تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,095,219 |
تعداد دریافت فایل اصل مقاله | 97,201,394 |
ارزیابی مدلهای فیزیکی- تجربی تبخیر - تعرق مرجع با استفاده از لایسیمتر وزنی (مطالعه موردی: تبریز) | ||
تحقیقات آب و خاک ایران | ||
دوره 53، شماره 6، شهریور 1401، صفحه 1403-1421 اصل مقاله (1.73 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2022.342406.669256 | ||
نویسندگان | ||
وحدت احمدی فر؛ رضا دلیر حسن نیا* ؛ علی اشرف صدرالدینی | ||
گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران | ||
چکیده | ||
استفاده از دادههای اندازهگیری شده برای بررسی مدلهای برآورد کننده تبخیر و تعرق مرجع (ET0) در مطالعات مختلف به خاطر مشکلات موجود در اندازهگیریها به صورت محدود انجام گرفته است. گونه چمن و نوع بافت خاک مورد استفاده در لایسیمترها در مطالعات مختلف با هم متفاوت است در حالی که این عوامل بر مقدار اندازهگیریهای لایسیمتری تاثیرگذار است. در این مطالعه، 19 مدل فیزیکی- تجربی و تجربی در گروههای ترکیبی، تابشی، دمایی و انتقال جرم برای سه سال متوالی (1396-1398) با اندازهگیریهای لایسیمتری در منطقه تبریز با اقلیم نیمهخشک واقع در شمالغرب ایران مورد ارزیابی قرار گرفت. همچنین جهت بررسی تأثیر گونههای گیاهی مرجع و بافت خاک بر میزان ET0، دو گونه چمن شامل فستوکا آروندیناسه و لولیوم پرنه در سه بافت خاک لوم شنی، رسی و لوم سیلتی در لایسیمترهای وزنی اندازهگیری شدند. مدلهای Kimberly Penman-1996 (KP)، Penman-1963، FAO.ppp.17 Penman (FAO.ppp.17)، FAO24 Blaney Criddle (FAO24 BC)،FAO56 Penman Monteith (FAO 56 PM) بهترین عملکرد را در بین مدلهای مورد استفاده نشان دادند. مقایسه گروهی مدلها نشان داد گروه ترکیبی بهترین عملکرد را داشته است. مقایسه ET0 برآورد شده با لایسیمترهایی که با خاک لوم شنی پر شدهاند مطابقت بیشتری نسبت به لایسیمترهای لوم سیلتی و رسی نشان داد. بررسی تاثیر گونه چمن بر عملکرد مدلها بیانگر دقت بالای مدلهای تجربی در لایسیمترهای با چمن لولیوم نسبت به چمن فستوکا میباشد. | ||
کلیدواژهها | ||
بافت خاک؛ بررسی عملکرد؛ گروه مدلها؛ گونه چمن؛ لایسیمتر وزنی | ||
عنوان مقاله [English] | ||
Evaluation of reference evapotranspiration by empirical-physical models using weight lysimeter (Case study: Tabriz) | ||
نویسندگان [English] | ||
Vahdat Ahmadifar؛ Reza Delirhasannia؛ Ali Ashraf Sadraddini | ||
Department of Water Engineering, Faculty of Agriculture, University of Tabriz, Tabriz, Iran | ||
چکیده [English] | ||
The use of measured data to evaluate reference evapotranspiration (ET0) estimation models in various studies has been limited due to the problems in the measurements. The types of grass and soil textures used in lysimeters differ in different studies, while these factors affect the amount of lysimetric measurements. This study evaluated 19 physical-experimental and experimental models in the combined, radiation, temperature, and mass transfer groups for three consecutive years (2017-2019) by lysimetric measurements in the Tabriz region with a semi-arid climate located in northwestern Iran. Also, to investigate the effect of reference plant species and soil texture on ET0, two grass species including Festuca Arundianacea Schreb and Lolium perenne were applied in three soil textures of sandy loam, clay, and silty loam in weight lysimeters. The Kimberly Penman-1996 (KP), Penman-1963, FAO.ppp.17 Penman (FAO.ppp.17), FAO24 Blaney Criddle (FAO24 BC), and FAO56 Penman-Monteith (FAO 56 PM) had the best performance among used models. Group comparison of models showed that the combination models had the best performance among the studied groups. The ET0 values estimated by the models were more consistent with the lysimeters filled with sandy loam soil than the ones filled with silt and clay lysimeters. The study of the effect of grass species on the performance of the models showed that the accuracy of the experimental models in lysimeters planted with grass Lolium was higher than the Festuca grass. | ||
کلیدواژهها [English] | ||
Grass species, Models Group, Performance Evaluation, Soil Texture, Weighing Lysimeter | ||
مراجع | ||
Ahmadifar, V., Delirhasannia R. and Sadraddini, A. A. (2022). Comparative analysis of 15 major reference evapotranspiration models based on weighing lysimeter measurements for two different grass species grown in three soil textures. Irrigation and Drainage, 1–17. https://doi.org/10.1002/ird.2677 Allen, R.G., Pereira, L.S., Raes D. and Smith, M. (1998). Crop evapotranspiration: guidelines for computing crop requirements, FAO Irrigation and Drainage Paper No. 56. FAO, Rome. http://www.kimberly.uidaho.edu/water/fao56/ fao56.pdf. Bakhtiari, B., Ghahreman, N., Liaghat, A. M. and Hoogenboom, G. (2011). Evaluation of reference evapotranspiration models for a semiarid environment using lysimeter measurements. Journal of Agricultural Science and Technology, 13, 223-237. https://www.sid.ir/en/journal/ViewPaper.aspx?ID =216930. Bakhtiari, B., Mohebbi, A., and Qaderi, K. (2016). Estimation of daily reference evapotranspiration with limited meteorological data in selected Iran’s semi-arid climates. Iran-Water Resources Research, 11(3), 131-144. (In Farsi). https://www.sid.ir/fa/journal/ViewPaper.aspx?id=266252 Blaney, H. F. and Criddle, W. D. (1950). Determining water requirements in irrigated areas from climatological and irrigation data. United States Department of Agriculture. SCS-TP-96. 50p. Cid, P., Taghvaeian, S. and Hansen, N. (2018). Evaluation of the Fao-56 methodology for estimating maize water requirements under deficit and full irrigation regimes in semiarid northeastern Colorado. Irrigation and Drainage, 67(4), 605-614. https://doi.org/10.1002/ird.2245 Crookston, M. A. and Hattendorf, M. (2010). Turf grass ET from small lysimeters in northeast Colorado. Meeting Irrigation Demands in a Water-Challenged Environment, 319-328. Dai, L., Guo, X., Ke, X., Lan, Y. et al. (2019). Comparison of 13 models of reference evapotranspiration with large weighing lysimeter measurements in a humid alpine meadow, northeastern Qinghai-Tibetan Plateau. Authorea, November 20, 2019. https:// //doi.org/10.22541/au.157429061.17486501 De Bruin, H. A. R. and Keijman, J. Q. (1979). Priestley-Taylor evaporation model applied to a large, shallow lake in the Netherlands. Journal of Applied Meteorology, 18, 898–903. https://doi.org/10.1175/1520-0450(1979)018 <0898:TPTEMA>2.0.CO;2 Dinpashoh, Y., Jhajharia, D, Fakheri-Fard, A., Singh, V. P. and Kahya, E. (2011). Trends in reference evapotranspiration over Iran. Journal of Hydrology 399, 422–433. https://doi.org/10.1016/j.jhydrol.2011.01 .021 Djaman, K., Balde, A., Sow, A., Muller, B., Irmak S., N’Diaye, M., Manneh, B., Moukoumbi, Y., Futakuchi, K. and Saito, K. (2015). Evaluation of sixteen reference evapotranspiration methods under sahelian conditions in the Senegal River Valley. Journal of Hydrology: Regional Studies, 3, 139-159. http://dx.doi.org/10.1016/j.ejrh.2015.02.002 Djaman, K., Koudahe, K., Sall, M., Kabenge, I., Rudnick, D. and Irmak, S. (2017). Performance of Twelve Mass Transfer Based Reference Evapotranspiration Models under Humid Climate. Journal of Water Resource and Protection, 9(12), pp. 1347-1363. https://doi.org/10.4236/jwarp.2017.912086 Doorenbos, J. and Pruitt, W. O. (1977). Crop Water Requirements. (p. 24). FAO Irrigation and Drainage. Rome. http://www.fao.org/3/a-f2430e.Pdf. Farzanpour, F., Shiri, J., Sadraddini, A. A., and Trajkovic, S. (2019). Global comparison of 20 reference evapotranspiration equations in a semi-arid region of Iran. Hydrology Research, 50.1, 282-300. http://dx.doi.org/10.2166/nh.2018.174 Ferreira, L. B., Cunha, F. F., Duarte, A. B., Sediyama., G. C., Cecon, P. R. (2018). Calibration methods for the Hargreaves-Samani equation. Ciência e Agrotecnologia, 42 (1): 104-114. http://dx.doi.org/10.1590/1413-70542018421017517 Fooladmand, H. R. and Sepaskhah, A. R. (2005). Evaluation and calibration of three evapotranspiration equations in a semi-arid region. Iran-Water Resources Research, 1(2), 123-128. (In Farsi) Frére, M., and Popov, G F. (1979). Agrometeorological crop monitoring and forecasting. (P.17). FAO Plant Production and Protection. Rome. http://eprints.icrisat.ac.in/id/eprint/13138. Gavilán, P., Lorite, IJ., Tornero, S. and Berengena, J. (2006). Regional calibration of Hargreaves equation for estimating reference ET in a semiarid environment. Agricultural Water Management, 81 (3), 257–281. https://doi.org/10.1016/j.agwat.2005.05.001 Gee, G. W., and Or, D. (2002). Particle-size analysis. In B. S.: Dane, J.H., & Topp, G. C. (Eds.), Methods of soil analysis. Physical methods. (pp. 255-295). Soil Science Society of America. Madison. Wisconsin. (Part 4). Ghamarnia, H. and Niazi, Z. (2018). Evaluation and Comparison Of Different Methods Of Reference Evapotranspiration Based On Mass Transmission Methods In Iran And Its Zoning By Using Gis. Iran-Water Resources Research,14 (3), 318-338. (In Farsi) https://www.sid.ir/en/Journal/ViewPaper.aspx?ID=610011 Ghamarnia, H., Rezvani, S.V. and Fathi, P. (2013). Evaluation and calibration of Evapotranspiration models according to calculating periods for a cold semi-arid climate. Water and irrigation management, 25 (2), 25-37. (In Farsi) Ghorbanian, M., Liaghat, A., and Noori, H. (2014). Effect of soil texture and bulk density on evapotranspiration and crop coefficient of forage maize. Iranian Journal of Water Research in Agriculture, 28(2): 453-463. (In Farsi) https://www.sid.ir/fa/journal/ViewPaper.aspx?ID=238652 Hargreaves, G. H and Samani, Z. A. (1985). Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture, 1 (2), 96–99. https://doi.org/10.13031/2013.26773 He, H., Wu, Z., Li, D. et al. (2022) Characteristics of Winter Wheat Evapotranspiration in Eastern China and Comparative Evaluation of Applicability of Different Reference Evapotranspiration Models. Journal of Soil Science and Plant Nutrition -2022. https://doi.org/10.1007/s42729-022-00795-y Heidari Motlagth, A., Nasrolahi, A., Sharifiipour, M. and Vayci, SH. (2021). Evaluation of different models for estimating reference evapotranspiration (eto) in Aleshtar plain. Iranian Journal of Soil and Water Research, 52 (5). 1409-1421. (In Farsi) 10.22059/ijswr.2021.319027.668894 Hozhabr, H., Moazed, H. and ShokriKhoochak, S. (2014). Estimation of reference evapotranspiration (ET0) using empirical models, artificial neural network modeling and their comparison with lysimeter data in urmia kahrizi station. Journal of Irrigation and Water Engineering, 15, 13-25. (In Farsi) Irmak, A. and Irmak, S. 2008. Reference and crop evapotranspiration in south central Nebraska. II: measurement and estimation of actual evapotranspiration for corn. Journal of Irrigation and Drainage Engineering 134(6), 700–715. Jensen, M. E., Burman, R. D. and Allen, R. G. (1990). Evapotranspiration and irrigation water requirements. ASCE Manuals and Reports on Engineering Practices No. 70, New York: ASCE. https://cedb.asce.org/ CEDBsearch/record.jsp?dockey=0067841. Jensen, M. E. and Haise, H. R. (1963). Estimating evapotranspiration from solar radiation. Proceedings of the American Society of Civil Engineers. Journal of the Irrigation and Drainage Division, 89, 15-41. Kashyap, P. S. and Panda, R. K. (2001). Evaluation of evapotranspiration estimation methods and development of crop-coefficients for potato crop in a sub-humid region. Agricultural Water Management, 50 (1), 9–25. https:// https://doi.org/10.1016/S0378-3774(01)00102-0 Li, S., Kang, S., Zhang, L., Zhang, J., Du, T., Tong, L., & Ding, R. (2016). Evaluation of six potential evapotranspiration models for estimating crop potential and actual evapotranspiration in arid regions. Journal of Hydrology, 543(2016): 450-461. http://dx.doi.org/10.1016/j.jhydrol.2016.10.022 Liu, X., Xu, C., Zhong, X., Li, Y., Yuan, X. and Cao, J. (2017). Comparison of 16 models for reference crop evapotranspiration against weighing lysimeter measurement. Agricultural Water Management, 184, 145-155. http://dx.doi.org/10.1016/j.agwat.2017.01.017 Mahringer, W. (1970). Verdunstungsstudien am Neusiedler See. Arch Met Geoph Biokl Ser, 18, pp. 1-20. Makkink, G, F. (1957). Testing the Penman formula by means of lysimeters. Journal of the Institution of Water Engineerrs, 11(3), 277–288. https://ci.nii.ac.jp/naid/1002564065 Meyer, A., (1926). Über einige Zusammenhänge zwischen Klima und Boden in Europa. Chemie der Erde, 2, 209-347. Nazari, R. and Kaviani, A. (2016). Evaluation of potential evapotranspiration and pan evaporative methods by lysimeter data in a semiarid climate (case study: qazvin plain). Iranian Journal of Ecohydrology 3(2) 19-30. (In Farsi) https://www.sid.ir/en/journal/ViewPaper.aspx?ID=649358 Penman, H. L. (1948). Natural Evaporation from open water, bare soil and grass. Proceedings of the Royal Society A, 193, 120–145. https://doi.org/10.1098/rspa.1948.0037 Penman, H. L. (1963). Vegetation and hydrology. Tech. Comm. No. 53.Commonwealth Bureau of soils. Harpenden. England. https://doi.org/10.1002/qj.49708938220 Perera, K. C., Western, A. W., Nawarathna, B., and George, B. (2015). Comparison of hourly and daily reference crop evapotranspiration equations across seasons and climate zones in Australia. Agricultural Water Management, 148, 84–96. https://doi.org/10.1016/j.agwat.2014.09.016 Priestley, C. H. B. and Taylor, R. J. (1972). On the assessment of surface heat and evaporation using large-scale parameters. Monthly Weather Review, 100, 81–92. Pinnix, G. D. and Miller, G. L. (2019). Comparing evapotranspiration rates of tall fescue and bermudagrass in North Carolina. Agricultural Water Management, 223, 1-7. https://doi.org/10.1016/j.agwat.2019.105725 Razzaghi, F., Plauborg, F, Jacobsen, S. E., Jensen, C. R. and Andersen, M. N. (2012). Effect of nitrogen and water availability of three soil types on yield, radiation use efficiency and evapotranspiration in field-grown quinoa. Agricultural Water Management, 109, 20-29. https://doi.org/10.1016/j.agwat.2012.02.002 Sabziparvar, A., Tafazoli, F., Zare Abyaneh, H., Mosavi Byegi, M., Ghafouri, M., Mohseni Movahed, A. A., and Maryanji, Z. (2008). Comparison of some crop reference evapotranspiration models in a cold semiarid climate to optimize the use of radiation models. Journal of Water Soil, 22 (2), 328-340. (In Farsi) Shiri, J., Zounemat-Kermani, M., Kisi, O. and Mohsenzadeh Karimi,. S. (2019). Comprehensive assessment of 12 soft computing approaches for modeling reference evapotranspiration in humid locations. Meteorological Applications, 27, (1). https://doi.org/10.1002/met.1841 Turc, L. (1961). Water requirements assessment of irrigation, potential evapotranspiration: Simplified and updated climatic formula. Annales Agronomiques 12, 13–49. http://refhub.elsevier.com/S0378-3774(17)30040-9/sbref0220. Vaughan, P. J., Trout, T. J. and Ayars, J. E. (2007). A processing method for weighing lysimeter data and comparison to micrometeorological ET0 predictions. Agricultural Water Management 88, 141-146. https://doi.org/10.1016/j.agwat.2006.10.008 WMO, (1966). Measurement and estimation of evaporation and evapotranspiration. Genf: Tech. Pap. (CIMO-Rep) 83. Yang, Y., Luo, Y., Wu, C., Zheng H, Zhang, L. and Cui, Y. (2019). Evaluation of six equations for daily reference evapotranspiration estimating using public weather forecast message for different climate regions across China. Agricultural Water Management, 222, 386-399. https://doi.org/10.1016/j.agwat.2019.06.014 Young, M. H., Wierenga, PJ. and Mancino, C. F. (1996). Large weighing lysimeters for water use and deep percolation studies. Soil Science, 161, 491–501. https://doi.org/10.1097/00010694-199608000-00004 | ||
آمار تعداد مشاهده مقاله: 282 تعداد دریافت فایل اصل مقاله: 232 |