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A B S T R A C T 

 

Characterization of large reservoir models with a great number of uncertain parameters is frequently carried out by ensemble-based 
assimilation methods, due to their computational efficiency, ease of implementation, versatility, and non-necessity of adjoint code. In this 
study, multiple ensemble-based assimilation techniques are utilized to characterize the well-known PUNQ-S3 model. Accordingly, actual 
measurements are employed to determine porosity, horizontal and vertical permeabilities, and their associated uncertainties. In consequence, 
the uncertain parameters of the model will gradually be adapted toward the true values during the assimilation of actual measurements, 
including bottomhole pressure and production rates of the reservoir. Monotonic reduction of root-mean-squared error and capturing the key 
points of the maps (such as direction of anisotropy and porosity/permeability contrasts) verify successful estimation of the geostatistical 
properties of the PUNQ-S3 model during history matching. At the end of the assimilation process, the RMSE values for Deterministic 
Ensemble Kalman Filter, Ensemble Kalman Filter, Ensemble Kalman Filter with Bootstrap Regularization, Ensemble Transform Kalman Filter 
Symmetric Solution, Ensemble Transform Kalman Filter Random Rotation, and Singular Evolutive Interpolated Kalman filter are 1.120, 1.153, 
1.132, 1.132, 1.129, and 1.113, respectively. In addition to RMSE, the quality of history match as well as prediction of future performance are 
looked into in order to assess the performance of the assimilation process. Obviously, the results of the ensemble-based assimilation methods 
closely match the true results both in the history match section and in the future prediction section. Besides, the uncertainty of future 
predictions is quantified using multiple history-matched realizations. This is due to the fact that Kalman-based filters use a Bayesian 
framework in the assimilation step. Accordingly, the updated ensemble members are samples of the posterior distribution through which the 
uncertainty of future performance is assessed. 
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1. Introduction 

Conventionally, dynamic reservoir models include several uncertain 
parameters. Numerous laboratory techniques have been proposed to 
measure the required unknown parameters. However, these 
measurements may not be representative at a large scale [1]. Typically, 
historical measurements are incorporated into the dynamic model in 
order to characterize reservoir properties under a Bayesian framework 
which is referred to as history matching [2-4]. Accordingly, history 
matching is an inverse problem. 

Originally, the Kalman filter was developed to estimate unknown 
variables given the system outputs versus time for linear systems [5]. 
Subsequently, various variants of the Kalman filter have been proposed 
for nonlinear systems. Evensen [6] first introduced the ensemble 
Kalman filter (EnKF), which is the Monte Carlo form of the Kalman 
filter. Here, a finite number of model realizations are utilized to forecast 
the covariance matrix as well as approximate the Kalman gain. 
Consequently, a group of reservoir models is calibrated to match 
production history in order to accurately assess the uncertainty of future 
predictions. Ease of implementation, computational efficiency, 
versatility, and non-necessity of adjoint code make the EnKF well 
apposite for large models with a great number of uncertain parameters. 
The First application of EnKF in petroleum engineering was the 
investigation performed by Lorentzen, et al. [7] wherein uncertain 
variables of a two-phase flow model in the well, such as liquid hold up 
and slippage velocity, were estimated so as to match bottom hole 
pressure response. Afterwards, ensemble-base assimilation methods  

 
 
have been extensively used for the characterization of dynamic 

reservoir models [2, 8-13]. 
Nævdal, et al. [14] employed EnKF on a simple two-dimensional 

reservoir in the North Sea with 14 oil production wells and four gas 
injectors. The Geostatistical properties of the reservoir model were 
estimated with acceptable accuracy. To explore the impact of ensemble 
size, Wen and Chen [15] considered a two-dimensional reservoir with 
2,500 grid blocks and utilized EnKF with different ensemble sizes. 
Moreover, the application of 4D seismic data for reservoir 
characterization using EnKF was first illustrated by Skjervheim, et al. 
[16]. Later, Sakov and Oke [17] claimed that the use of perturbed 
observations in EnKF results in a sub-optimal performance and 
proposed a simple though highly efficient modification to EnKF, called 
the Deterministic Ensemble Kalman Filter (DEnKF), wherein the 
ensemble mean and anomalies are updated separately. 

Gao, et al. [18] utilized EnKF and randomized maximum likelihood 
(RML) for uncertainty quantification in the PUNQ-S3 problem. This 
investigation disclosed the fact that the proper implementation of RML 
under a Bayesian framework effectively samples the posterior 
distribution of the uncertain parameters. Accordingly, both EnKF and 
RML correctly quantify uncertainty in future predictions, and the true 
reservoir performance lies within the estimated confidence intervals. 
Also, the PUNQ-S3 reservoir model has been considered as the test case 
in many related studies [19-23]. 

Despite the excessive applications of EnKF in reservoir history 
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matching, some shortcomings are also reported regarding the 
followings: i) non-Gaussian variables, ii) small ensemble size, and iii) an 
unsuitable initial ensemble. Accordingly, several remedies have been 
proposed to overcome these limitations. To handle non-Gaussian 
variables, it is suggested to parametrize the reservoir properties into 
another space to reshape the inherent histogram into a Gaussian one 
[24]. Furthermore, Jahanbakhshi, et al. [10] investigated the effect of 
initial ensemble members and ensemble size on the posterior 
distribution of the assimilation methods. Also, iterative EnKF, as a 
variant of EnKF, has been proposed to minimize the effect of initial 
ensemble members on the estimated parameters. Akter, et al. [9] 
investigated the effect of model mismatch on the joint parameter-state 
estimation. They proposed the addition of an error to the model in the 
state-space in order to express the discrepancy between the dynamic 
model and the actual reservoir, as well as introduced forcing data to be 
used in the noisy systems. Subsequently, the modified EnKF was 
inspected on a benchmark of tank series model for the assessment 
purposes. Also, Jo, et al. [2] combined the machine learning algorithms 
with EnKF and proposed an assisted history matching workflow well-
suited for large scale reservoir models, as well as non-Gaussian variables. 
Subsequently, the suggested workflow was examined on a deep-water 
lobe system. In a different study, Delijani, et al. [25] presented an 
adaptive thresholding procedure for covariance localization of EnKF. In 
this way, a smaller ensemble size could be implemented without the 
problem of spurious correlation in the forecast covariance matrix. 
Similarly, Watanabe and Datta-Gupta [21] demonstrated that the 
successful implementation of covariance localization drastically 
depends on the dynamics of multi-phase fluid flow, as well as the type 
of the measurement data. Consequently, they proposed covariance 
localization based on the phase streamlines. 

In this study, different ensemble-based assimilation techniques are 
utilized to characterize the PUNQ-S3 model. Accordingly, historical 
measurements are employed so as to estimate porosity, horizontal, and 
vertical permeabilities in a sequential manner. As a result, uncertain 
parameters of the mathematical model will be gradually adapted toward 
the true values during assimilation of actual measurements, including 
bottomhole pressure and production rates of the reservoir. The 
Monotonic reduction of root-mean-squared error and capturing the key 
points on the maps (such as direction of anisotropy and 
porosity/permeability contrasts) verify the successful estimation of the 
geostatistical properties of the PUNQ-S3 model during history 
matching. In addition to RMSE, the quality of history match, as well as 
the prediction of future performance are looked into so as to assess the 
performance of the assimilation process. Obviously, the results of the 
ensemble-based assimilation methods closely match the true results 
both in the history match section and in the future prediction section. 
Besides, the uncertainty of future predictions is quantified. This is due 
to the fact that Kalman-based filters use a Bayesian framework in the 
assimilation step. Accordingly, updated ensemble members are samples 
of the posterior distribution through which the uncertainty of the future 
performance is assessed. 

This article is organized as follows: ensemble-based assimilation 
methods are described in Section 2. Section 3 elaborates on the PUNQ-
S3 reservoir model with its production data and initial realizations. Next, 
the results of the model calibration as well as the prediction of future 
performance are discussed in Section 4. Afterwards, Section 5 
summarizes the conclusions. 

2. Methodology 

2.1. System state-space 

State-space of the system is represented as [5, 10]: 
 

𝑥𝑘 = 𝑀𝑘(𝑥𝑘−1, 𝑢𝑘)        (1) 
 

𝑑𝑘 = 𝐻𝑘𝑥𝑘 + 𝐷𝑘       (2) 
 

𝑀𝑘 is the mathematical model of the reservoir, 𝑥𝑘 = [𝑚𝑇 , 𝑠𝑇 , �̃�𝑇]
𝑘

𝑇
 

represents the state vector where 𝑚 is model parameters, 𝑠 shows system 

states, and �̃� represents predicted observations. Also, 𝑢𝑘 is the boundary 
conditions, and 𝑑𝑘stands for real observations. 𝐻𝑘 ≡ [𝑂 𝐼]𝑘 relates the 
real observations to the state vector. Furthermore, 𝐷𝑘 = [𝜀1, 𝜀2, … , 𝜀𝑛𝑑

]
𝑘
 

shows the perturbations vector obtained using a zero-mean Gaussian 
distribution with a covariance matrix 𝑅𝑘; 𝐷𝑘~𝑁(0, 𝑅𝑘). 

In Section 3, the reservoir model along with boundary conditions is 
elaborated. 

2.2. Ensemble Kalman filter (EnKF) 

Details of EnKF method is provided by Evensen [26]. The forecast 
ensemble is calculated as: 

 

𝐴𝑓 = [𝑥1
𝑓

− 𝑥𝑓 , 𝑥2
𝑓

− 𝑥𝑓 , … , 𝑥𝑁
𝑓

− 𝑥𝑓]     (3) 
 

𝑥𝑓 =
1

𝑁
∑ 𝑥𝑖

𝑓𝑁
𝑖=1         (4) 

 

The covariance matrix of the forecast error is: 
 

𝑃𝑓 =
1

𝑁−1
∑ (𝑥𝑖

𝑓
− 𝑥𝑓)𝑁

𝑖=1 (𝑥𝑖
𝑓

− 𝑥𝑓)
𝑇

=
1

𝑁−1
𝐴𝑓(𝐴𝑓)

𝑇
    (5) 

 

Then, equation of Kalman filter becomes: 
 

𝑥𝑎 = 𝑥𝑓 + 𝐾(𝑑 − 𝐻𝑥𝑓)      (6) 
 

𝐴𝑖
𝑎 = 𝐴𝑖

𝑓
+ 𝐾(𝐷(𝑖) − 𝐻𝐴𝑖

𝑓
);  𝑖 = 1,2, … , 𝑁    (7) 

 

𝑋𝑖
𝑎 = 𝑥𝑎 + 𝐴𝑖

𝑎;  𝑖 = 1,2, … , 𝑁     (8) 
 

where 𝐾is the Kalman gain matrix. Thus, covariance matrix of the 
analysis error becomes: 

 

𝑃𝑎 =
1

𝑁−1
∑ (𝑥𝑖

𝑎 − 𝑥𝑎)𝑁
𝑖=1 (𝑥𝑖

𝑎 − 𝑥𝑎)𝑇 =
1

𝑁−1
𝐴𝑎(𝐴𝑎)𝑇   (9) 

 

Minimization of 𝑃𝑎results in: 
 

𝐾 = 𝑃𝑓𝐻𝑇(𝐻𝑃𝑓𝐻𝑇 + 𝑅)
−1

     (10) 
 

𝑃𝑎 = (𝐼 − 𝐾𝐻)𝑃𝑓      (11) 

2.3. Deterministic ensemble Kalman filter (DEnKF) 

Sakov and Oke [17] presented DEnKF wherein the ensemble mean is 
updated similar to EnKF while updated anomalies are obtained from: 

 

𝐴𝑎 = 𝐴𝑓 −
1

2
𝐾𝐻𝐴𝑓      (12) 

2.4. Ensemble transform Kalman filter (ETKF) 

Here, updated anomalies are calculated by a transformation matrix T: 
 

𝐴𝑎 = 𝐴𝑓𝑇       (13) 
 

A generic form of the transformation matrix is [27]: 
 

𝑇 = 𝑇𝑠𝑈       (14) 
 

𝑇𝑠 = [𝐼 +
1

𝑁−1
(𝐻𝐴𝑓)

𝑇
𝑅−1𝐻𝐴𝑓]

−
1

2     (15) 
 

𝑈 is an orthonormal mean-preserving matrix in which 
 

𝑈𝑈𝑇 = 𝐼       (16) 
 

𝑈1 = 1       (17) 
 

If 𝑈 = 𝐼, the method is called the symmetric solution (ETKF-SS). 
Otherwise, it is labeled as the random rotation (ETKF-RR) [28]. 

2.5. EnKF with bootstrap regularization (EnKF-BR) 

In this method, the forecast ensemble is regarded as the population, 
and a number of NB samples are generated by bootstrapping so as to 
compute the confidence level for each component of the Kalman gain 
matrix (𝐾𝑚). Therefore, 𝐾𝑚 is calculated for each ensemble, and its 
variance is also computed: 

 

𝜎𝐾𝑖,𝑗

2 =
∑ (𝐾𝑖,𝑗,𝑚−𝐾𝑖,𝑗)

2𝑁𝐵
𝑚=1

𝑁𝐵
      (18) 

https://www.collinsdictionary.com/dictionary/english-thesaurus/discrepancy
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Thus, the squared coefficient of variation for each element of 𝐾𝑚 and 
the associated confidence factor become: 

 

𝐶𝑣𝑖,𝑗

2 =
𝜎𝐾𝑖,𝑗

2

𝐾𝑖,𝑗
2                      (19) 

 

𝛼𝐾𝑖,𝑗

2 =
1

1+(1+
1

𝜎𝛼
2 )𝐶𝑣𝑖,𝑗

2
                   (20) 

 

A value of 𝜎𝛼
2 = 0.36 gives the best results, as discussed by Zhang and 

Oliver [29]. Finally, the screened Kalman gain (𝐾𝑆𝐾) is utilized to 
calculate the updated ensemble, 

 

K𝑆𝐾 = αK ∘ K                   (21) 

2.6. Singular evolutive interpolated Kalman (SEIK) filter 

Here, the covariance matrix of the forecast error is decomposed to 
[30]: 

 

𝑃𝑓 = 𝐿𝐺𝐿𝑇                  (22) 
 

𝐿 = 𝑋𝑓�̃�                    (23) 
 

𝐺 = (𝑁�̃�𝑇�̃�)
−1

                    (24) 
 

wherein 𝑋𝑓 = [𝑥1
𝑓

, 𝑥2
𝑓

, … , 𝑥𝑁
𝑓

] shows the forecast ensemble matrix and 
matrix �̃� is: 

 

�̃� = [
𝐼(𝑁−1)×(𝑁−1)

𝑂1×(𝑁−1)
] −

1

𝑁
[1𝑁×(𝑁−1)]                  (25) 

 

 

Accordingly, the Kalman gain is obtained: 
 

𝐾 = 𝐿𝑊(𝐻𝐿)𝑇𝑅−1                   (26) 
 

𝑊−1 = 𝐺−1 + (𝐻𝐿)𝑇𝑅−1𝐻𝐿                  (27) 
 

The Kalman gain is utilized to calculate the updated ensemble mean 
by the use of Eq. 6. Afterwards, updated anomalies are computed from 
[31]: 

 

𝐴𝑎 = √𝑁𝐿𝐶−1𝛺𝑇                   (28) 
 

(𝐶−1)𝑇𝐶−1 = 𝑊−1                   (29) 
 

where 𝛺 is a matrix which is orthogonal and orthonormal to the 
vector 1𝑁×1. 

3. Description of the PUNQ-S3 reservoir model 

The PUNQ-S3 model is a three-dimensional model established from 
an industrial survey on an actual field in the North Sea as a part of the 
PUNQ project (Production forecasting with Uncertainty 
Quantification). The goal of the PUNQ project was to assess different 
methods of uncertainty quantification in the history matching process. 
Accordingly, the PUNQ-S3 model has been intensively utilized as a 
benchmark in distinct inverse techniques in the petroleum literature. 
Details of the PUNQ-S3 model are provided by Floris, et al. [32]. 

The model is an anticline where the middle oil layer is surrounded by 
gas at the top and water at the bottom. Corner-point geometry is utilized 
to represent the structure of the field. The model consists of 19 × 28 × 5 
grid blocks of size 180 × 180 m2 with 1761 active blocks. The East and 
south of the PUNQ-S3 model are restricted by faults and a strong 
aquifer bounds the model on the north and the west, suppressing the 
need of for injection wells. Fig. 1 illustrates the top view of the field 
together with the locations of six producers (PRO-5, PRO-12, PRO-4, 
PRO-1, PRO-11, PRO-15) in the vicinity of the gas-oil contact. 
Production wells are completed through the fourth and fifth layers. 

In the PUNQ project, production data of the first eight years together 
with geological descriptions and hard data at well locations were 
available to the partners so as to calibrate the reservoir model. The 
updated model is then used to forecast the future performance of the 
field and predict cumulative oil production after 16.5 years. 

3.1. Production data 

The Production schedule of each well consists of four steps [32, 33]: 
1. Initially, an extended well test is conducted with four production 

intervals, each one lasting for three months. 
2. Subsequently, a period of three-year shut-in is conducted. 
3. Afterwards, a period of four-year production is conducted wherein 

the target rate of oil production is 150 sm3/day with minimum bottom 
hole pressure of 120 bar as the secondary constraint. Also, whenever 
production gas-oil ratio exceeds 200 sm3/sm3, target rate of oil 
production will be decreased by 25%. 

4. Finally, a period of two-week shut-in is conducted at the end of 
each year with the aim of measuring reservoir static pressure. 

The Measurement data, depicted in Fig. 2, include well oil production 
rate (WOPR), well water cut (WWCT), well gas-oil ratio (WGOR), and 
well bottom hole pressure (WBHP). It is assumed that measurement 
error is a white Gaussian noise with mean zero. Also, the standard 
deviation (STD) of the noise is reported in Table 1. There are 20 
asynchronous assimilation cycles throughout the eight-year production 
history where the corresponding times and data are represented in Table 
2. 

PRO-12

PRO-5

PRO-4

PRO-1

PRO-11

PRO-15

 
Fig. 1 - Top structure map of the PUNQ-S3 model [32]. 

 
Accordingly, the state vector for the PUNQ-S3 model becomes: 
 

𝑥 = [𝑚𝑇 , 𝑠𝑇 , �̃�𝑇]
𝑇
                                   (30) 

 

where, 
 

𝑚 = [𝜙𝑇 , 𝑙𝑛 𝑘ℎ
𝑇 , 𝑙𝑛 𝑘𝑣

𝑇]𝑇                    (31) 
 

𝑠 = [𝑃𝑜
𝑇, 𝑆𝑤

𝑇 , 𝑆𝑔
𝑇 , 𝑅𝑠

𝑇]
𝑇
                    (32) 

 

�̃� = [WBHP𝑇,WGOR𝑇,WWCT𝑇 ,WOPR𝑇]𝑇                  (33) 
 

Here, 𝜙 shows porosity, as well as 𝑘ℎ and 𝑘𝑣 are horizontal and 
vertical permeabilities. As the distribution of permeability is frequently 
log-normal, 𝑙𝑛 𝑘 is considered in the state vector so as to ensure  
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Gaussian distribution of the variables. Also, 𝑃𝑜 is oil pressure, 𝑆𝑤 shows 
water saturation, 𝑆𝑔 shows gas saturation, and 𝑅𝑠 represents solution 
gas-oil ratio in each grid block. 
 

 
Fig. 2 - Production history of the PUNQ-S3 model [32]. 

 

Table 1.  Standard deviation of the white Gaussian noise. 

Measurement STD  

WOPR (sm3/day) 1.0×10-4 

Shut-in WBHP (bar) 1.0 

Flowing WBHP (bar) 3.0 

WWCT (-) 0.01 

WGOR (-) (before gas breakthrough) 10% 

WGOR (-) (after gas breakthrough) 25% 

3.2. Initial realizations 

To generate initial realizations of porosity, values of normalized 
porosity at the well locations are obtained from the reference PUNQ-S3 
model, represented in Table 3. Afterwards, sequential Gaussian 
simulation (sgsim) with a spherical anisotropic variogram is utilized to 
produce initial realizations of normalized porosity using the SGeMS 
software [34, 35]. Finally, actual values of porosity are calculated: 

𝜙 = 𝜙𝑁 × 𝜎𝜙 + 𝜇𝜙                   (34) 
where 𝜙𝑁 shows normalized porosity, 𝜙 is the actual porosity, 𝜇𝜙 and 

𝜎𝜙 are mean and standard deviation of the porosity map reported in 
Table 4; respectively. Based on the porosity and permeability values at 
the well locations, horizontal and vertical permeabilities are calculated 
from porosity with the following relations [36]: 

 

𝑙𝑜𝑔10(𝑘ℎ) = 9.02𝜙 + 0.77                  (35) 
 

𝑘𝑣 = 0.31𝑘ℎ + 3.12                   (36) 

4. Results and discussions 

Here, DEnKF, EnKF, EnKF-BR, ETKF-RR, ETKF-SS, and SEIK filters 
are utilized to estimate porosity and permeabilities of the grid blocks, as 
well as to predict future performance of the PUNQ-S3 model. An 
ensemble size of 𝑁 = 100 is considered for the assimilation process, and 
the true model is considered as the reference case. 

4.1. Porosity and permeability estimation 

To evaluate the performance of the ensemble-based assimilation 

methods, root-mean-squared error (RMSE) and ensemble spread are 
computed at each cycle. 

 

RMSE = √
1

𝑁𝑔𝑟𝑖𝑑
∑

1

𝑁
∑ (𝑚𝑖,𝑗 − 𝑚𝑖

𝑡𝑟𝑢𝑒)
2𝑁

𝑗=1

𝑁𝑔𝑟𝑖𝑑

𝑖=1
                  (37) 

 

spread = √
1

𝑁𝑔𝑟𝑖𝑑
∑

1

𝑁
∑ (𝑚𝑖,𝑗 − �̄�𝑖)

2𝑁
𝑗=1

𝑁𝑔𝑟𝑖𝑑

𝑖=1
                 (38) 

 

where 𝑁𝑔𝑟𝑖𝑑 is the number of grid blocks, 𝑚 is the updated parameter 
field at each assimilation cycle, 𝑚𝑡𝑟𝑢𝑒shows the reference field and �̄�is 
the mean of the updated fields. RMSE and spread are calculated 
separately for porosity, 𝑙𝑛 𝑘ℎ, and 𝑙𝑛 𝑘𝑣, and their average values are 
represented at each assimilation cycle in Fig. 3. Clearly, RMSE decreases 
monotonically versus time which verifies that the realizations get closer 
to the reference case as the assimilation proceeds and more 
measurements are incorporated into the prior model. Consequently, if 
more historical measurement were available, RMSE would decrease 
further and more accurate estimation of uncertain model parameters 
would be obtained. This is in agreement with the Bayesian framework 
in which the prior model will be updated to the posterior one whenever 
new dynamical measurement becomes available. At the end of the 
assimilation process, the RMSE values for DEnKF, EnKF, EnKF-BR, 
ETKF-RR, ETKF-SS, and SEIK filters are 1.120, 1.153, 1.132, 1.132, 1.129, 
and 1.113, respectively. Moreover, the spread of the realizations reduces 
continuously which indicates that the uncertainty of the updated model 
further decreases. Obviously, the SEIK filter has the lowest RMSE and 
EnKF-BR preserves the highest spread. 

 
Table 2. Production data used in the assimilation process. 

Step Time (days) WBHP WGOR WWCT WOPR 

1 1.01 6 - - 6 
2 91 6 - - 6 

3 182 6 - - 6 

4 274 6 - - 6 

5 366 6 (shut-in) - - 6 

6 1461 6 (shut-in) - - 6 

7 1642 - 6 - 6 

8 1826 6 6 - 6 

9 1840 6 (shut-in) - - 6 

10 1841 - 6 - 6 

11 2008 - 6 - 6 

12 2192 6 6 - 6 

13 2206 6 (shut-in) - - 6 

14 2373 - 6 - 6 

15 2557 6 6 - 6 

16 2571 6 (shut-in) - - 6 

17 2572 - - 1 6 

18 2738 - 6 - 6 

19 2922 6 6 6 6 

20 2936 6 (shut-in) - - 6 
 

Table 3. Normalized porosity values at the well locations. 

Well Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 

PRO-1 -0.5 -0.4 -0.4 1.0 1.0 
PRO-4 0.8 -0.5 -0.2 1.3 0.6 

PRO-5 1.0 -0.3 0.7 0.9 -0.4 

PRO-11 -0.4 0.2 0.9 0.6 0.1 

PRO-12 -0.6 0.8 -0.3 1.4 0.9 

PRO-15 1.2 0.6 0.4 2.0 1.2 

 

Table 4. Mean and standard deviation values of the porosity map [19]. 

Parameter Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 

Mean 0.15 0.08 0.15 0.11 0.17 
STD 0.08 0.04 0.08 0.05 0.08 
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The PUNQ-S3 model has five layers and within each layer porosity, 
horizontal, and vertical permeabilities are estimated. Therefore, a 
number of 15 maps are required so as to illustrate the results of the 
assimilation process. However, only the estimated maps of the first layer 
are depicted here. Fig. 4 compares the estimated porosity map of layer 1 
(average of all the updated realizations) with the true one. Clearly, the 
final estimated maps are in close agreement with the true map, and key 
points of the map (such as the direction of anisotropy and porosity 
contrasts) are well captured. Specifically, DEnKF, EnKF-BR, and SEIK 
filters have outperformed and better cope with the porosity contrasts of 
the true map. Similarly, Fig. 5 and Fig. 6 represent maps of 𝑙𝑛 𝑘ℎ and 
𝑙𝑛 𝑘𝑣, respectively. Again, DEnKF and SEIK filters surpass the other 
filters and well capture the permeability contrasts. Furthermore, the 
estimated porosity and permeabilities at the grid blocks around the 
production wells correspond exactly the true ones. This is due to the fact 
that properties of the surrounding blocks have the highest impact on the 
production data. In other words, the information content of the 
measurements reduces as the distance from observation location 
increases. This is the main idea for those researches in the realm of the 
covariance localization [21, 37-39]. Moreover, the average of the initial 
realizations is highly smooth as a consequence of the random generation 
of the initial ensemble by the use of sgsim algorithm. 

 
Fig. 3 - RMSE and spread versus assimilation cycle. 

 

 
Fig. 4 -The Estimated porosity map of layer 1 of the PUNQ-S3 model. 

 

 
Fig. 5 - The Estimated ln kh map of layer 1 of the PUNQ-S3 model. 
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Fig. 1― RMSE and spread versus assimilation cycle. 
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Fig. 6 - The Estimated ln kv map of layer 1 of the PUNQ-S3 model. 

 

4.2. Future performance prediction 

In addition to RMSE and spread, the quality of history match along 
with prediction of the future performance are two main criteria for the 
assessment of filter performance. Due to the numerous numbers of 
available figures, only the production data of well PRO-11, as well as the 
field cumulative oil and water productions are illustrated here. 

Figs. 7-10 represent the bottom hole pressure, gas-oil ratio, water cut, 
and oil production rate of well PRO-11, respectively. Here, the results of 
the initial ensemble are illustrated with gray curves. The black curves 
represent the results of the updated ensemble. Due to the non-linearity 
of the mathematical model, each of the updated realizations is separately 
employed in the reservoir simulator so as to predict future performance 
of the field. Also, the red lines express actual measurements from the 
true model (wherein true values of porosity and permeability are 
employed). Moreover, the cyan and the blue lines respectively stand for 
the average results obtained by the initial and updated ensembles. A 

vertical line separates the time period into two sections: data used for 
model calibration (left) and data used for the evaluation of future 
performance prediction. 

Expectedly, the results of the initial ensemble have the highest spread. 
Also, the use of the initial ensemble overestimates WGOR and WWCT 
(Fig. 8 and Fig. 9) and underestimates WBHP and WOPR (Fig. 7 and 
Fig. 10). In Fig. 7, all the ensemble-based assimilation methods 
overestimate WBHP, and the SEIK filter is the closest to the true results. 
Furthermore, the ensemble spread to the left of the vertical line (model 
calibration section) is much smaller than that to the right of the vertical 
line (future performance prediction section). This is due to the fact that 
the model calibration by the use of actual measurements has reduced 
the uncertainty of the model. Also, the uncertainty of the future 
performance can be quantified by the use of the ensemble spread. In Fig. 
8, DEnKF, EnKF, EnKF-BR, and ETKF-RR underestimate the true results, 
while the ETKF-SS and SEIK filters overestimate them. Again, the 
results of EnKF and SEIK filters are more accurate. 

 

 
Fig. 7 - The History match and prediction of the future performance for the WBHP of PRO-11. 

 
In Fig. 9, all of the assimilation methods underestimate the water cut 

in well PRO-11 and ETKF-RR has the largest discrepancy. It is worth 
mentioning that the observation data has no information about water 
breakthrough in well PRO-11. However, DEnKF, EnKF, EnKF-BR, 
ETKF-SS, and SEIK filters have successfully predicted the water cut in 
this well. This further confirms the successful calibration of the field 

model by the use of the measured dynamic data. 
In Fig. 10, all of the assimilation methods overestimate the oil 

production rate in well PRO-11, and ETKF-SS and SEIK filters are the 
closest to the true results. Also, in the model calibration section, all the 
updated realizations show a constant production rate of 150 sm3/day. 

Fig. 11 and Fig. 12 represent the cumulative field oil and water  
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Fig. 8 - The History match and prediction of the future performance for the WGOR of PRO-11. 

 

 
Fig. 9 -The History match and prediction of the future performance for the WWCT of PRO-11. 

 

 
Fig. 10 - The History match and prediction of the future performance for the WOPR of PRO-11. 

 
productions, respectively. The Results of the initial ensemble 
underestimate both FOPT and FWPT. In Fig. 11, the uncertainty of the 
updated model has reduced significantly and there is a close agreement 
between the updated realizations and the true results. In Fig. 12, the 
DEnKF has overestimated the true FWPT, while the other ones have 
underestimated it. Here, ETKF-RR has the highest accuracy compared 
to the true model. 

As discussed previously in the description of the PUNQ project, data 
from the first eight years were available to calibrate the reservoir model. 
Accordingly, the updated model is then used to forecast the future 
performance of the field after 16.5 years. Table 5 represents the mean 
and standard deviation values of the cumulative field oil, gas, and water 

productions after 16.5 years. Obviously, ensemble-based assimilation 
methods have successfully predicted the future performance quantified 
the associated uncertainty. This is due to the fact that the assimilation 
step in the Kalman filter uses a Bayesian framework [10]. Therefore, the 
updated ensemble members are samples of the posterior distribution 
through which the uncertainty of the future performance is assessed 
[40]. 
Based on the above-mentioned discussions, all the ensemble-based 
Kalman filters exhibit promising results, which make them suitable for 
the characterization of large reservoir models. Specifically, the SEIK 
filter has outperformed the other ones in the characterization of the 
PUNQ-S3 reservoir model in this study. Accordingly, the SEIK filter has  

 1 

Fig. 1― The History match and prediction of the future performance for the WGOR of PRO-11. 2 
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Fig. 1―The History match and prediction of the future performance for the WWCT of PRO-11. 2 
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Fig. 11 - The History match and prediction of the future performance for the cumulative field oil production. 

 

 
Fig. 12 - The History match and prediction of the future performance for the cumulative field water production. 

 

Table 5. The Mean and standard deviation values of FOPT, FGPT and FWPT after 16.5 years (106 sm3). 

SEIK ETKF-SS ETKF-RR EnKF-BR EnKF  DEnKF  Initial   True  

3.85 3.84 3.91 3.86 3.89 3.84 3.45 Mean 
3.85 FOPT 

0.07 0.07 0.08 0.08 0.07 0.06 0.12 STD 

0.34 0.34 0.34 0.34 0.35 0.33 0.29 Mean 
0.35 FGPT 

0.01 0.01 0.01 0.01 0.01 0.01 0.01 STD 

0.38 0.38 0.41 0.34 0.39 0.49 0.29 Mean 
0.43 FWPT 

0.12 0.11 0.13 0.12 0.14 0.12 0.16 STD 

 

 
resulted in a more accurate estimation of porosity and permeability 
maps, and it is the closest to the true model in the history match section, 
and also accurately predicts the future performance. Therefore, the SEIK 
filter is highly recommended for the characterization of complex 
reservoir models by the use of measured dynamic data. 

5. Conclusion 

In this study, six different ensemble-based assimilation techniques 
were utilized to characterize the PUNQ-S3 model. Historical 
measurements, including bottomhole pressure and production rates, 
were employed to estimate porosity, horizontal, and vertical 
permeabilities. Consequently, the uncertain parameters of the model 
were gradually adjusted toward the true values during the assimilation 
of historical data. Obviously, the key points of the maps (such as the 
direction of anisotropy and porosity/permeability contrasts) were 
captured accurately, and RMSE between the estimated and the true 

maps decreased monotonically, which verified the successful estimation 
of porosity and permeabilities in the PUNQ-S3 model during history 
matching. 

In addition to RMSE, the quality of history match as well as the 
prediction of the future performance were inspected so as to assess the 
performance of the assimilation process. Clearly, the results of the 
ensemble-based assimilation methods closely matched the true results 
both in the history match section as well as in the future prediction 
section. 

There are a considerable number of distinct benefits regarding the 
ensemble-based Kalman filters. To start with, ease of implementation, 
computational efficiency, versatility, and non-necessity of adjoint code 
make the ensemble-based Kalman filters well apposite for large models 
with a great number of uncertain parameters. Next, these methods are 
recursive and sequential, meaning that only the latest measurement is 
assimilated with the current prior model. To follow, ensemble-based 
assimilation methods use the simulation model as a black-box to 
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perform the time update in the forecast step. Consequently, they are 
compatible with any complex reservoir models and various reservoir 
simulators. Finally, the uncertainty of the future predictions is also 
quantified by the use of multiple history-matched realizations. This is 
owing to the fact that Kalman-based filters use a Bayesian framework in 
the assimilation step. Therefore, updated ensemble members are 
samples of the posterior distribution through which the uncertainty of 
the future performance is assessed. 
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