of Dairy Science, 96(12), 7591–7602. [DOI:10.3168/jds.2013-6615][PMID] Giesy, S. L., Yoon, B., Currie, W. B., Kim, J. W., & Boisclair, Y. R. (2012). Adiponectin deficit during the precarious glucose economy of early lactation in dairy cows. Endocrinology, 153(12), 5834–5844. DOI:10.1210/en.2012-1765][PMID] Guerre-Millo, M. (2008). Adiponectin: An update. Diabetes & Metabolism, 34(1), 12-18. [DOI:10.1016/j.diabet.2007.08.002][PMID] Kafi, M., Tamadon, A., & Saeb, M. (2015). The relationship between serum adiponectin and post-partum luteal activity in high-producing dairy cows. Theriogenology, 83(8), 1264-1271. [DOI:10.1016/j.theriogenology.2015.01.011][PMID] Kubota, N., Yano, W., Kubota, T., Yamauchi, T., Itoh, S., & Kumagai, H., et al. (2007). Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metabolism, 6(1), 55-68. [DOI:10.1016/j.cmet.2007.06.003][PMID] Lean, I. J., Van Saun, R., & Degaris, P. J. (2013). Energy and protein nutrition management of transition dairy cows. The Veterinary Clinics of North America. Food Animal Practice, 29(2), 337–366. [DOI:10.1016/j.cvfa.2013.03.005][PMID] Lu, M., Tang, Q., Olefsky, J. M., Mellon, P. L., & Webster, N. J. (2008). Adiponectin activates adenosine monophosphate-activated protein kinase and decreases luteinizing hormone secretion in LbetaT2 gonadotropes. Molecular Endocrinology, 22(3), 760–771. [DOI:10.1210/me.2007-0330][PMID][PMCID] Mohammadsadegh, M. (2019). The impacts of eCG administration, 3 days before OVSYNCH on the treatment of inactive ovary of dairy cows. Revue de Médecine Vétérinaire, 170, 110-116. [Link] Noakes, D. E., England, G. C., & Parkinson, T. J., (2018). Veterinary reproduction and obstetrics. Amsterdam: Elsevier. [Link] Ohtani, Y., Takahashi, T., Sato, K., Ardiyanti, A., Song, S. H., & Sato, R., et al. (2012). Changes in circulating adiponectin and metabolic hormone concentrations during periparturient and lactation periods in Holstein dairy cows. Animal Science Journal = Nihon Chikusan Gakkaiho, 83(12), 788–795 [DOI:10.1111/j.1740-0929.2012.01029.x][PMID] Oliveira, L. H., Nascimento, A. B., Monteiro, P. L. J., Jr, Guardieiro, M. M., Wiltbank, M. C., & Sartori, R. (2016). Development of insulin resistance in dairy cows by 150 days of lactation does not alter oocyte quality in smaller follicles. Journal of Dairy Science, 99(11), 9174–9183. [DOI:10.3168/jds.2015-10547][PMID] Pheiffer, C., Dias, S., Jack, B., Malaza, N., & Adam, S. (2021). Adiponectin as a potential biomarker for pregnancy disorders. International Journal of Molecular Sciences, 22(3), 1326.[DOI:10.3390/ijms22031326][PMID][PMCID] Pires, J. A., Pescara, J. B., & Grummer, R. R. (2007). Reduction of plasma NEFA concentration by nicotinic acid enhances the response to insulin in feed-restricted Holstein cows. Journal of Dairy Science, 90(10), 4635–4642. [DOI:10.3168/jds.2007-0146] [PMID] Prajapati, G. N., Kumar, A., Anand Laxmi, N., Singh, N. K., & Mathur, A. K. (2018). Parallelism of nesfatin-1, ghrelin and leptin with metabolic parameters and progesterone at puberty in murrah buffalo heifers. Journal of Animal Research, 7(6), 1-6. [DOI:10.30954/2277-940X.2018.00150.02] Rico, J. E., Bandaru, V. V., Dorskind, J. M., Haughey, N. J., & McFadden, J. W. (2015). Plasma ceramides are elevated in overweight Holstein dairy cows experiencing greater lipolysis and insulin resistance during the transition from late pregnancy to early lactation. Journal of Dairy Science, 98(11), 7757–7770. [DOI:10.3168/jds.2015-9519][PMID][PMCID] Rosales Nieto, C. A., Ferguson, M. B., Thompson, H., Briegel, J. R., Macleay, C. A., & Martin, G. B., et al. (2015). Relationships among puberty, muscle and fat, and liveweight gain during mating in young female sheep. Reproduction in Domestic Animals = Zuchthygiene, 50(4), 637–642. [DOI:10.1111/rda.12542][PMID] Singh, S. P., Häussler, S., Heinz, J. F., Saremi, B., Mielenz, B., & Rehage, J., et al. (2014). Supplementation with conjugated linoleic acids extends the adiponectin deficit during early lactation in dairy cows. General and Comparative Endocrinology, 198, 13–21. [DOI:10.1016/j.ygcen.2013.12.008][PMID] Sordillo, L. M., & Raphael, W. (2013). Significance of metabolic stress, lipid mobilization, and inflammation on transition cow disorders. Veterinary Clinics: Food Animal Practice, 29(2), 267-278. [DOI:10.1016/j.cvfa.2013.03.002][PMID] Sztainert, T., Hay, R., Wohl, M. J., & Abizaid, A. (2018). Hungry to gamble? Ghrelin as a predictor of persistent gambling in the face of loss. Biological Psychology, 139, 115-123. [DOI:10.1016/j.biopsycho.2018.10.011][PMID] Tabandeh, M. R., Golestani, N., Kafi, M., Hosseini, A., Saeb, M., & Sarkoohi, P. (2012). Gene expression pattern of adiponectin and adiponectin receptors in dominant and atretic follicles and oocytes screened based on brilliant cresyl blue staining. Animal Reproduction Science, 131(1-2), 30-40. [DOI:10.1016/j.anireprosci.2012.02.006][PMID]
| ||
مراجع | ||
Akgul, G., Mecitoglu, Z., Kucuksen, D. U., & Senturk, S. (2018). Comparison of adiponectin levels and some metabolic parameters in dairy cows with subclinical and clinical ketosis. Medycyna Weterynaryjna, 74(3), 182-186. [DOI:10.21521/mw.6047] Al-Thuwaini, T. M. (2022). Adiponectin and its physiological function in ruminant livestock. Reviews in Agricultural Science, 10, 115-122. [DOI:10.7831/ras.10.0_115] Allen, M. S., & Piantoni, P. (2013). Metabolic control of feed intake: Implications for metabolic disease of fresh cows. Veterinary Clinics: Food Animal Practice, 29(2), 279-297. [DOI:10.1016/j.cvfa.2013.04.001][PMID] Artunc, F., Schleicher, E., Weigert, C., Fritsche, A., Stefan, N., & Haering, H. U. (2016). The impact of insulin resistance on the kidney and vasculature. Nature Reviews Nephrology, 12(12), 721-737. [DOI:10.1038/nrneph.2016.145][PMID] Azarbayejani, R., & Mohammadsadegh, M. (2021). Glucose, insulin, and cortisol concentrations and glucose tolerance test in Holstein cows with inactive ovaries. Tropical Animal Health and Production, 53(1), 41. [DOI:10.1007/s11250-020-02448-7][PMID] Beasley, J. M., Ange, B. A., Anderson, C. A., Miller Iii, E. R., Holbrook, J. T., & Appel, L. J. (2009). Characteristics associated with fasting appetite hormones (obestatin, ghrelin, and leptin). Obesity, 17(2), 349-354. [DOI:10.1038/oby.2008.551][PMID][PMCID] Choi, H. M., Doss, H. M., & Kim, K. S. (2020). Multifaceted physiological roles of adiponectin in inflammation and diseases. International Journal of Molecular Sciences, 21(4)1219. [DOI:10.3390/ijms21041219][PMID][PMCID] Clempson, A. M., Pollott, G. E., Brickell, J. S., Bourne, N. E., Munce, N., & Wathes, D. C. (2011). Evidence that leptin genotype is associated with fertility, growth, and milk production in Holstein cows. Journal of dairy science, 94(7), 3618–3628. [DOI: 10.3168/jds.2010-3626] [PMID] Committee on Animal Nutrition. (2001). Nutrient Requirements of Dairy Cattle. National Academy Press. [Link] Constable, P. D., Hinchcliff, K. W., Done, S. H., & Grünberg, W. (2017). Veterinary medicine: A textbook of the diseases of cattle, horses, sheep, pigs and goats. Amsterdam: Elsevier Health Sciences. [Link] De Koster, J., Urh, C., Hostens, M., Van Den Broeck, W., Sauerwein, H., & Opsomer, G. (2017). Relationship between serum adiponectin concentration, body condition score, and peripheral tissue insulin response of dairy cows during the dry period. Domestic Animal Endocrinology, 59, 100-104. [DOI:10.1016/j.domaniend.2016.12.004][PMID] De Koster, J. D., & Opsomer, G. (2013). Insulin resistance in dairy cows. The Veterinary Clinics of North America Food Animal Practice, 29(2), 299–322. [DOI:10.1016/j.cvfa.2013.04.002][PMID] D'Occhio, M. J., Baruselli, P. S., & Campanile, G. (2019). Influence of nutrition, body condition, and metabolic status on reproduction in female beef cattle: A review. Theriogenology, 125, 277–284. [DOI:10.1016/j.theriogenology.2018.11.010][PMID] Dos Santos, E., Pecquery, R., de Mazancourt, P., & Dieudonné, M. N. (2012). Adiponectin and reproduction. Vitamins and Hormones, 90, 187–209. [DOI:10.1016/B978-0-12-398313-8.00008-7] [PMID] Duehlmeier, R., Noldt, S., & Ganter, M. (2013). Pancreatic insulin release and peripheral insulin sensitivity in German black headed mutton and Finish Landrace ewes: Evaluation of the role of insulin resistance in the susceptibility to ovine pregnancy toxemia. Domestic Animal Endocrinology, 44(4), 213-221. [DOI:10.1016/j.domaniend.2013.01.003][PMID] Elis, S., Coyral-Castel, S., Freret, S., Cognié, J., Desmarchais, A., & Fatet, A., et al. (2013). Expression of adipokine and lipid metabolism genes in adipose tissue of dairy cows differing in a female fertility quantitative trait locus. Journal of Dairy Science, 96(12), 7591–7602. [DOI:10.3168/jds.2013-6615][PMID] Giesy, S. L., Yoon, B., Currie, W. B., Kim, J. W., & Boisclair, Y. R. (2012). Adiponectin deficit during the precarious glucose economy of early lactation in dairy cows. Endocrinology, 153(12), 5834–5844. DOI:10.1210/en.2012-1765][PMID] Guerre-Millo, M. (2008). Adiponectin: An update. Diabetes & Metabolism, 34(1), 12-18. [DOI:10.1016/j.diabet.2007.08.002][PMID] Kafi, M., Tamadon, A., & Saeb, M. (2015). The relationship between serum adiponectin and post-partum luteal activity in high-producing dairy cows. Theriogenology, 83(8), 1264-1271. [DOI:10.1016/j.theriogenology.2015.01.011][PMID] Kubota, N., Yano, W., Kubota, T., Yamauchi, T., Itoh, S., & Kumagai, H., et al. (2007). Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metabolism, 6(1), 55-68. [DOI:10.1016/j.cmet.2007.06.003][PMID] Lean, I. J., Van Saun, R., & Degaris, P. J. (2013). Energy and protein nutrition management of transition dairy cows. The Veterinary Clinics of North America. Food Animal Practice, 29(2), 337–366. [DOI:10.1016/j.cvfa.2013.03.005][PMID] Lu, M., Tang, Q., Olefsky, J. M., Mellon, P. L., & Webster, N. J. (2008). Adiponectin activates adenosine monophosphate-activated protein kinase and decreases luteinizing hormone secretion in LbetaT2 gonadotropes. Molecular Endocrinology, 22(3), 760–771. [DOI:10.1210/me.2007-0330][PMID][PMCID] Mohammadsadegh, M. (2019). The impacts of eCG administration, 3 days before OVSYNCH on the treatment of inactive ovary of dairy cows. Revue de Médecine Vétérinaire, 170, 110-116. [Link] Noakes, D. E., England, G. C., & Parkinson, T. J., (2018). Veterinary reproduction and obstetrics. Amsterdam: Elsevier. [Link] Ohtani, Y., Takahashi, T., Sato, K., Ardiyanti, A., Song, S. H., & Sato, R., et al. (2012). Changes in circulating adiponectin and metabolic hormone concentrations during periparturient and lactation periods in Holstein dairy cows. Animal Science Journal = Nihon Chikusan Gakkaiho, 83(12), 788–795 [DOI:10.1111/j.1740-0929.2012.01029.x][PMID] Oliveira, L. H., Nascimento, A. B., Monteiro, P. L. J., Jr, Guardieiro, M. M., Wiltbank, M. C., & Sartori, R. (2016). Development of insulin resistance in dairy cows by 150 days of lactation does not alter oocyte quality in smaller follicles. Journal of Dairy Science, 99(11), 9174–9183. [DOI:10.3168/jds.2015-10547][PMID] Pheiffer, C., Dias, S., Jack, B., Malaza, N., & Adam, S. (2021). Adiponectin as a potential biomarker for pregnancy disorders. International Journal of Molecular Sciences, 22(3), 1326.[DOI:10.3390/ijms22031326][PMID][PMCID] Pires, J. A., Pescara, J. B., & Grummer, R. R. (2007). Reduction of plasma NEFA concentration by nicotinic acid enhances the response to insulin in feed-restricted Holstein cows. Journal of Dairy Science, 90(10), 4635–4642. [DOI:10.3168/jds.2007-0146] [PMID] Prajapati, G. N., Kumar, A., Anand Laxmi, N., Singh, N. K., & Mathur, A. K. (2018). Parallelism of nesfatin-1, ghrelin and leptin with metabolic parameters and progesterone at puberty in murrah buffalo heifers. Journal of Animal Research, 7(6), 1-6. [DOI:10.30954/2277-940X.2018.00150.02] Rico, J. E., Bandaru, V. V., Dorskind, J. M., Haughey, N. J., & McFadden, J. W. (2015). Plasma ceramides are elevated in overweight Holstein dairy cows experiencing greater lipolysis and insulin resistance during the transition from late pregnancy to early lactation. Journal of Dairy Science, 98(11), 7757–7770. [DOI:10.3168/jds.2015-9519][PMID][PMCID] Rosales Nieto, C. A., Ferguson, M. B., Thompson, H., Briegel, J. R., Macleay, C. A., & Martin, G. B., et al. (2015). Relationships among puberty, muscle and fat, and liveweight gain during mating in young female sheep. Reproduction in Domestic Animals = Zuchthygiene, 50(4), 637–642. [DOI:10.1111/rda.12542][PMID] Singh, S. P., Häussler, S., Heinz, J. F., Saremi, B., Mielenz, B., & Rehage, J., et al. (2014). Supplementation with conjugated linoleic acids extends the adiponectin deficit during early lactation in dairy cows. General and Comparative Endocrinology, 198, 13–21. [DOI:10.1016/j.ygcen.2013.12.008][PMID] Sordillo, L. M., & Raphael, W. (2013). Significance of metabolic stress, lipid mobilization, and inflammation on transition cow disorders. Veterinary Clinics: Food Animal Practice, 29(2), 267-278. [DOI:10.1016/j.cvfa.2013.03.002][PMID] Sztainert, T., Hay, R., Wohl, M. J., & Abizaid, A. (2018). Hungry to gamble? Ghrelin as a predictor of persistent gambling in the face of loss. Biological Psychology, 139, 115-123. [DOI:10.1016/j.biopsycho.2018.10.011][PMID] Tabandeh, M. R., Golestani, N., Kafi, M., Hosseini, A., Saeb, M., & Sarkoohi, P. (2012). Gene expression pattern of adiponectin and adiponectin receptors in dominant and atretic follicles and oocytes screened based on brilliant cresyl blue staining. Animal Reproduction Science, 131(1-2), 30-40. [DOI:10.1016/j.anireprosci.2012.02.006][PMID]
| ||
آمار تعداد مشاهده مقاله: 299 تعداد دریافت فایل اصل مقاله: 373 |