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ABSTRACT: In this research, a nonlinear model is presented to explore the seismic 

response of concrete arch dams. This model is much more simplified and efficient in 

comparison with plastic-damage models. It can represent softening, hardening and 

stiffness degradation of concrete due to load reversal. Additionally, it is able to predict 

the final and residual strength of the structure in softening with good accuracy. Employing 

different scale factors to monitor the failure of the dam, this model is used to analyze the 

nonlinear response of Morrow Point arch dam. The dam-reservoir interaction is 

considered with modified Westergaard’s approach, and the dam body is modeled with 

second order 20-node isoparametric elements. Moreover, two different damping 

algorithms are included to evaluate their impact on nonlinear analysis. It is concluded that 

the employed model can predict realistic crack patterns through the dam body, and it can 

be a good replacement for other time consuming and complicated models. In addition, it 

is shown that the damping algorithm plays a significant role in the nonlinear dynamic 

analysis of concrete arch dams. 

 

Keywords: Concrete Arch Dams, Damage Mechanics, Different Damping Algorithms, 

Finite Element, Nonlinear Model. 

  
 

1. Introduction 

 

Most of the concrete dams have been built 

based on simple and inadequate seismic 

design assumptions in the past. Therefore, 

the seismic safety of these essential 

infrastructures needed for water supply and 

flood control is upon question. Moreover, 

the endangered population in downstream 

of dams is expanding continuously. 

Therefore, the failure of dams would lead to 

drastic socioeconomic damages. The 
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increasing concern of the seismic safety of 

such critical structures has created a high 

demand for nonlinear models capable of 

reassessing existing dams.  

In this regard, there are two primary 

nonlinear models, continuum and discrete 

(Jenabidehkordi, 2019; Mauludin and 

Oucif, 2020). In discrete models, the split 

between element edges is adopted, which 

has two major disadvantages (Cabral et al., 

2019; Nguyen et al., 2019; Sinaie et al., 

2018). First, connectivity should change as 
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crack propagates, which conflicts with the 

intrinsic trend of Finite Element Analysis 

(FEA). Second, the crack line is 

predetermined, and it has a fixed direction 

during the analysis (Qin et al., 2021; Rots 

and Blaauwendraad, 1989). Continuum 

models overcome these two significant 

shortcomings. They are classified into 

smeared crack and damage models (Ghrib 

and Tinawi, 1995; Park et al., 2021; 

Voyiadjis et al., 2021). Although 

researchers have employed both nonlinear 

approaches for the dynamic analysis of 

concrete arch dams (Alegre et al., 2022; 

Alegre and Oliveira, 2020; Ardakanian et 

al., 2006; Mirzabozorg et al., 2007, 2004; 

Mirzabozorg and Ghaemian, 2005; Xu et 

al., 2017), the damage model has become 

more prevalent recently. The basis of the 

continuum damage model is using an 

internal variable called the damage variable 

to showcase the average material 

degradation on macro-mechanics scale 

(Farahani, 2005; Voyiadjis and Kattan, 

2017). It should be mentioned that often 

plasticity theories are coupled with damage 

mechanics in order to consider irreversible 

strain that evolves during loading. In this 

regard, there have been researches 

incorporating plastic models for nonlinear 

analysis (Daneshyar and Ghaemian, 2019; 

Komasi and Beiranvand, 2021; Omidi and 

Lotfi, 2017a; Park et al., 2021).  

There have been some researches for 

nonlinear analysis of concrete dams using 

damage-based models. Ghrib and Tinawi 

(1995) proposed a damage model 

functioning on the basic properties of 

fracture energy and concrete strength for 

exploring the nonlinear response of 

concrete gravity dams. Cervera et al. (1195) 

utilized an isotropic damage model which 

could consider tension and compression 

damage, and stiffness. A rate-dependent 

isotropic damage model capable of 

considering stiffness degradation and 

stiffness recovery and strain-rate sensitivity 

was presented by Cervera et al. (1996). 

Valliappan et al. (1996) investigated the 

seismic response of concrete gravity dams 

using the concept of Continuum Damage 

Mechanics (CDM). The damage criterion 

utilized in their research was a second order 

tensor model based on elastic-brittle 

characterization. The results indicated that 

there is a considerable difference between 

the seismic response of a damaged and 

undamaged concrete. Lee and Fenves 

(1998) proposed a new nonlinear model 

based on plastic-damage concept and 

investigated the seismic behavior of Koyna 

gravity dam. This model could consider the 

effect of strain softening, elastic stiffness 

degradation, large cracks formation and the 

stiffness recovery after closure of cracks. 

Valliappan et al. (1999) developed a finite 

element program based on HHT and used 

the nonlinear concept of CDM to present 

the seismic damage response of arch dams. 

The methodology employed was proved to 

be computationally efficient and consistent 

in its treatment of both growth and 

propagation of damage. In another research, 

Omidi and Lotfi (2017a) used a plastic-

damage model in combination with the 

discrete crack (DC) model for 3-D cases to 

study the seismic damage response of 

concrete arch dams. The core of their 

material constitutive law relied on the 

presented model by Lee and Fenves (1998). 

It was proved that using the combination of 

DC and PD models yields a more consistent 

and reliable response compared to 

employing DC or PD approaches alone. 

Daneshyar and Ghaemian (2019) used a 

rate-dependent anisotropic PD model for 

dynamic analysis of concrete arch dams. In 

addition to material inelasticity, the 

nonlinearity of joints was also considered. 

In a previous study by Akbari and Lotfi 

(2022), a simplified isotropic damage 

model was utilized for seismic assessment 

of a concrete gravity dam. In addition to its 

simple formulation and easy programming, 

it could successfully determine acceptable 

crack patterns in comparison to previous 

studies. This model was implemented in 

studying the nonlinear behavior of the 

Koyna dam utilizing three different 

damping algorithms. The results indicated 
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that the chosen damping could significantly 

influence the nonlinear results. Herein, the 

model is utilized to analyze the nonlinear 

behavior of concrete arch dams. This model 

has two internal damage variables for 

tensile and compressive state, separately. It 

also includes stiffness recovery due to load 

reversal as moving from tension to 

compression regime. The central part of the 

model employs Lubliner et al. (1989) stress 

functions to define tensile and compressive 

uniaxial behavior. The strain equivalence 

assumption is the basis of the model.  The 

criteria for damage evolution are relatively 

simple and efficient which is based on two 

threshold effective principal stresses. This 

model is validated by uniaxial tension, 

compression, and full cyclic tension-

compression tests in the initial stages. 

Thereafter, nonlinear response of the Koyna 

gravity dam is evaluated in 3-D modeling, 

and finally the developed program is 

employed for the seismic damage 

evaluation of Morrow Point arch dam using 

two different damping algorithms. 

The remaining part of this paper is 

structured as follows. In Section 2, the 

fundamental equations of damage 

constitutive law are discussed. In Section 3, 

the dynamic equations of model are 

presented. In Section 4, three elementary 

clarification tests and applications of the 

model in 3-D analysis of Koyna dam are 

shown to verify the implementation of the 

presented model accuracy. Finally, in 

Section 5, by utilizing the damage model, 

the seismic damage response of a typical 

arch dam by means of three different 

damping algorithms is discussed.  

 

2. Damage Constitutive Law 

 

The stress 𝝈, and the effective stress �̄� may 

be defined as: 

 
𝝈 = (1 − 𝐷)�̄� (1) 

�̄� = 𝑬𝟎𝜺 (2) 

 

where 𝐷, 𝑬𝟎 and 𝜺: are damage variable, 

undamaged elastic rigidity matrix and strain 

matrix, respectively. In the present model to 

detect the damage in tension and 

compression two internal variables D+ and 

D- are considered, respectively, as the 

behavior of concrete in tension and 

compression is quite different (Cervera et 

al., 2017). Therefore, the Eq. (1) is changed 

into the following equation (Cervera and 

Tesei, 2017): 

 
𝝈 = (1 − 𝐷+)�̄�+ + (1 − 𝐷−)�̄�− (3) 

 

In the presented equations the tension 

and compression are illustrated with (+) and 

(-), respectively. Damage variable D can be 

in the range of 0 to 1 (i.e., 0 for no damage 

and 1 for full damage). The D+ and D- are 

defined as follows for the present isotropic 

damage model: 

 

𝐷+ = 1 −
𝑓𝑚𝑎𝑥
+

𝑓𝑚𝑎𝑥
+

 (4) 

𝐷− = 1 −
𝑓𝑚𝑎𝑥
−

𝑓𝑚𝑎𝑥
−

 (5) 

 

where 𝑓𝑚𝑎𝑥
+ and 𝑓𝑚𝑎𝑥

− : are maximum tensile 

and compressive principal effective stresses 

reached up to that point in time, 

respectively. Moreover, 𝑓𝑚𝑎𝑥
+  and 𝑓𝑚𝑎𝑥

− : are 

corresponding nominal uniaxial tensile and 

compressive stresses. 

The uniaxial stress functions of Lubliner 

et al. (1989) are the basis of the model, 

which are demonstrated as follows: 

 

𝑓+ = 𝑓0
+[(1 + 𝐴+)𝑒−𝐵

+(𝜀+−𝜀0
+)

− 𝐴+𝑒−2𝐵
+(𝜀+−𝜀0

+)] 
(6) 

𝑓− = 𝑓0
−[(1 + 𝐴−)𝑒−𝐵

−(𝜀−−𝜀0
−)

− 𝐴−𝑒−2𝐵
−(𝜀−−𝜀0

−)] 
(7) 

 

The uni-axial stress curves of this model 

are illustrated in Figure 1. In the above 

equation, 𝑓0
±: is the elastic strength of 

concrete, 𝜀±: is the strain and 𝜀0
±: is the 

maximum linear elastic strain. 

The A+ parameter can be calculated by 

taking the derivative of Eq. (6) at the onset 

of nonlinearity (i.e., 𝜀+ = 𝜀0
+), and setting 
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that equal to zero (i.e., 
𝑑𝑓+

𝑑𝜀+
|
𝜀+=𝜀0

+
= 0) 

which results in: 

 
𝐴+ = 1 (8) 

 

The A- parameter can be calculated by 

taking the derivative of Eq. (7) at the strain 

corresponding to maximum compressive 

stress of concrete and setting that equal to 

zero (
𝑑𝑓−

𝑑𝜀−
| 𝜀−=𝜀𝑚𝑎𝑥− = 0). Thereafter, set 

the maximum compressive stress equal to 

𝑓1
−. This would lead to the following 

relation by defining 𝛽− =
𝑓1
−

𝑓0
−: 

 

𝐴− = (2𝛽− − 1) + 2√𝛽−(𝛽− − 1) (9) 

 

In order to calculate the parameter 𝐵±, 

there is a need to use specific fracture 

energy per characteristic length (𝑔 =

∫ 𝜎𝑑𝜀∗; 𝜀∗ = 𝜀 − 𝜀0
∞

0
), knowing the fact 

that this energy is equal to the area of stress-

strain curve. The 𝐵± parameter are defined 

as follow: 
 

𝐵± =
2 + 𝐴±

𝜀0
± (

2𝐸𝐺𝑓
±

𝑙∗±(𝑓0
±)
2 − 1)

 
(10) 

 

where 𝐺𝑓
± and 𝑙∗±: are the fracture energy 

and the characteristic length, respectively. 

𝑙∗± is derived by calculating the cube root 

of the tributary volume at each integration 

point of finite element (Oliver, 1989).  

The process of calculating stress based 

on the CDM and updating the damage 

variable is depicted in Figure 2. 

 

3. Nonlinear Dynamic Formulation 

 

In order to solve the dynamic equilibrium 

equation in the time domain, a step-by-step 

procedure is employed (Eq. (11)). 

 

𝑴�̈� + 𝑷(𝑼, �̇�) = 𝑹𝑠𝑡 −𝑴𝑱𝒂𝑔 (11) 

 

where 𝑴: is the mass matrix, including the 

mass of dam body and added mass;𝑼, �̇� and 

�̈�: are displacement, velocity and 

acceleration vectors, respectively; 𝑷: is the 

restoring force vector; 𝑹𝑠𝑡: is the applied 

static loads, including hydrostatic pressures 

and gravity effects; 𝑱: is the influence 

matrix for 𝒂𝑔. The restoring force vector 

containing internal and damping forces, is 

defined as: 

 

𝑷𝑒 = 𝑭𝑒 + 𝑪𝑒�̇�𝑒 (12) 

 

where 𝑭𝑒: is the internal force vector, and in 

an element domain 𝛺𝑒, can be calculated as 

follows: 

 

𝑭𝑒 = ∫ 𝑩𝑇𝝈𝑑𝛺
𝛺𝑒

 (13) 

 

where 𝑩: is the strain-displacement 

transformation matrix.  

 

  
(a) Tension (b) Compression 

Fig. 1. The uniaxial behavior of Lubliner model (Lubliner et al., 1989) 
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Fig. 2. The stress calculation layout with the presented model 

 

Furthermore, 𝑪𝑒: the Rayleigh damping 

matrix consists of damping associated with 

stiffness (𝑪𝐾
𝑒 = 𝛼𝐾𝑲

𝑒) and mass (𝑪𝑀
𝑒 =

𝛼𝑀𝑴
𝑒) is defined as follows (Rayleigh and 

Lindsay, 1945): 

 
𝑪𝑒 = 𝑪𝐾

𝑒 + 𝑪𝑀
𝑒  (14) 

 

3.1. Damping Algorithm 

In this research, two different damping 

algorithms are utilized in dynamic 

equations, which are categorized based on 

the update time of the damping matrix in the 

procedure of dynamic equations and 

identified by JDAMP parameter. In the 

dynamic analysis, 𝑪𝑒 is defined as: 

 

𝑪𝒆 = 𝛼𝑘∫𝑩
𝑇(1 − 𝐷)𝑬0𝑩𝑑𝑉

𝑉

 (15) 

 

where total damage (D), following the 

definition proposed by Lee and Fenves 

(1998), is defined as: 

 
𝐷 = 1 − (1 − 𝑠𝐷+)(1 − 𝐷−) (16) 

 

The s parameter varies from 0 to 1 

demonstrates stiffness recovery during the 

unloading process from tensile to 

compressive state, and can be obtained as 

(Lee and Fenves, 1998; Omidi and Lotfi, 

2017a): 
 

𝑠 =
∑ ⟨�̂̄�𝑖⟩
3
𝑖=1

∑ |�̂̄�𝑖|
3
𝑖=1

 (17) 
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The notation ⟨. ⟩: is the Macaulay 

bracket, which yields the enclosed entity 

and zero for positive and negative values, 

respectively. The �̂̄�: is effective principal 

stress matrix. 

Moreover, 𝑬0: is the elastic rigidity 

matrix. In the first case (JDAMP = 0), the 

damping matrix is fixed through the whole 

analysis and equals to the undamaged state 

damping. That means: 

 

𝑪𝑛+𝜑
𝑖 = 𝑪0 (18) 

 

in which 𝑪0: is explained as: 

 

𝑪𝑒 = 𝛼𝑘∫𝑩
𝑇(1                                          

𝑉

− 𝐷)𝑬0𝑩𝑑𝑉
 𝐷=0 undamaged state 
→                   𝑪0

𝑒

= 𝛼𝑘∫𝑩
𝑇𝑬0𝑩𝑑𝑉

𝑉

 

 (19) 

 

Therefore, the dynamic equilibrium relation 

can be transformed to the following 

equation based on the HHT method as Eq. 

(20). The HHT time integration method is 

summarized in Appendix A, which for more 

details can be referred to Akbari and Lotfi 

(2022). 

 
[𝑎0𝑴+ (1 − 𝛼)𝑎1𝑪0 + (1 − 𝛼)𝑲0]𝛥𝑼𝑛+1

𝑖+1

= 𝑹𝑛+𝜑 − 𝑭𝑛+𝜑
𝑖 − 𝑪0�̇�𝑛+𝜑

𝑖

−𝑴�̈�𝑛+1
𝑖  

 (20) 

 

In the second case (JDAMP = 1), the 

damping matrix would be updated just at 

the first iteration of each step in the analysis. 

 

𝑪𝑛+𝜑
𝑖 = 𝑪𝑛+1

0 = 𝑪𝑛 (21) 

 

Thus, the dynamic equilibrium relation can 

be written as Eq. (22). 

 

[𝑎0𝑴+ (1 − 𝛼)𝑎1𝑪0 + (1 − 𝛼)𝑲0]𝛥𝑼𝑛+1
𝑖+1

= 𝑹𝑛+𝜑 − 𝑭𝑛+𝜑
𝑖 − 𝐶𝑛�̇�𝑛+𝜑

𝑖

−𝑴�̈�𝑛+1
𝑖  

 (22) 

 

4. Verification of the Presented Model 

 

To examine the accuracy of proposed model 

and the developed finite element program, 

two kinds of tests are conducted. The first 

one is the primary uniaxial test to 

investigate the capability of program for 

considering softening and hardening and 

stiffness degradation. The second test is 

implementation of the 3-D program for 

analyzing the nonlinear behavior of Koyna 

gravity dam to investigate the crack 

patterns. 

 

4.1. Primary Test of the Model 

To verify the primary behavior and 

accuracy of the presented nonlinear model, 

an eight-node three dimensional 

isoparametric element whose 4 nodes are 

constrained in the perpendicular to its plane 

direction and the other 4 nodes are 

subjected to several cyclic loadings (i.e., 

specified controlled displacement). 

Moreover, two of the adjacent side-planes 

are also restrained in the perpendicular 

directions to prevent rigid body motions in 

those directions. The model mechanical 

properties are depicted in Table 1. 

The results of three different uniaxial 

tests are demonstrated in Figure 3. It is vivid 

that the model can capture softening and 

hardening-softening of concrete in tension 

and compression, respectively. Moreover, it 

also takes into the account the stiffness 

degradation regarding unloading. 

Furthermore, in the tension-compression 

test, the capability of stiffness recovery is 

proved when the stress state changes from 

tension to compression. As a result, the 

proposed model can determine the behavior 

of concrete relatively well, considering the 

simplicity of the model. 
 

Table 1. Mechanical properties of the model 

E(GPa) ρ (
𝒌𝒈

𝒎𝟑⁄ ) υ 𝒇𝟎
+(MPa) 𝒇𝟎

−(MPa) 𝒇𝟏
−(MPa) 𝑮𝒇

+(𝑴𝑵 𝒎⁄ ) 𝑮𝒇
−(𝑴𝑵 𝒎⁄ ) 

30 2.580D+3 0.18 1.8 11.70 18 0.18D-3 72D-3 
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(a) Tension (b) Compression 

  

 
(c) Tension-Compression 

Fig. 3. Uniaxial tests on an 8-noded element 

 

4.2. Application of the Model for Koyna 

Dam 

Herein, the seismic response of Koyna 

dam with 3-dimensional 8-node elements is 

compared with results of the shake table test 

conducted in the Berkeley university 

laboratory (Hall, 1988). The concrete 

properties are: 𝐸0 = 30𝐺𝑃𝑎, 𝜌 = 2630
𝑘𝑔

𝑚3
, 

𝜈 = 0.2, 𝑓0
+ = 2.9𝑀𝑃𝑎, 𝑓1

− = 24.10𝑀𝑃𝑎, 

𝐺𝑓
+ = 0.0002

𝑀𝑁

𝑚
 and 𝐺𝑓

− = 0.02
𝑀𝑁

𝑚
. 

Moreover, the rigid foundation assumption 

and modified Westergaard method for dam-

water interaction are considered (Omidi and 

Lotfi, 2017b). As it can be observed, the 

location of crack pattern in numerical 

results agrees with the experiment data and 

the accuracy of the results obtained by the 

personal program is quite acceptable. 

 

  

(a) Results of the presented 

model 

(b) Experimental crack pattern at the scale of 1:150 simulation 

(Hall, 1988) 

Fig. 4. Crack pattern of Koyna dam 
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5. Seismic Damage Analysis of Morrow 

Point Arch Dam Utilizing the Damage 

Model 

 

Herein, the stability and the nonlinear 

behavior of Morrow Point arch dam are 

studied by applying the damage model 

previously discussed. Morrow Point is a 

thin-arch, double-curvature arch dam 

located approximately 35 km east of Mon-

trose on the Gunnison River in 

southwestern Colorado. The dam structure 

is 143 m high with a crest length of 221 m. 

The thickness of the crown cantilever 

ranges from 3.7 m at the top to 16 m at the 

bottom (Wikipedia Contributors, 2022). 

 

5.1. Numerical Simulations, Mechanical 

Properties and Loading 

The dam is discretized by 3870 second-

order isoparametric finite elements as 

shown in Figure 5. The hydrodynamic 

pressures are considered based on modified 

Westergaard’s approach and the foundation 

is assumed to be rigid. These assumptions 

are selected to minimize computational 

efforts. Of course, it is vivid that the rigidity 

of foundation has a drastic impact on the 

boundary stresses in a linear analysis 

leading to significant tensile stresses near 

the base. However, these high stresses are 

expected to be released in the nonlinear 

analysis. Moreover, this release of stresses 

can examine the nonlinear model accuracy. 

The mechanical properties of concrete are 

depicted in Table 2. 

In all analyses, time step Δt = 0.005 sec 

is utilized, and the stiffness coefficient of 

Rayleigh damping (𝛼𝑘) is considered as 

0.006297. The static load comprises 

Gravity and Hydrostatic pressures 

(maximum water depth = 141.73 m), and 

the dynamic loading is the seismic 

excitations consisting of the stream and the 

vertical components of the Taft earthquake, 

as demonstrated in Figure 6. The cross-

canyon excitation is omitted for a complete 

symmetric loading condition. This can be 

helpful as an extra tool for the verification 

of the analysis results. 

 

5.2. Analysis Results 

Three analysis types are considered: a 

linear analysis (LN), a nonlinear analysis 

with damage model using constant damping 

option (JDAMP = 0), and a nonlinear 

analysis with damage model using variable 

damping option (JDAMP = 1). It should be 

mentioned that time is divided into negative 

and positive part. Although negative time is 

not real, it is just considered for static 

analysis, including gravity and hydrostatic 

loads. In this part of analysis, the gravity 

loads are implemented in 20 increments and 

the hydrostatic loads in the next 20 

increments at negative range of time. The 

dynamic analysis started with initial 

conditions induced by static analysis at time 

zero. 

 

  

Fig. 5. Finite element mesh of Morrow Point arch dam

 
Table 2. Mechanical behavior of concrete 

E (GPa) ρ (
𝒌𝒈

𝒎𝟑⁄ ) υ 𝒇𝟎
+(MPa) 𝒇𝟎

−(MPa) 𝒇𝟏
−(MPa) 𝑮𝒇

+(𝑴𝑵 𝒎⁄ ) 𝑮𝒇
−(𝑴𝑵 𝒎⁄ ) 

 27.5 2.528D+3 0.2 3.0 19.50 30.0 0.4D-3 55.0D-3 
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(a) Stream component 

 

 
(b) Vertical component 

Fig. 6. The Taft ground acceleration

 

5.2.1. Linear Results 

In this section, linear analysis results are 

presented. Two primary analyses are 

conducted for this case to examine the effect 

of the reservoir and various Scale Factors 

(SC) on the analysis results.  

 

5.2.1.1. The Influence of Hydrodynamic 

Pressures 

For the aim of saving computational time 

in this study, the exact modeling of the dam 

reservoir is ignored. However, an 

approximate method (i.e., Westergaard’s 

approach) is used to include the effect of the 

hydrodynamic pressures. The time history 

of stream-component of dam crest 

displacement is depicted in Figure 7. As 

observed, by considering the effect of the 

hydrodynamic pressures, the dam crest 

displacement is raised significantly as 

expected. 

 

 
Fig. 7. The dam mid-crest displacement in the stream direction 
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5.2.1.2. The Effect of Different Scale 

Factors 

To investigate the linear dynamic 

response of the dam under severe seismic 

loads, the Taft acceleration components are 

multiplied by a scale factor of 1.2, 1.3, and 

1.4. These magnified records are applied to 

the dam in turn. As it can be observed, 

increasing the acceleration components 

leads to the increase in the displacement of 

the dam mid-crest as shown in Figure 8. 

Moreover, the maximum tensile principal 

stresses at abutments and the dam’s mid-

crest region are increased from 11.70 to 

12.27 MPa (Figure 9). These stresses are 

much higher than concrete tensile strength. 

Therefore, these parts of the dam are 

presumably prone to cracks during severe 

earthquakes. Of course, one would actually 

capture much lower tensile stresses at these 

locations due to contraction joint or 

peripheral joint modeling that is neglected 

herein for simplification purposes. The 

maximum compressive principal stresses 

are increased from -10.61 to -11.11. 

Although the compressive stresses are 

increased, they do not surpass the 

concrete’s compressive strength and are not 

a matter of concern.  

 

 
Fig. 8. The dam mid-crest displacement in the stream direction 

 

 
(a) Maximum tension SC = 1.2 

 

 
(b) Maximum compression SC = 1.2 
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(c) Maximum tension SC = 1.3 

 

 
(d) Maximum compression SC = 1.3 

 

 
(e) Maximum tension SC = 1.4 

 

 
(f) Maximum compression SC = 1.4 

Fig. 9. Envelope of principal stresses (MPa) for linear case

 

5.2.2. Nonlinear Results 

In this section, two primary analyses are 

conducted with different damping 

algorithms: 1) Constant Damping (JDAMP 

= 0); and 2) Varying damping (JDAMP = 

1). In each part, different Scale Factors (SC) 

of Taft acceleration are applied to the 

Morrow Point dam to investigate its 

nonlinear response due to extreme dynamic 

loading.  

 

5.2.2.1. Constant Damping (JDAMP=0) 

This case results are summarized in 

Table 3. Moreover, the envelopes of 

maximum tensile and compressive principal 

stresses throughout the analysis are 
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demonstrated in Figure 10. It is observed 

that tensile stresses are now bounded to the 

concrete tensile strength, illustrating one of 

the main capabilities of the present model. 

Moreover, high compressive principal 

stresses have occurred in the dam’s mid-

crest region (U/S face), dam’s base and 

abutments (D/S face). However, they do not 

exceed the concrete compressive strength 

even for 1.4 scale factor. Therefore, no 

compressive damage is expected in these 

cases. It is also noticed that tensile and 

compressive stresses are distributed in a 

broader range as scale factor increases.  

The tensile damage resulted for various 

parts of the dam body at the end of analysis 

is demonstrated in Figure 11. It is noticed 

that there are tensile damages in the base 

and abutments, as well as dam’s mid-crest 

region on the U/S face. However, these are 

mainly occurring due to lack of peripheral 

and contraction joint modeling. Therefore, 

our concrete model has actually replaced 

joint modeling at those locations in an 

approximate manner. It is also noticed that 

there is tensile damage at dam’s top portion 

on the D/S face which is growing in length 

as scale factor increases. However, it is 

noted that it has not yet formed a complete 

failure mechanism even for 1.4 scale factor. 
 

Table 3. Maximum displacement of dam mid-crest and maximum stresses in dam body (JDAMP = 0) 

Scale Factor 𝑼𝒚
𝑴𝒂𝒙 (mm) 𝑼𝒛

𝑴𝒂𝒙 (mm) 𝝈𝟏
𝑴𝒂𝒙 (MPa) 𝝈𝟑

𝑴𝒂𝒙 (MPa) 

1.2 66.0 -4.32 3.0 -14.05 

1.3 71.2 -4.33 3.0 -14.35 

1.4 76.9 -4.6 3.0 -14.65 

 

 
(a) Maximum tension SC = 1.2 

 

 
(b) Maximum compression SC = 1.2 

 

 
(c) Maximum tension SC = 1.3 
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(d) Maximum compression SC = 1.3 

 

 
(e) Maximum tension SC = 1.4 

 

 
(f) Maximum compression SC = 1.4 

Fig. 10. Envelope of maximum stresses nonlinear case JDAMP = 0

 

 
(a) SC = 1.2 

 

 
(b) SC = 1.3 
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(c) SC = 1.4 

Fig. 11. Distribution of damage at the end of analysis for the nonlinear case JDAMP = 0 
 

5.2.2.2. Variable Damping (JDAMP = 1) 

In this section, six models are 

investigated. Each model has a different 

scale factor. The scale factors vary from 1.2 

to 1.55. These factors are increased 

gradually in a way that leads to the failure 

of the dam. The maximum dam mid-crest 

displacement in the stream and vertical 

direction are presented in Table 4. It is 

noticed that displacement at mid-crest 

increase for variable damping cases in 

comparison with their corresponding 

constant damping cases (Table 4 versus 

Table 3). Moreover, when the scale factor 

exceeds 1.4, displacement of the dam mid-

crest has a considerable amount of increase 

which is the initial sign of failure. For 1.55 

scale factor, the stream-component of 

displacement reaches a high value of 22 cm. 

Moreover, the displacement of the dam 

mid-crest in the stream direction in the 

range of 6 to 12 sec (where the notable 

changes have been happened) is shown in 

Figure 12. 

The envelopes of maximum tensile and 

compressive principal stresses are also 

depicted in Figure 13. Moreover, tensile 

damage for these cases is presented in 

Figure 14. It is noticed that there is more 

extensive tensile damage for variable 

damping cases in comparison with 

corresponding constant damping cases. 

Moreover, the maximum compressive 

principal stresses have also increased. For 

instance, when we consider the 1.4 scale 

factor case of variable damping, it is noticed 

that tensile damage on the top portion form 

a complete loop on the D/S face while this 

is not the case for corresponding constant 

damping case. Furthermore, the maximum 

compressive principal stresses reach a high 

value of -20.99 MPa (in comparison with -

14.65 MPa for corresponding constant 

damping case). 

It is also noted that as scale factor 

reaches the value of 1.55, the tensile 

damage at the top portion extends along the 

dam thickness and similar loop begins to 

form starting at dam crest. This means that 

we are getting very close to a complete 

failure mechanism occurring at the top 

portion of the dam. Moreover, the 

maximum compressive principal stress 

reaches a high value of -29.96 MPa and its 

location is at dam mid-crest which is a sign 

of crushing in that vicinity.  
 

 
Fig. 12. The dam mid-crest displacement in the stream direction in the nonlinear case 
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Table 4. Maximum displacement of dam mid-crest and maximum stresses in dam body (JDAMP = 1) 

Scale factor 𝑼𝒚
𝑴𝒂𝒙 (mm) 𝑼𝒛

𝑴𝒂𝒙 (mm) 𝝈𝟏
𝑴𝒂𝒙 (MPa) 𝝈𝟑

𝑴𝒂𝒙 (MPa) 

1.2 67.9 -4.46 3.0 -14.50 

1.3 76.4 -8.24 3.0 -14.77 

1.4 96.4 -11.4 3.0 -20.99 

1.45 -152 21.5 3.0 -26.42 

1.5 186 38.0 3.0 -29.58 

1.55 -220 70.9 3.0 -29.96 

 

 
(a) Maximum tension SC = 1.2 

 

 
(b) Maximum compression SC = 1.2 

 

 
(c) Maximum tension SC = 1.3 

 

 
(d) Maximum compression SC = 1.3 
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(e) Maximum tension SC = 1.4 

 

 
(f) Maximum compression SC = 1.4 

 

 
(g) Maximum tension SC = 1.45 

 

 
(h) Maximum compression SC = 1.45 

 

 
(i) Maximum tension SC = 1.5 
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(j) Maximum compression SC = 1.5 

 
(k) Maximum tension SC = 1.55 

 

 
(l) Maximum compression SC = 1.55 

Fig. 13. Envelope of maximum stresses in nonlinear case JDAMP = 1

 

 
(a) SC = 1.2 

 

 
(b) SC = 1.3 
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(c) SC = 1.4 

 
(d) SC = 1.45 

 

 
(e) SC = 1.5 

 

 
(f) SC = 1.55 

Fig. 14. Distribution of damage at the end of analysis for the nonlinear case JDAMP = 1
 

6. Summary and Conclusions 

 

A special finite element program based on 

the proposed damage model was developed 

to evaluate the seismic damage response of 

concrete arch dams. An idealized 

symmetric model of 143 m high Morrow 

Point dam located in Colorado was 

subjected to Taft earthquake components. 

The components of the earthquake were 

multiplied by different scale factors to 

investigate the failure of the dam. Three 

cases were analyzed; 1) Linear case; 2) 

Nonlinear case with constant damping; 3) 

Nonlinear case with variable damping. The 

principal outcomes are summarized as 

follows: 

• The proposed nonlinear model can 

predict the ultimate strength of the 

structure and the process of forming 

cracks in the arch dam. 

• Considering the effect of the reservoir 
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has a significant impact on the analysis 

results  

• Morrow Point arch dam can stand high 

compressive stresses; however, its 

tensile strength cannot bear the induced 

stresses, so tensile damage is inevitable, 

and cracks will be formed. 

• The displacements and stresses are 

increased in the case of variable damping 

more than in constant damping case with 

the same alpha factors which is due to 

the update of damping matrix leading to 

softening of structure. 

• In the case of constant damping, the 

main location of tensile damages is in the 

base and abutments, as well as dam’s 

mid-crest region on the U/S face, and 

dam’s top portion on the D/S face in 

which by increasing the scale factor, 

they tend to grow in length and form an 

unstable part on the crest of the dam. 

• In the case of variable damping, the main 

location of tensile cracks is the same as 

the constant damping case. However, it 

seems that cracks are extended more in 

this case, and they form a complete loop 

on the D/S face of the top portion. 

• The analyses indicate an early sign of 

failure in the structure based on the 

adopted methodology when significant 

displacements are enforced on the dam 

due to severe seismic loadings.   

• This model can practically restrain the 

maximum tensile stresses to the tensile 

strength of concrete, and predicts a 

realistic distribution and stress levels in 

the dam body. 

• The nonlinear case results with variable 

damping demonstrate that the arch dam 

can experience considerable damage in 

the time of a strong earthquake and when 

the scale factor reaches 1.55, there is the 

probability of failure. 

• Overall, the model is proved to predict 

crack propagation consistent with failure 

in concrete arch dams. Moreover, this 

model is undoubtedly a step toward 

reducing the computational time while 

having an acceptable level of accuracy in 

dam engineering practice. 

7. Appendix A 

 
Table A.1: The HHT time integration 

method 

0 
𝒊 = 𝟎, �̇�𝒏+𝟏

𝟎 = −𝒂𝟒�̇�𝒏 − 𝒂𝟓�̈�𝒏, �̈�𝒏+𝟏
𝟎 =

−𝒂𝟐�̇�𝒏 − 𝒂𝟑�̈�𝒏 and 𝑼𝒏+𝟏
𝟎 = 𝑼𝒏 

1 𝑅𝑛+1 = 𝑅
𝑠𝑡 −𝑀𝐽𝑎𝑛+1

𝑔
 

2 𝑈𝑛+𝜑
𝑖 = 𝛼𝑈𝑛 + (1 − 𝛼)𝑈𝑛+1

𝑖  

3 
𝜀𝑛+𝜑 = 𝐵(𝑈

𝑒)𝑛+𝜑
𝑖 , then obtain 𝜎𝑛+𝜑and 

𝐷𝑛+𝜑 

4 𝛹𝑛+1
𝑖 = 𝑀�̈�𝑛+1

𝑖 + 𝐶�̇�𝑛+𝜑
𝑖 + 𝐹𝑛+𝜑

𝑖 − 𝑅𝑛+𝜑 

5 IF ‖𝛹𝑛+1
𝑖 ‖ ≤ 𝑇𝑜𝑙𝐺 Then Exit 

6 Solve (
𝜕𝛹

𝜕𝑈
)
𝑛+1

𝛥𝑈𝑛+1
𝑖+1 = −𝛹𝑖 

7 𝑈𝑛+1
𝑖+1 = 𝑈𝑛+1

𝑖 + 𝛥𝑈𝑛+1
𝑖+1  

8 �̇�𝑛+1
𝑖+1 = �̇�𝑛+1

𝑖 + 𝑎1𝛥𝑈𝑛+1
𝑖+1  

9 𝑈𝑛+1
𝑖+1 = �̈�𝑛+1

𝑖 + 𝑎0𝛥𝑈𝑛+1
𝑖+1  

10 i=i+1 and GOTO Step 2. 
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