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ABSTRACT ARTICLE INFO

Let G = (V,E) be a simple graph. A dominating set of
G is a subset D ⊆ V such that every vertex not in D
is adjacent to at least one vertex in D. The cardinality
of a smallest dominating set of G, denoted by γ(G),
is the domination number of G. For k ≥ 1, a k-fair
dominating set (kFD-set) in G, is a dominating set S
such that |N(v) ∩ D| = k for every vertex v ∈ V \
D. A fair dominating set in G is a kFD-set for some
integer k ≥ 1. Let Df (G, i) be the family of the fair
dominating sets of a graph G with cardinality i and let
df (G, i) = |Df (G, i)|. The fair domination polynomial

of G is Df (G, x) =
∑|V (G)|

i=1 df (G, i)xi. In this paper,
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ABSTRACT continued: after computation of the fair domination number of power
of cycle, we count the number of the fair dominating sets of certain graphs such as cubic
graphs of order 10, power of paths and power of cycles. As a consequence, all cubic
graphs of order 10 and especially the Petersen graph are determined uniquely by their
fair domination polynomial.

1 Introduction and definition

Let G = (V,E) be a simple graph with n vertices. A set D ⊆ V (G) is a dominating
set, if every vertex in V (G)\D is adjacent to at least one vertex in D. The domination
number γ(G) is the minimum cardinality of a dominating set in G. Dominating sets are
of practical interest in several areas. There are different kinds of dominating sets and
domination numbers which studied well in the literature. Most of the papers published in
the domination theory, try to determine exact expressions for domination number γ(G),
which is the minimum cardinality of a dominating set of graph ([9]). The distance between
two vertices u and v denoted by d(u, v) is the number of edges in a shortest path (also
called a graph geodesic) connecting them. Let S ⊆ V be any subset of vertices of G. The
induced subgraph G[S] is the graph whose vertex set is S and whose edge set consists of
all of the edges in E that have both endpoints in S.
For k ≥ 1, a k-fair dominating set (kFD-set) in G, is a dominating set D such that
|N(v)∩D| = k for every vertex v ∈ V \D. The k-fair domination number of G, denoted
by fdk(G), is the minimum cardinality of a kFD-set. A kFD-set of G of cardinality
fdk(G) is called a fdk(G)-set. A fair dominating set, abbreviated FD-set, in G is a kFD-
set for some integer k ≥ 1. The fair domination number, denoted by γf (G), of a graph G
that is not the empty graph is the minimum cardinality of an FD-set in G. An FD-set of
G of cardinality γf (G) is called a γf (G)-set.
By convention, if G = Kn, we define γf (G) = n. By the definition, it is easy to see that for
any graph G of order n, γ(G) ≤ γf (G) ≤ n and γf (G) = n if and only if G = Kn. Caro,
Hansberg and Henning in [8] showed that for a disconnected graph G (without isolated
vertices) of order n ≥ 3, γf (G) ≤ n− 2, and they constructed an infinite family of graphs
achieving equality in this bound.
Regarding to enumerative side of dominating sets, Alikhani and Peng in [2], have in-
troduced the domination polynomial of a graph. The domination polynomial of graph
G is the generating function for the number of dominating sets of G, i.e., D(G, x) =∑|V (G)|

i=1 d(G, i)xi (see [1, 2]). This polynomial and its roots have been actively studied in
recent years (see for example [7, 10]). Let Df (G, i) be the family of the fair dominating
sets of a graph G with cardinality i and let df (G, i) = |Df (G, i)|. It is natural to count
the number of the fair dominating sets of some specific graphs. The fair domination poly-
nomial of G is Df (G, x) =

∑|V (G)|
i=1 df (G, i)xi. Recently Alikhani and Safazadeh [4] have

counted the number of fair dominating sets of some specific graphs such as cycles, paths
and some cactus graphs.
The following theorem is an easy result in the number of the fair dominating sets of graphs:
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Theorem 1.1 Let G be a graph with |V (G)| = n. Then

(i) If G is connected, then df (G, n) = 1 and df (G, n− 1) = n.

(ii) If i < γf (G) or i > n, then df (G, i) = 0.

(iii) Df (G, x) has no constant term.

(iv) Zero is a root of Df (G, x), with multiplicity γf (G).

Similar to the study of dominating equivalent of graphs ([1, 3]), two graphs G and H
are said to be fair dominating equivalent, or simply Df -equivalent, written G ∼f H, if
Df (G, x) = Df (H, x). It is evident that the relation ∼f of being Df -equivalence is an
equivalence relation on the family G of graphs, and thus G is partitioned into equivalence
classes, called the Df -equivalence classes. Given G ∈ G, let

[G] = {H ∈ G : H ∼f G}.

We call [G] the equivalence class determined by G. A graph G is said to be fair dominating
unique, or simply Df -unique, if [G] = {G}. In this case, we say the graph G is completely
determined by its fair domination polynomial.

In Section 2, we consider the cubic graphs of order 10 and study their fair domination
polynomials. As a consequence, we show that all cubic graphs of order 10 and especially
the Petersen graph are determined uniquely by their fair domination polynomial. In
Section 3, we consider the power of cycle graph and path graph and study the number of
their fair dominating sets.

2 Fair domination polynomial of cubic graphs of or-

der 10

Authors in [3] have studied the domination polynomials of cubic graphs of order 10 and
as a consequence, they have shown that the Petersen graph is determined uniquely by its
domination polynomial.
In this section, we study some coefficients of the fair domination polynomial of regular
graphs and then compute the fair domination polynomial of cubic graphs of order 10. As
usual Aut(G) denotes the automorphism group of G. A vertex-transitive graph, is a graph
such that every pair of vertices is equivalent under some elements of its automorphism
group. More explicitly, a vertex-transitive graph is a graph whose automorphism group
is transitive. For every vertex v of graph G, we denote the family of all fair dominating
sets of G with cardinality i which contain v by Dv

f (G, i) and dvf (G, i) = |Dv
f (G, i)|.

Lemma 2.1 Let G = (V,E) be a vertex transitive graph of order n and v ∈ V . For any
1 ≤ i ≤ n, we have df (G, i) = n

i
dvf (G, i).
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Figure 1: Cubic graphs of order 10.

Proof. If D is a fair dominating set of vertex transitive graph G of size i and θ ∈ Aut(G),
then θ(D) is also a fair dominating set of G with size i. Also, since G is a vertex transitive
graph, so for every vertices v and u, dvf (G, i) = duf (G, i). If D is a fair dominating set of

size i, then there are exactly i vertices vj1 , vj2 , . . . , vji such that D counted in d
vjk
f (G, i),

for any 1 ≤ k ≤ i. Therefore df (G, i) = n
i
dvf (G, i) and the proof is complete.

Lemma 2.2 If G = (V,E) is a k-regular graph of order n, then df (G, n− 2) =
(
n
2

)
.

Proof. Let G be a k-regular graph of order n with vertex set V . Each vertex of G is
adjacent to k vertices and we have two cases for two arbitrary vertices v and u of G:
Case 1. If u and v are adjacent, then both have exactly k − 1 neighbors in V \ {u, v}.
Case 2. If u and v are not adjacent, then they have exactly k neighbors in V \ {u, v}.
Therefore for every vertices v and u of G, V \{u, v} is a fair dominating set. So df (G, n−
2) =

(
n
2

)
and the proof is complete.
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k 1 2 3 4 5 6 7 8 9
G1 0 0 0 5 4 40 30 45 10
G2 0 0 2 5 2 38 30 45 10
G3 0 0 4 4 1 43 30 45 10
G4 0 0 14 0 0 50 30 45 10
G5 0 0 4 6 0 44 30 45 10
G6 0 0 0 10 2 40 30 45 10
G7 0 0 2 6 6 32 30 45 10
G8 0 0 0 9 8 28 30 45 10
G9 0 0 1 5 5 33 30 45 10
G10 0 0 10 0 2 40 30 45 10
G11 0 0 6 2 0 42 30 45 10

k 1 2 3 4 5 6 7 8 9
G12 0 0 0 7 6 30 30 45 10
G13 0 0 5 4 2 41 30 45 10
G14 0 0 3 3 3 35 30 45 10
G15 0 0 6 1 3 37 30 45 10
G16 0 0 0 13 2 44 30 45 10
G17 0 0 0 15 12 20 30 45 10
G18 0 0 8 5 0 56 30 45 10
G19 0 0 0 4 4 34 30 45 10
G20 0 0 12 9 0 58 30 45 10
G21 0 0 36 1 0 72 30 45 10

Table 1: The number of the fair dominating sets of cubic graphs of order 10.

Now we consider exactly 21 cubic graphs of order 10 given in Figure 1 (see [3]). There are
just two non-connected cubic graphs of order 10. Note that the graph G17 is the Petersen
graph. Similar to [3], we compute the fair domination polynomial of these graphs. Using
Matlab we computed the coefficients of the fair domination polynomial of these graphs
(see Table 1).

The following theorem gives the fair domination polynomial of the Petersen graph.

Theorem 2.3 The fair domination polynomial of the Petersen graph P is

Df (P, x) = x10 + 10x9 + 45x8 + 30x7 + 20x6 + 12x5 + 15x4.

Proof. The fair domination number of the Petersen graph is γf (P ) = 4. Since the
Petersen graph P is a 3-regular graph of order 10, by Lemma 2.2, we have df (P, 8) =(
10
2

)
= 45. On the other hand, since P is a vertex transitive graph, using Lemma 2.1, for

every vertex v of P and i = 4, 5, 6, 7 we have df (P, i) =
n
i
dvf (P, i). Let v be vertex with

label 1 in G17.
There are have exactly 21 fair dominating sets with cardinality seven and contain vertex
1 in the graph G17 as follows:
{1, 2, 3, 4, 6, 7, 10}, {1, 2, 3, 4, 6, 9, 10}, {1, 2, 3, 4, 8, 9, 10}, {1, 2, 3, 5, 6, 9, 10}, {1, 2, 3, 5, 7, 8, 9},
{1, 2, 3, 5, 8, 9, 10}, {1, 2, 4, 5, 6, 7, 8}, {1, 2, 4, 5, 7, 8, 9}, {1, 2, 4, 5, 8, 9, 10}, {1, 2, 4, 6, 7, 8, 10},
{1, 2, 4, 6, 8, 9, 10}, {1, 2, 4, 7, 8, 9, 10}, {1, 3, 4, 5, 6, 7, 8}, {1, 3, 4, 5, 6, 7, 10}, {1, 3, 4, 5, 7, 8, 9},
{1, 3, 4, 6, 7, 8, 10}, {1, 3, 4, 6, 7, 9, 10}, {1, 3, 4, 7, 8, 9, 10}, {1, 3, 5, 6, 7, 8, 9}, {1, 3, 5, 6, 7, 9, 10},
{1, 3, 5, 7, 8, 9, 10}.
There are 12 fair dominating sets with cardinality 6 which contain vertex 1 in the graph
G17 as follows:
{1, 2, 3, 4, 7, 8}, {1, 2, 3, 5, 6, 7}, {1, 2, 3, 7, 9, 10}, {1, 2, 4, 5, 6, 10}, {1, 2, 4, 8, 9, 10},
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{1, 2, 5, 6, 8, 9}, {1, 3, 4, 5, 9, 10}, {1, 3, 4, 6, 7, 10}, {1, 3, 5, 7, 8, 9}, {1, 3, 6, 8, 9, 10},
{1, 4, 5, 7, 8, 10}, {1, 4, 6, 7, 8, 9}.
There are six fair dominating sets with cardinality 5 and contain vertex 1 in the graph
G17 as follows:
{1, 2, 3, 4, 5}, {1, 2, 3, 6, 8}, {1, 2, 5, 7, 10}, {1, 2, 6, 7, 9}, {1, 4, 5, 6, 9}, {1, 5, 6, 8, 10}.
There are six fair dominating sets with cardinality 4 and contain vertex 1 in graph G17

as follows:
{1, 2, 3, 7}, {1, 2, 5, 6}, {1, 3, 9, 10}, {1, 4, 5, 10}, {1, 4, 7, 8}, {1, 6, 8, 9}.
So we have the result.
A finite sequence of real numbers (a0, a1, a2, . . . , an) is said to be

1. unimodal if a0 ≤ a1 ≤ · · · ≤ ak−1 ≤ ak ≥ ak+1 ≥ · · · ≥ an for some k ∈
{0, 1, 2, . . . , n};

2. logarithmically-concave (or simply log-concave), if the inequality a2k ≥ ak−1ak+1 is
valid for every k ∈ {1, 2, . . . , n− 1}.

Hence, a polynomial
∑n

k=0 akx
k is said to be unimodal (or log-concave) if the coefficient

sequence {ak} is unimodal (or log-concave). It is well-known that any log-concave poly-
nomial with positive coefficients is also unimodal, and that the sequence of binomial
coefficients {

(
n
k

)
} is log-concave. The unimodality of various families of graphs has been

the focus of a large amount of study. It is conjectured that the domination polynomial
of a graph is unimodal (see [2]). This conjecture is still open. Most of the sequences of
the number of some kind of dominating sets look unimodal, but here by Theorem 2.3 we
have the following corollary:

Corollary 2.4

(i) The fair domination polynomials of cubic graphs of order 10 (especially the Petersen
graph) are not unimodal and log-concave.

(ii) All cubic graphs of order 10 and especially the Petersen graph are determined
uniquely by their fair domination polynomial.

3 The number of fair dominating sets for power graphs

In this section, we count the number of the fair dominating sets of power of cycles and
paths. First, we recall the definition of graph power and some of its properties.

Definition 3.1 The k-th power Gk of an undirected graph G is another graph that has
the same set of vertices, but in which two vertices are adjacent when their distance in G
is at most k. It is easy to see that if a graph has the diameter d, then its d-th power is
the complete graph.
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Here we consider the power of cycles. Note that the number of the fair dominating
sets of cycles has been investigated in [4]. Let Cn, n ≥ 3, be the cycle with n vertices
V (Cn) = {1, 2, ..., n} and E(Cn) = {{1, 2}, {2, 3}, ..., {n − 1, n}, {n, 1}}. Let fCi

n be the
family of the fair dominating sets of Cn with cardinality i. A simple path is a path where
all its internal vertices have degree two.
Lemma 3.2 The following properties hold for cycles:

(i) ([8]) γf (Cn) = γ(Cn) = ⌈n
3
⌉, unless n ≡ 2 (mod 3) and n ≥ 5 in which case

γf (Cn) = γ(Cn) + 1 = ⌈n
3
⌉+ 1.

(ii) fCi
j = ∅, if and only if i > j or i < ⌈ j

3
⌉. (by (i) above).

(iii) If a graph G contains a simple path of length 3k− 1, then every fair dominating set
of G must contain at least k vertices of the path.

In the following theorem, we obtain the fair domination number of power of cycles for
some cases.
Theorem 3.3 The fair domination number of power of cycle Cm

n (m ≥ 2) is

γf (C
m
n ) =


1 m ≥ ⌊n

2
⌋,

2 n is even and m = n
2
− 1,

2
⌈
n−m
3

⌉
− 1 n is odd and m = ⌊n

2
⌋ − 1,

2
⌈
n−m
4

⌉
− 1 n is even and m = ⌊n

2
⌋ − 2.

Proof. For m ≥ ⌊n
2
⌋, the graph Cm

n is isomorphic to the complete graph Kn, and so
simply we have the result. For m = n

2
− 1, when n is even, the degree of each vertex of

Cm
n is n− 2. We choose two vertices that are not connected to each other, so we have the

smallest fair dominating set in this case.
Now, suppose that n is odd and m = ⌊n

2
⌋ − 1. To prove that γf (C

m
n ) = 2

⌈
n−m
3

⌉
− 1, we

consider three cases n = 6k + 1, n = 6k + 3 and n = 6k + 5 for some k ∈ N. It is notable
that the value of m for n = 6k+1, n = 6k+3 and n = 6k+5 is m = 3k− 1,m = 3k and
m = 3k + 1, respectively. Consider the set D as a subset of vertices of Cm

n as follows:

D :=
k+1⋃
j=1

{m− (3j − 4)}
k⋃

j=1

{n− (3j − 1)} ∪ {1,m+ 3}.

We only prove the case n = 6k + 3. Analogously, we can prove the cases n = 6k + 1 and
n = 6k + 5.
For n = 6k + 3, we have D = {1, 4, 7, . . . , n − 2} and |D| = 2k + 1 = 2

⌈
n−m
3

⌉
− 1. It is

easy to verify that every vertex of Cm
n which is outside D is adjacent to 2k vertices of D.

Then, the set D is a fair dominating set of Cm
n . Hence, γf (C

m
n ) ≤ 2k + 1 = 2

⌈
n−m
3

⌉
− 1.

Now, we show that γf (C
m
n ) ≥ 2k + 1. Suppose by contradiction that γf (C

m
n ) < 2k + 1.

Let S be a γf -set of C
m
n . Let r > 0 be an integer such that for every vertex u ∈ V \ S,

we have |N(u) ∩ S| = r. Since Cm
n is a 2m-regular graph, the number of the edges of the

induced subgraph G[S − V ] is (2m−r)|V−S|
2

, and the number of the edges Cm
n whose one
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endpoint is in S and the other endpoint is in V \ S is equal to r × |V − S|. Hence, since
the number of the edges of Cm

n is mn, the number of the edges of the induced subgraph

of G[S] is equal to mn−
(
r|V − S|+ (2m−r)|V−S|

2

)
. If s := |S|, then,

mn−
(
r|V − S|+ (2m− r)|V − S|

2

)
=

2ms− rn+ rs

2
.

It is notable that |S| ≤ 2k and r ≤ |S|, so r ≤ s. It is clear that the number of the edges

of G[S] is at most
(
s
2

)
= s(s−1)

2
. So, we should have

2ms− rn+ rs

2
≤ s(s− 1)

2
.

Therefore, we have

r ≥ (2m+ 1)s− s2

n− s
. (1)

For n = 6k + 3 and m = 3k,

r ≥ (1 + 6k)s− s2

6k + 3− s
. (2)

Now, we consider two cases as follows.

• r ≤ s− 1. From Equation (2), we have

(1 + 6k)s− s2

6k + 3− s
≤ s− 1. (3)

So, by applying some simple algebraic computations on inequality 3, we have s ≥
2k + 1 which contradicts that s ≤ 2k.

• r = s. Assume that S is an independent set. Since Cm
n is a 2m-regular graph, every

vertex of S should be adjacent to 2m vertices of V \ S. On the other hand, since
r = s, every vertex of V \S is adjacent to all vertices of S and so 2m = |V−S| = n−s.
Therefore, 6k = 6k+3−s. Hence, s = 3. Let u and v be two vertices of S. Without
loss of generality, assume that u = c1. In the graph Cm

n , the vertex c1 is adjacent
to the vertices c2, c3, . . . , cm+1, cn−m+1, cn−m+2, . . . , cn. Since the vertex u is not
adjacent to v, we have v ∈ {cm+2, cm+3, . . . , cn−m}. On the other hand, since r = s,
we have N(v) = N(u). It means that v is adjacent to the vertices c2, c3, . . . , cm+1,
cn−m+1, cn−m+2, . . . , cn but this is a contradiction, because it is easy to verify that
in the graph Cm

n , every vertex of {cm+2, cm+3, . . . , cn−m} is not adjacent to either a
vertex of {c2, c3, . . . , cm+1} or {cn−m+1, cn−m+2, . . . , cn}.
Now, we assume that S is not an independent set. Let u and v be two adjacent
vertices of S. The number of the triangle uvw where w is a vertex of V \ S is
2(n−s) = 12k+6−2s. Suppose, without loss of generality, that u := c1. In the graph
Cm

n , the number of triangles c1xy is maximized when x = c2 and y ∈ N(c1)∩N(c2).
Then, the number of the triangles c1c2y with y ∈ N(c1)∩N(c2) is 2(m−1) = 6k−2.
Since s ≤ 2k, we have 12k + 6 − 2s ≥ 8k + 6. Since 6k − 2 < 8k + 6, this is a
contradiction.
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k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
C2

6 0 3 8 15 6
C2

7 0 0 7 7 21 7
C2

8 0 0 8 6 8 28 8
C2

9 0 0 3 9 18 12 36 9
C2

10 0 5 0 20 2 40 20 45 10
C2

11 0 0 0 11 22 0 66 33 55 11
C2

12 0 0 0 3 24 24 0 99 52 66 12
C2

13 0 0 0 0 26 13 52 0 143 78 78 13
C2

14 0 0 0 0 14 35 2 119 0 203 112 91 14
C2

15 0 0 5 0 3 55 15 0 235 3 285 155 105 15
C2

16 0 0 0 0 0 40 64 6 0 408 16 396 208 120 16
C2

17 0 0 0 0 0 17 85 51 34 0 646 51 544 272 136 17
C2

18 0 0 0 0 0 3 90 63 62 144 0 960 126 738 348 153 18

Table 2: The coefficients of xk in the fair domination polynomial of C2
n.

Hence, we have γf (C
m
n ) ≥ 2k + 1.

Now, suppose that n is even and m = ⌊n
2
⌋ − 2. We consider four cases as follows:

{n = 8k,m = 4k − 2}, {n = 8k + 2,m = 4k − 1}, {n = 8k + 4,m = 4k} and {n =
8k+6,m = 4k+1}. The proof of these cases is similar to the case n = 6k+3 mentioned
above just we use the set D as follows.

D :=
k⋃

j=1

{m− (4j − 5)}
k−1⋃
j=1

{n− (4j − 1)} ∪ {1,m+ 4}, for n = 8k or n = 8k + 2.

D :=
k⋃

j=1

{m− (4j − 5)}
k−1⋃
j=1

{n− (4j − 1)} ∪ {1,m+ 5}, for n = 8k + 4

D :=
k⋃

j=1

{m− (4j − 5)}
k⋃

j=1

{n− (4j − 1)} ∪ {1, 3,m+ 4}, for n = 8k + 6.

.
The number of fair dominating sets of C2

n for 6 ≤ n ≤ 18 has shown in Table 2.

From Table 2 we have the following conjecture:

Conjecture 3.4

(i) For every n ≥ 7,

df (C
2
n, n− 3) = 7

(
n− 7

0

)
+

(
n− 7

1

)
+ 3

(
n− 7

2

)
+

(
n− 7

3

)
.
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k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
C3

7 7 21 35 35 21 7
C3

8 0 4 0 22 32 28 8
C3

9 0 0 3 0 27 30 36 9
C3

10 0 0 10 0 2 40 30 45 10
C3

11 0 0 11 0 0 33 44 33 55 11
C3

12 0 0 4 3 0 12 48 75 40 66 12
C3

13 0 0 0 13 13 0 78 39 130 52 78 13
C3

14 0 7 0 35 0 105 2 203 14 203 70 91 14
C3

15 0 0 0 15 3 0 75 60 280 3 285 95 105 15
C3

16 0 0 0 4 16 0 0 38 160 352 0 380 128 120 16
C3

17 0 0 0 0 34 0 0 0 102 221 493 0 493 170 136 17
C3

18 0 0 0 0 36 3 0 0 8 315 162 780 0 630 222 153 18

Table 3: The coefficients of xk in the fair domination polynomial of C3
n.

(ii) For every n ≥ 11,

df (C
2
n, n−4) = 11+55

(
n− 11

0

)
+33

(
n− 11

1

)
+11

(
n− 11

2

)
+5

(
n− 11

3

)
+

(
n− 11

4

)
.

(iii) For every n ≥ 15,

df (C
2
n, n−5) = 3

(
n− 15

0

)
+13

(
n− 15

1

)
+22

(
n− 15

2

)
+18

(
n− 15

3

)
+7

(
n− 15

4

)
+

(
n− 15

5

)
.

(iv) For every n ≥ 14, df (C
2
n, n− 6) =

119
(
n−14

0

)
+ 116

(
n−14

1

)
+ 57

(
n−14

2

)
+ 8

(
n−14

3

)
+ 3

(
n−14

4

)
+ 4

(
n−14

5

)
+
(
n−14

6

)
.

Also, we have shown the number of the fair dominating sets of C3
n for 7 ≤ n ≤ 18 in Table

3.

Finally, using Matlab we obtained the number of the fair dominating sets of P 2
n for

4 ≤ n ≤ 20 and have shown them in Table 4. Using Tables 2,3 and 4 we have the follow-
ing result.

Theorem 3.5 The fair domination polynomial of power of paths and cycles is not uni-
modal.
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k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
P 2
4 2 2 4

P 2
5 1 0 2 5

P 2
6 0 1 2 3 6

P 2
7 0 2 1 2 5 7

P 2
8 0 3 0 5 4 8 8

P 2
9 0 2 0 4 5 9 12 9

P 2
10 0 1 0 1 6 8 14 17 10

P 2
11 0 0 1 0 6 4 16 20 23 11

P 2
12 0 0 2 0 4 6 6 28 28 30 12

P 2
13 0 0 3 0 1 12 4 15 44 39 38 13

P 2
14 0 0 2 0 0 11 12 8 32 65 54 47 14

P 2
15 0 0 1 0 0 5 18 13 22 57 93 74 57 15

P 2
16 0 0 0 1 0 1 20 13 22 53 90 131 100 68 16

P 2
17 0 0 0 2 0 0 15 22 11 44 109 132 183 133 80 17

P 2
18 0 0 0 3 0 0 6 37 12 17 92 198 186 254 174 93 18

P 2
19 0 0 0 2 0 0 1 36 36 11 37 182 328 258 350 224 107 19

P 2
20 0 0 0 1 0 0 0 21 60 29 22 94 330 508 358 478 284 122 20

Table 4: The coefficients of xk in the fair domination polynomial of P 2
n .

4 Conclusion

In this paper, we studied the number of fair dominating sets of some specific graphs. We
obtained results for the cubic graphs of order 10. As a consequence, we observed that all
cubic graphs of order 10 and especially the Petersen graph are determined uniquely by
their fair domination polynomials. Moreover, we studied the number of the fair dominat-
ing sets of power of cycles and paths. There are many open problems in the study of the
number of the fair dominating sets of power of a graph that we state and close the paper
with some of them:

Problem 1: What is the closed formula for the fair domination number of power of a
graph?

For any n ∈ N, the n-subdivision of G is a simple graph G
1
n which is constructed by

replacing each edge of G with a path of length n. The fractional power of G, is mth power
of the n-subdivision of G, i.e., (G

1
n )m or n-subdivision of m-th power of G, i.e., (Gm)

1
n

(see [5]).

Problem 2: What is the fair domination number of fractional power of a graph?
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