تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,099,329 |
تعداد دریافت فایل اصل مقاله | 97,206,851 |
تأثیر نوع عصارهگیر و نسبت خاک به عصارهگیر بر استخراج میزان پتاسیم قابل جذب خاک | ||
تحقیقات آب و خاک ایران | ||
دوره 53، شماره 7، مهر 1401، صفحه 1481-1497 اصل مقاله (1.63 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2022.341938.669253 | ||
نویسندگان | ||
کریم شهبازی* 1؛ میثم چراغی2؛ مصطفی مارزی3؛ کبرا سادات هاشمی نسب زواره3 | ||
1موسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران، کرج، ایران | ||
2گروه علوم خاک، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران | ||
3سازمان تحقیقات، ترویج و آموزش کشاورزی (AREEO)، موسسه تحقیقات خاک و آب (SWRI)، کرج، ایران | ||
چکیده | ||
پتاسیم بهعنوان عنصری ضروری که نقش آن در متابولیسم گیاهان و مقاومت آنها در برابر تنشهای زیستی و محیطی بارها ثابت شده است، برای مدیریت بهینه، نیاز به استخراج و اندازهگیری دقیق دارد. تحقیق حاضر با هدف بررسی اثر نسبت خاک به عصارهگیر بر اندازهگیری مقدار پتاسیم قابل جذب خاک انجام شد. بدین منظور در مهر ماه سال 1400، تعداد 62 نمونه خاک سطحی از مزارع کشاورزی سراسر کشور برداشته و مقدار پتاسیم آنها توسط سه عصارهگیر استات آمونیوم 1 مولار (سه نسبت 5:1، 10:1 و 20:1)، آمونیوم بیکربنات-DTPA (2:1، 5:1 و 10:1) و مهلیچ-3 (5:1، 10:1 و 20:1)، در موسسه تحقیقات خاک و آب کرج اندازهگیری شد. نتایج نشان داد که مقدار پتاسیم قابل جذب اندازهگیری شده، توسط عصارهگیرهای استات آمونیوم و مهلیچ-3 فاقد اختلاف معنیدار بود، اما این دو عصارهگیر با آمونیوم بیکربنات-DTPA اختلاف معنیدار داشتند. احتمالاً دلیل این اختلاف، جایگزین شدن نسبت 2:1 با نسبت 20:1 در روش عصارهگیری با آمونیوم بیکربنات-DTPA است. با افزایش نسبت خاک به عصارهگیر، میزان برآورد پتاسیم قابل جذب خاک توسط هر سه عصارهگیر بهطور معنیداری افزایش یافت. بهطور میانگین، مقدار پتاسیم عصارهگیری شده در نسبت 20:1 بهترتیب %5/11 و %01/5 بیشتر از نسبت 5:1 و 10:1 استات آمونیوم و %79/8 و %84/6 بیشتر از نسبت 10:1 و 5:1 مهلیچ-3 بود. با استفاده از نسبت 10:1، هر سه عصارهگیر مقدار پتاسیم قابل جذب خاک را بدون اختلاف معنیدار اندازهگیری کردند. بنابراین، پیشنهاد میشود که در مواقع لزوم میتوان از هر سه عصارهگیر برای تعیین مقدار پتاسیم قابل جذب استفاده کرد. همچنین بهنظر میرسد که نسبت 10:1، نسبت مناسبی برای اندازهگیری مقدار پتاسیم قابل جذب با حداقل تفاوت بین عصارهگیرهای مختلف باشد. | ||
کلیدواژهها | ||
آمونیوم بیکربنات-DTPA؛ استات آمونیوم؛ پتاسیم؛ مهلیچ-3 | ||
عنوان مقاله [English] | ||
The effect of extractant type and soil/extractant ratio on the extraction of soil available potassium | ||
نویسندگان [English] | ||
Karim Shahbazi1؛ Meysam Cheraghi2؛ Mostafa Marzi3؛ kobra sadat hasheminasab zavareh3 | ||
1Soil and Water Research Institute, Agricultural Research, Education, and Extension Organization, Karaj, Iran | ||
2Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran | ||
3Agricultural Research, Education and Extension Organization (AREEO), Soil and Water Research Institute (SWRI), Karaj, Iran | ||
چکیده [English] | ||
Potassium, as an essential element, which its role in plant metabolism and resistance to biological and environmental stresses has been proven many times, requires accurate extraction and measurement for optimal management. The present study was conducted to investigate the effect of soil/extractant ratio on measuring the amount of available potassium in the soil. For this purpose, in October 2021, 62 soil samples were taken from agricultural fields all over the country, and their potassium content was measured by three extractants: 1 M ammonium acetate (three ratios of 5:1, 10:1, and 20:1), ammonium bicarbonate-DTPA (2:1, 5:1, and 10:1), and Mahlic-3 (5:1, 10:1, and 20:1) in the Karaj soil and water research institute (SWRI). The results showed that the amount of available potassium measured by ammonium acetate and Mehlich-3 extractants had no significant difference, but these two extractants had a significant difference with ammonium bicarbonate-DTPA. Probably, this difference is due to replacing the 2:1 ratio with a 20:1 ratio in the extraction method by ammonium bicarbonate-DTPA. In all three extractants, the estimated soil available potassium increased by increasing the soil to extractant ratio. On average, the amount of extracted potassium in 20:1 ratio was 11.5% and 5.01% more than the ratio of 5:1 and 10:1 for ammonium acetate, and 8.79% and 6.84% more than the ratios of 10:1 and 5:1 for Mehlich-3, respectively. By using a 10:1 ratio, all three extractants measured the amount of soil-available potassium without any significant differences. Therefore, it is suggested that all three extractants be used to determine the amount of available potassium. In addition, it seems a 10:1 ratio is a suitable ratio for measuring the amount of available potassium with minimal difference between different extractants. | ||
کلیدواژهها [English] | ||
Ammonium acetate, Ammonium bicarbonate-DTPA, Mehlich-3, Potassium | ||
مراجع | ||
Ali Ehyaei, M., & Behbehani Zade, A. A. (1993). Methods of Soil Chemical analysis. Soil and Water Research Institute of Agricultural Extension and Education, 80-100. (In Farsi) Beegle, D. B., & Oravec, T. C. (1990). Comparison of field calibrations for Mehlich 3 P and K with Bray‐Kurtz P1 and ammonium acetate K for corn. Communications in Soil Science and Plant Analysis, 21(13-16), 1025-1036. Bremner, J. M., Black, C. A., Evans, D. D., Ensuinger, L. E., White, J. K., & Clark, F. F. (1965). Methods of Soil Analysis Part 2 Agronomy 9. Carter, M. R., & Gregorich, E. G. (2007). Soil sampling and methods of analysis. CRC press. Cheraghi, M., Motesharezadeh, B., & Alikhani, H.A., Mousavi, S.M. (2022). Optimal management of plant nutrition in tomato (Lycopersicon esculent Mill) by using biologic, organic and inorganic fertilizers. Jurnal of plant nutrition. DOI: 10.1080/01904167.2022.2092511. Cheraghi, M., Motesharezadeh, B., & Alikhani, H. A. (2020). Nutritional and Morpho-physiological Responses of Tomato Plant (Lycopersicon esculentum Mill) Affected by Biological and Chemical Fertilizers. Iranian Journal of Soil and Water Research, 51(10), 2559-2574. (In Farsi) Chua, M. F., Youbee, L., Oudthachit, S., Khanthavong, P., Veneklaas, E. J., & Malik, A. I. (2020). Potassium fertilisation is required to sustain cassava yield and soil fertility. Agronomy, 10(8), 1103. Cottenie, A. (1980). Soil and plant testing as a basis of fertilizer recommendations (No. 38/2). Fathi, S., Samadi, A., Davari, M., & Asadi Kapourchal, S. (2014). Evaluating different extractants for determining corn available potassium in some calcareous soils of Kurdistan province. Cereal Research, 4(3), 253-266. (In Farsi) Gee, G. W., & Or, D. (2002). 2.4 Particle-size analysis. Methods of soil analysis. Part, 4(598), 255-293. Grzebisz, W., & Oertli, J. J. (1993). Evaluation of universal extractants for determining plant available potassium in intensively cultivated soils. Communications in soil science and plant analysis, 24(11-12), 1295-1308. Haby, V. A., Russelle, M. P., & Skogley, E. O. (1990). Testing soils for potassium, calcium, and magnesium. Soil testing and plant analysis, 3, 181-227. Hanlon, E. A., & Johnson, G. V. (1984). Bray/Kurtz, Mehlich III, AB/D and ammonium acetate extractions of P, K and Mg in four Oklahoma soils. Communications in soil science and plant analysis, 15(3), 277-294. Hasanuzzaman, M., Fujita, M., Oku, H., Nahar, K., & Hawrylak-Nowak, B. (Eds.). (2018). Plant nutrients and abiotic stress tolerance (pp. 221-252). Singapore: Springer. Helmke, P. A., & Sparks, D. L. (1996). Lithium, sodium, potassium, rubidium, and cesium. Methods of soil analysis: Part 3 chemical methods, 5, 551-574. Heltai, G., & Füleky, G. (1992). Soil analysis and nutrition capacity. Microchemical Journal, 46(1), 4-19. Hergert, G. W. (2009). Soil Testing more important than ever for efficient fertilizer use. Hosseinpur, A. R., & Samavati, M. (2008). Evaluation of chemical extractants for the determination of available potassium. Communications in Soil Science and Plant Analysis, 39(9-10), 1559-1570. Illés, Á., Mousavi, S. M., Bojtor, C., & Nagy, J. (2020). The plant nutrition impact on the quality and quantity parameters of maize hybrids grain yield based on different statistical methods. Cereal Research Communications, 48(4), 565-573. Jackson, M. L. (1975). Soil chemical analysis: advanced course.,(Department of Soil Science, University of Wisconsin: Madison, WI). Jones Jr, J. B. (1990). Universal soil extractants: their composition and use. Communications in Soil Science and Plant Analysis, 21(13-16), 1091-1101. Khodshenas, M. A., Ghadbeiklou, J., & Dadivar, M. (2021). Evaluation of chemical extractants and determination of the potassium critical level in soils under the bean cultivation. (In Farsi) Knudsen, D., Peterson, G. A., & Pratt, P. F. (1983). Lithium, sodium, and potassium. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9, 225-246. Korb, N., Jones, C., & Jacobsen, J. (2002). Potassium cycling, testing, and fertilizer recommendations. Nutrient Management Module, 5, 1-12. Krauss, A. (1999, June). Balanced nutrition and biotic stress. In IFA agricultural conference on managing plant nutrition (Vol. 29). LIU, L., & BATES, T. E. (1990). Evaluation of soil extractants for the prediction of plant-available potassium in Ontario soils. Canadian Journal of Soil Science, 70(4), 607-615. Ma, L., Duan, T., & Hu, J. (2020). Application of a universal soil extractant for determining the available NPK: A case study of crop planting zones in central China. Science of the Total Environment, 704, 135253. McKeague, J. A. (1978). Manual on soil sampling and methods of analysis. Can. Soc. Soil Sci, 212. Mehlich, A. (1953). Determination of P, Ca, Mg, K, Na, and NH4. North Carolina Soil Test Division (Mimeo 1953), 23-89. Mehlich, A. (1984). Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Communications in soil science and plant analysis, 15(12), 1409-1416. Mousavi, S. M., Srivastava, A. K., & Cheraghi, M. (2022). Soil health and crop response of biochar: an updated analysis. Archives of Agronomy and Soil Science, 1-26. Noori, O. (2012). Evaluation of olive (Olea europaea L.) adaptability on the sloping lands of Tarom region in Zanjan province using Remote Sensing (RS) and Geographical Information Systems (GIS) (Doctoral dissertation, Ph. D. Thesis, Tarbiat Modares University, 181p). (In Farsi) Olsen, S. R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No. 939). US Department of Agriculture. Pawlak, K., & Kołodziejczak, M. (2020). The role of agriculture in ensuring food security in developing countries: Considerations in the context of the problem of sustainable food production. Sustainability, 12(13), 5488. Pratt, P. F. (1965). Potassium. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9, 1022-1030. Rowell, D. L. (1994). Soil science: Methods and applications. 350 pp. Harlow: Longman Group. Sardans, J., & Peñuelas, J. (2021). Potassium control of plant functions: Ecological and agricultural implications. Plants, 10(2), 419. Schjoerring, J. K., Cakmak, I., & White, P. J. (2019). Plant nutrition and soil fertility: synergies for acquiring global green growth and sustainable development. Plant and Soil, 434(1), 1-6. Schollenberger, C. J., & Simon, R. H. (1945). Determination of exchange capacity and exchangeable bases in soil—ammonium acetate method. Soil science, 59(1), 13-24. Shahbazi, K., & Besharati, H. (2013). Overview of agricultural soil fertility status of Iran. Land Management Journal, 1, 1-15. (In Farsi) Sharifi, M., & Kalbasi, M. (2001). Selection of suitable extractant to extract available potassium for corn in soils of central region of Isfahan province. Journal of Science and Technology of Agriculture and Natural Resources. Soltanpour, P. N., & Schwab, A. P. (1977). A new soil test for simultaneous extraction of macro‐and micro‐nutrients in alkaline soils. Communications in Soil Science and Plant Analysis, 8(3), 195-207. Soltanpour, P. N., & Workman, S. (1979). Modification of the NH4 HCO3‐DTPA soil test to omit carbon black. Communications in Soil Science and Plant Analysis, 10(11), 1411-1420. Sonneveld, C., & Van Den Ende, J. (1971). Soil analysis by means of a 1: 2 volume extract. Plant and Soil, 35(1), 505-516. Sutton, P., & Seay, W. A. (1958). Relationship between the potassium removed by millet and red clover and the potassium extracted by 4 chemical methods from 6 Kentucky soils. Soil Science Society of America Journal, 22(2), 110-115. Thomas, G. W. (1983). Exchangeable cations. Methods of soil analysis: Part 2 chemical and microbiological properties, 9, 159-165. Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science, 37(1), 29-38. Wang, M., Zheng, Q., Shen, Q., & Guo, S. (2013). The critical role of potassium in plant stress response. International journal of molecular sciences, 14(4), 7370-7390. Zadehparizi, S., Tajabadi Pour, A., Esfandiarpoor, I. (2017). Evaluation chemical extractants in determination of available potassium for pistachio in calcareous soils of Rafsanjan. Journal of Crops Improvement, 18(4), 935-947. (In Farsi) Zarrabi, M., & Jalali, M. (2008). Evaluation of extractants and quantity–intensity relationship for estimation of available potassium in some calcareous soils of western Iran. Communications in soil science and plant analysis, 39(17-18), 2663-2677. | ||
آمار تعداد مشاهده مقاله: 267 تعداد دریافت فایل اصل مقاله: 270 |