تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,502 |
تعداد مشاهده مقاله | 124,117,121 |
تعداد دریافت فایل اصل مقاله | 97,222,138 |
Quartz Mineral as new Sorbent for Hg(II) Removal from Aqueous Solution: Adsorption Kinetics and Isotherm | ||
Pollution | ||
دوره 9، شماره 2، تیر 2023، صفحه 445-458 اصل مقاله (763.79 K) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/poll.2022.344756.1514 | ||
نویسندگان | ||
Sofiane Nouar Labidi* 1؛ Boukoffa Mechati2 | ||
1Department of Matter Sciences, Faculty of Sciences and Technology, University of Tamanrasset 11000, Tamanghasset, Algeria | ||
2Department of Geology, Faculty of Sciences and Technology, University of Tamanrasset 11000, Tamanrasset, Algeria | ||
چکیده | ||
Natural quartz mineral was examined as a new sorbent for Hg(II) removal from synthetic wastewater systems. Batch adsorption experiments of Hg(II) onto quartz mineral were conducted under various conditions such as solution pH, sorbent dosage, contact time, initial Hg(II) concentration. Adsorption experiments results of Hg(II) by quartz mineral showed good achievement after 180 min with 1.0 g/L sorbent mass at pH of 2.0, agitation speed of 200 rpm and a temperature of 25°C. Moreover, the Hg(II) concentration was directly related to increases the adsorption capacity, the maximum Hg(II) uptake by quartz sample was 16.52 mg/g for 80 mg/L (C0 (Hg(II)]. Langmuir isotherm and pseudo-second-order kinetics (R2 > 0.99) were found to be the most appropriate models to describe the adsorption of Hg(II) by quartz mineral. The intra-particle diffusion model and the calculated Dubinin–Radushkevich adsorption energy (Eads = 0.78 kJmol-1), confirms a physisorption adsorption reaction occurring in three stages. | ||
کلیدواژهها | ||
SiO2؛ Hg(II)؛ wastewater؛ kinetic؛ physisorption | ||
مراجع | ||
Al-Yaari, M. and Saleh T.A. (2022). Mercury removal from water using a novel composite of polyacrylate-modified carbon. ACS Omega., 7, 14820-14831. Al-Ghouti, M.A., Da’ana, D., Abu-Dieyeh, M. and Majeda, K. (2019). Adsorptive removal of mercury from water by adsorbents derived from date pits. Sci Rep., 9, 15327. Attari, M., Bukhari, S., Kazemian, H. and Rohani, S. (2017). A low-cost adsorbent from coal fly ash for mercury removal from industrial wastewater. J. Environ. Chem. Eng., 5, 391– 399. Babic, B.M., Milonjic, S.K., Polovina, M.J., Cupic, S. and Kaludjerovic, B.V. (2002). Adsorption of zinc, cadmium and mercury ions from aqueous solutions on an activated carbon cloth. Carbon., 40, 1109–1115. Bhatt, R., Kushwaha, S., Bojja, S. and Padmaja, P. (2018). Chitosan thiobarbituric acid: A super adsorbent for mercury. ACS Omega., 3(10),13183–13194. Boudrahem, F., Aissani-Benissad, F. and Soualah A. (2011). Adsorption of lead (II) from aqueous solution by using leaves of date trees as an adsorbent. J. Chem. Eng. Data, 56, 1804–1812. Bingbing, L., Meng, C., Feifei, C. and Zhiyong, X. (2020). L–Cysteine/hydrotalcite hybrid for collaborative removal of Cu(II), Hg(II) and Pb(II) ions from aqueous solutions: different metal ions require different mechanisms. Chemistry Select., 5(16), 4932– 4942. Chen, X. (2015). Modeling of experimental adsorption isotherm data. Information., 6, 14–22. Di Natale, F., Lancia, A., Molino, A., DiNatale, M., Karatza, D. and Musmarra, D. (2006). Capture of mercury ions by natural and industrial materials.J. Hazard. Mater B., 132, 220– 225. Fang, R.Y., Lu, C.W.; Zhang, W.K., Xiao, Z.; Chen, H.F., Liang, C., Huang, H., Gan, Y.P., Zhang, J. and Xia, Y. (2018). Supercritical CO2 assisted synthesis of sulfur-modified zeolites as high-efficiency adsorbents for Hg2+ removal from water. New. J. Chem., 42, 3541–3550. Hadi, P., To, M.H., Hui, C.W., Carol, S.K.L and McKay, G. (2015). Aqueous mercury desorption By activated carbons. Water Res., 73, 37–55. Ho, Y.S., Ng, J.C.Y. and McKay, G. (2000). Kinetics of pollutant sorption by biosorbents. Review. Sep.Purif. Rev., 29(2), 189-232. Hui, W., Haotian, S., Chang, S., Yaning, L., Zhanfeng, Y. and Yufeng, D. (2019). Kinetics and mechanism study of mercury adsorption by activated carbon in wet oxy-fuel conditions. Energy Fuels., 33(2), 1344–1353. Jianjian, Z., Liping, L., Ziwei, L., Zhaofeng, D., Yufeng, L., Subin., Zhongxin,X., Wenlong, X. and Yuzhong, N. (2020).The adsorption property and mechanism for Hg(II) and Ag(I) by schiff base functionalized magnetic Fe3O4 from aqueous solution. J. Alloys and Compd., 825, 154051. Kang, H., Xueliu, X., Zhiping, L., Dong, F., Rui, B. and Jianhong, Yi. (2020). Effective removal of mercury Ions in aqueous solutions: A Review. Curr. Nanosci., 16 (3), 363–375. Kosak, A., Lobnik, A. and Bauman, M. (2015). Adsorption of mercury (II), lead(II), cadmium(II) and zinc(II) from aqueous solutions using mercapto-modified silica particles. Int. J. Appl. Ceram Technol., 12(2), 461– 472. Kim, Y. and Lee, Y.J. (2014). Characterization of mercury sorption on hydroxylapatite: batch studies and microscopic evidence for adsorption. J Colloid Interface Sci., 430, 193–199. Labidi, N.S. and Mechati, B. (2022). Adsorption mechanism of basic blue-9 onto quartz mineral: kinetics, isotherms and thermodynamic. Mater. Res. Express., 9, 115501. Levien, L., Prewitt, C.T. and Weidner, D.J. (1980). Structure and elastic properties of quartz at pressure P = 1 atm. Am Min., 65, 920–930. Liangyan, D., Xiude, H., Deshuai, S., Yongzhuo, L., Qingjie, G., Tongkai, Z. and Botao, Z. (2020). Rapid removal of low concentrations of mercury from wastewater using coal gasification slag. Korean J Chem Eng., 37(7), 1166-1173. Liuwei, W., Deyi, H., Yining, C., Yong, S.O., Filip, M.G. T., Jörg, R. and O’Connor, D. (2020). Remediation of mercury contaminated soil, water, and air: A review of emerging materials and innovative technologies. Enviro. Int., 134, 105281. Ma, L., Islam, S.M., Xiao, C., Zhao, J., Liu, H., Yuan, M., Sun, G., Li, H., Ma, S. and Kanatzidis, M.G. (2017). Rapid simultaneous removal of toxic anions [HSeO3]- , [SeO3]2-, and [SeO4]2-, and metals Hg2+, Cu2+, and Cd2+ by MoS4- intercalated layered double hydroxide. J. Am. Chem. Soc., 139(36), 12745-12757. Marin, U., Teja, C., Ivona, N. and Marina, T. (2020). Comparative study of mercury (II) removal from aqueous solutions onto natural and iron-modified clinoptilolite rich zeolite. Processes., 8(11), 1523. Nadhira, I.S., Fidela, A.A., Della, A., Ridha, D.R., Ilham, S. and Sri, W. (2018). NPK Fertilizer with slow-release fly ash. J. Pure App. Chem. Res., 7(1), 1-11. Nasirimoghaddam, S., Zeinali, S. and Sabbaghi, S. (2015). Chitosan coated magnetic nano-particles as nano-adsorbent for efficient removal of mercury contents from industrial aqueous and oily samples. J. Ind. Eng. Chem., 27, 79–87. Olugbenga, S. B., Kayode A.A. and Rhoda, O.O. (2014).Insights into the adsorption of heavy metals from wastewater using diatomaceous earth. Sep. Sci. Technol., 49, 1787–1806. Powell, K.J., Brown, P.L., Byrne, R.H., Gajda, T., Hefter, G., Sjöberg, S. and Wanner, H. (2005). Chemical speciation of environmentally significant heavy metals with inorganic ligands part 1: The Hg2+– Cl-, OH-, CO32-, SO42-, and PO43- aqueous systems. Pure Appl.Chem., 77(4), 739-800. Purohit, P., Somasundaran, P. and Kulkarni, R. (2006). Study of properties of modified silicones at solid–liquid interface: Fabric–silicone interactions. J. Colloid Interface Sci., 298, 987-990. Rostami, S., Azizi, S.N. and Asemi, N. (2018). Removal of mercury (II) from aqueous solutions via Box-Behnken experimental design by synthesized hierarchical nanoporous ZSM-5 zeolite. J. Iran Chem. Soc., 15, 1741-1754. Saikia, B.J., Parthasarathy, G. and Sarmah, N.C. (2008).Fourier transform infrared spectroscopic estimation of crystallinity in SiO2 based rocks. Bull. Mater. Sci., 31(5), 775-779. Sears, G. (1956). Determination of specific surface area of colloidal silica by titration with sodium hydroxide. Anal. Chem., 28(12), 1981-1983. Susmita, S.G. and Krishna G.B. (2014). Adsorption of metal ions by clays and inorganic solids. RSC Advances., 4(54), 28537-28586. Tabrizy, V.A., Hamouda, A.A. and Denoyel, R. (2011). Influence of magnesium and sulfate ions on wettability alteration of calcite, quartz, and kaolinite: Surface energy analysis. Energy & Fuels., 25(4), 1667-1680. Tuzen, M., Sari, A., Mendil, D. and Soylak, M. (2009).Biosorptive removal of mercury (II) from aqueous solution using lichen (Xanthoparmelia conspersa) biomass: kinetic and equilibrium studies. J. Hazard. Mater., 169(1–3), 263–270. Volesky, B. (1994). Advances in biosorption of metals: selection of biomass types. FEMS Microbiol Rev., 14(4), 291–302. Wang, Q.H., Chang, X. J., Li, D.D., Hu, Z., Li, R. J. and He, Q. (2011). Adsorption of chromium(III), mercury(II) and lead(II) ions onto 4-aminoantipyrine immobilized bentonite. J. Hazard. Mater., 186(2-3), 1076-1081. Wang, Y.Y., Tang, M.Y., Shen, H., Che, G.B., Qiao, Y., Liu, B. and Wang, L. (2018). Recyclable multifunctional magnetic mesoporous silica nanocomposite for ratiometric detection, rapid adsorption and efficient removal of Hg (II). ACS Sustain.Chem.Eng., 6, 1744-1752. Yilmaz, S., Sahan, T. and Karabakan, A. (2017). Response surface approach for optimization of Hg (II) adsorption by 3-mercaptopropyl trimethoxysilane-modified kaolin minerals from aqueous solution. Korean J. Chem. Eng., 34, 2225-2235. Yucheng, Z., Shuchuan, P., Ping L., Tianhu, C. and Yan, Y. (2020). Mercury removal from aqueous solutions using modified pyrite: A Column Experiment. Minerals., 10(1), 43. | ||
آمار تعداد مشاهده مقاله: 421 تعداد دریافت فایل اصل مقاله: 746 |