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INTRODUCTION

Several gases, including ozone (O3), carbon monoxide (CO), sulfur dioxide (SO2), and 
nitrogen oxides (NOx), as well as suspended particles (PM), volatile organic compounds 
(VOCs), certain metals, and other pollutants that emitted from sources of pollution, all have a 
negative and direct impact on human health in urban environments (Zhu et al., 2018). Many 
cities around the world suffer from high concentrations of air pollutants due to the notable 
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Researchers are interested in developing techniques to monitor, manage and predict 
the risks of gases and particles emitted from cement factories, which have a direct and 
negative impact on human health. Deep learning (DL) is a critical component of data 
mining, which further involves statistics and prediction. In this study, we developed a 
deep learning prediction model called the Deep Pollutant Prediction Model (DPPM). 
The data used for DPPM are separated into two types: observed data from a pollution 
monitoring station of the Institute of Mental Health in Ahmedabad City, India coded 
as (GJ001), to validate the model and simulated data generated using the Gaussian 
Plume Model for the hypothetical receptor (Laylan District, Kirkuk, Iraq) to predict the 
pollution that emitted from Kirkuk Cement Plant 5 km apart from the study area. The 
findings indicated that the DPPM has high efficiency in both Allahabad and Laylan sta-
tions, with more closed results for the data in the Laylan station, which is based on the 
Gaussian equation simulated data. Since the highest loss function value in the Laylan 
is 0.0221 of the CaO parameter, while it is 4.466 of the AQI parameter for the Alla-
habad Station, and the smallest loss function value in the Laylan is equal to 0.0041of 
both Fe2O3 and MgO parameters, it corresponds to 0.038 of Xylene for the Allahabad 
station. The results of the study proved that data continuity and non-volatility produce 
excellent outcomes for DPPM.
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economic expansion and development, therefore, assessment and prediction of these pollutants 
are necessary to assess the risks resulting from it (J. Zhang & Ding, 2017). Methods for predicting 
air pollutants, in general, are divided into two main types: statistical and deterministic methods 
(Li et al., 2017). 

Artificial intelligence (AI) contributes to the development of effective prediction models in 
various fields of science by assisting in the rapid discovery of optimal solutions (Oprea et al., 
2017). Researchers have long been interested in air quality prediction techniques in order to 
improve modeling using machine learning, particularly deep learning, and data processing in 
order to provide decision-makers with high-accuracy results and information (Schürholz et al., 
2020). 

Deep learning is a branch of machine learning that employs a network of neurons structured 
in layers, with three layers: input, output, and hidden (Mohsen et al., 2018). For the purpose 
of learning complex prediction models, such as multi-layer neural networks with numerous 
hidden units, DL refers to a collection of learning algorithms rather than a single method 
(Emmert-Streib et al., 2020). Deep learning can understand context information from various 
data sources and the relations between data and deep learning-based techniques’ promising 
abilities drive researchers to use deep architectures in preference prediction problems as well 
(Khan et al., 2021). 

Libraries are collections of pre-written code that users can utilize to improve their operations 
in programming languages. Python deep learning, AI, and machine learning libraries are used 
by developers to complete complex tasks (Davies, 2018). 

Prediction of air pollutants has received much study and involves a number of problems and 
difficulties. Several research of various countries on the prediction of air pollutants depending 
on deep learning are discussed in this section. Convolution neural network (CNN) model 
practically proved its efficiency through the test of input data, since Mao & Lee, (2019) forecasted 
air quality by predicting the hourly concentration of air contaminants such as ozone, particle 
matter PM2.5 using deep learning techniques. As well, Q. Zhang et al., (2020) suggested a model 
hybrid deep learning model that forecasts air quality at high resolution by merging Convolutional 
Neural Networks (CNN) with Long Short Term Memory (LSTM). Ma et al., (2020) presented 
an approach that uses ambient concentrations of 18 chemical indicators to rapidly assess the 
coefficients of air quality equations, using data generated by simulating a complex atmospheric 
chemical transport model. This method makes use of deep learning techniques and chemical 
indicators of pollutant formation (CTM). 

Whenever two or more models are integrated, a more efficient model can be generated by 
comparing the combined model (hybrid) to each individual model independently. Heydari et 
al., (2022) anticipated and analyzed Combined Cycle Power Plant air pollution by creating a 
novel hybrid intelligence model based on LSTM and MVO to. Bekkar et al., (2021) combined 
historical data on pollutants, meteorological information, and PM2.5 concentrations at nearby 
stations to use CNN-LSTM to predict the hourly forecast of PM2.5 concentrations in Beijing, 
China. Deep learning recently has been utilized for various types of pollutants prediction as 
Isam Drewil & Jabbar Al-Bahadili, (2021) indicate that the most of the researchers utilize more 
advanced and intelligent approaches to deal with the problem of air pollution detection in 
the early stages, while only a few researchers use basic strategies. Muthukumar et al., (2022) 
employed the advanced deep predictive Convolutional LSTM (ConvLSTM) model along with 
the cutting-edge Graph Convolutional Network (GCN) architecture to predict temporal and 
spatial hourly PM2.5 in the Los Angeles City over time. 

The aim of this paper is to build a prediction model named Deep Pollutant Prediction Model 
for pollutants emitted from Kirkuk Cement Plant based on deep learning and simulated output 
Gaussian Plume Model of pollution concentration.
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MATERIALS AND METHODS

This section describes the region of study as well as the parts of the proposed method for 
building a smart model based on deep learning to predict air pollutants, as follows:

Study Area
Laylan is a sub-district of Kirkuk Governorate, Iraq located 19 km southeast of the city of 

Kirkuk as illustrated in Fig 1. The geographical location of the Laylan district ranges between 
latitudes (44˚20ʹ E, 44˚ 45ʹ E) and longitudes (35˚ 08ʹ N, 35˚ 25ʹN). Laylan district is famous for 
agriculture, livestock, and industry. Where the Kirkuk Cement Plant is located to the west of 
Laylan district, about 5 km as indicates in figure (1), and it is considered the most environmentally 
affected area. The cement plant releases large quantities of pollutants that affect human health, 
especially respiratory diseases, and water pollution, according to the environmental report of 
the Iraqi Ministry of Environment. The population of Laylan district is about 16,000 and it is 
multi-national. It is also characterized by its picturesque nature, which made it a local tourist 
entertainment area. The Laylan District considers a Hypothetical receptor to apply Gaussian 
Plume Model and calculate the simulated data.

Dataset Description
Because the study area lacked long-term pollution data, the proposed model was applied to 

a dataset from the Institute of Mental Health in Ahmedabad City, India (GJ001). The GJ001 
pollution dataset contains 12 parameters which are PM10, PM, NO, NO2, CO, SO2, O3, Benzene, 
Toluene, and Xylene, Air Quality Index (AQI), and compounds for 2009 observed days. Initially, 
this dataset was processed using the statistical missing values approach in order to accommodate 
the suggested deep learning model. Laylan District is selected to be a point for calculating the 
concentration of pollutants from the source (cement plant) using the Gaussian Plume Model 

 

 

 

 

 

 

 

 

 

 

 

Figure (1): The study area (Laylan District, Kirkuk, Iraq) 

   

Fig. 1. The study area (Laylan District, Kirkuk, Iraq)
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and the wind speed data obtained from the RETScreen program, which provides meteorological 
data from virtual stations of NASA. The simulated data were calculated for three years 2019, 
2020, and 2021. The simulated data include 7 parameters which are Calcium Carbonate (CaCO3), 
Silicon dioxide (SiO2), Aluminum oxide (Al2O3), Iron (III) Oxide (Fe2O3), Calcium oxide (CaO), 
Magnesium oxide (MgO), and Sulfur trioxide (SO3). These emissions are components of cement 
material, which are released in various amounts from the stack of the cement plant. 

Proposed model
Building the suggested model is a crucial procedure since the model must be successfully 

represented, which has a significant effect on the success of the planned model when implemented 
applications. The suggested model is designed to predict pollution components emitted from 

 

Figure (2): Flowchart of the proposed model. 
Fig. 2. Flowchart of the proposed model.
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cement plants in a short time and with reliable data. Figure (2) shows the overall procedures of 
DPPM model. 

Data Splitting 
Data splitting is a key step for model validation since it splits a given dataset into training 

and testing sets (Wu et al., 2013). The training data is then used to fit and evaluate statistics and 
machine learning models. If it Hold-out a set of data for validation separate from the training 
set, it may analyze and compare the accuracy of multiple models’ predictions without being 
worried about potential overfitting of the training set (Castiñeira et al., 2020). The dataset is split 
into 70% for training and 30% for testing in this model.

Data Normalization
Normalization is the process of modifying data in order to compare statistics from various 

measures accurately by reducing artifactual biases in the source observations (Weiss et al., 
2017). Feature normalization is an essential process of data preprocessing for applying machine 
learning and deep learning to multiple datasets (Ferreira, P., Le, D. C., & Zincir-Heywood, 
2019). Data normalization could be effective in the data processing stage despite requiring 
a significant increase in processing and memory capability (Pires et al., 2020). In this study, 
we used StandardScaler to normalize the dataset. Standard Scaler provides standard data by 
eliminating the mean and scaling to unit variance (Towfek El-Kenawy, 2019). 

Architecture of DPPM
Deep learning has increasingly acquired popularity as a consequence of its capacity to scale to 

big data, perform feature engineering from beginning to end, and provide accuracy in learning 
supervised and unsupervised data (Dargazany et al., 2018). Deep learning is a subset of machine 
learning that is based on artificial neural networks. Learning is possible in a supervised, semi-
supervised, or unsupervised environment (Bagherzadeh & Asil, 2019). The DPPM consists of 
13 layers as follows: 

- Convolutional neural network (CNN) (6) layers. 
- Max Pooling (5) layers. 
- Flatten (1) layer 
- Dense (1) layer. 
Table (1) explains these layers in some detail. 

Table (1): Proposed model layers 
 

NO. Layer Type  Filters Size/Stride Activation Function
1 Convolutional 16 3/1 ReLU 
2 Max Pooling ــ  1/1  ــ  
3 Convolutional 32 3/1 ReLU 
4 Max Pooling ــ   ــ 1/1  
5 Convolutional 64 3/1 ReLU 
6 Max Pooling ــ   ــ 1/1  
7 Convolutional 128 3/1 ReLU 
8 Max Pooling ــ  1/1  ــ  
9 Convolutional 265 3/1 ReLU 

10 Convolutional 512 3/1 ReLU 
11 Max Pooling ــ   ــ 1/1  
12 Flatten ــ   ــ  ــ  
13 Dense ــ   ــ  Softmax  

 
  

Table 1. Proposed model layers
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To modify the data (reducing the error rate and adjusting the weights) from the associated 
errors, the Adam optimizer was used. Recently, the Adam optimization algorithm—an 
adaptation of the Stochastic Gradient Descent algorithm—has seen widespread use in deep 
learning applications, particularly in computer vision and natural language processing.

The learning rate used in the model was (0.001) and the learning rate affects the convergence 
of the improvement process as it balances the effect of the curvature of the cost function. When 
the learning rate is very small then the update will be small and the optimization is slow especially 
when the cost curve is low and the update is likely to settle at the local minimum. And when the 
learning rate is very large then the upgrading will be large and the improvement varies especially 
when the curvature of the cost function is high. If the learning rate is chosen well, the updates 
will be appropriate and the optimization will converge to a good set of parameters.

The activation function of deep neural networks has a significant influence on the training 
procedure’s performance (Hayou et al., 2019). The kernel allows natural methods to manage 
learning capacity and reduce overfitting (Mairal, 2016). The kernel size and number of filters 
have a substantial influence on network accuracy (Agrawal & Mittal, 2020). When a large 
amount of information and a more complicated kernel are employed, the strides influence how 
a convolution process works with a kernel (Mureşan & Oltean, 2018). 

The validity of the model is evaluated by the value of the loss functions which play an 
important role in statistical models. Loss functions specify a target by which the performance 
of the model is evaluated and the parameters used by the model are determined by reducing the 
chosen loss function. The loss function denotes the degree of disagreement between the model’s 
predicted and true values (Zhong & Zhao, 2020).

Due to the unstable values in the data, which is thought to be noisy data, the proposed model 
is built with a low learning rate to prevent the system from learning much and a large number 
of kernel revolutions to increase the probability of evaluation and thereby increase the reliability 
of the results.

Evaluation Metrics 
The system has been evaluated using two metrics. These metrics are explained in this section 

as follows:

Matching Rate
 It is defined as the probability that any value in that class has been properly predicted. Eq. (1) 

yields the following result:
        

   
Number of tests is correctMatching Rate

Total number of tests
=                                           (1)

Loss Function 
This value is computed as shown in Eq. (2) as follows:

       
   

Number of tests is wrongLoss
Total number of tests

=                                                     (2) 

RESULTS AND DISCUSSION 
To assess the validity of the proposed model (Deep Pollutant Prediction Model), data from 

the GJ001 station in Allahabad City, as well as simulated data from Laylan City retrieved from 
the Gaussian Plume Model, were utilized. The loss function index was used in this work to 
evaluate the performance of the DPPM. 

GJ001 dataset results
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Despite the reality that the data for Allahabad are noisy and unstable DPPM demonstrated 
high efficiency in the prediction process for xylene and benzene parameters, with loss functions 
of 0.038 and 0.051, respectively. The PM2.5, NO2, NOX, CO, SO2, O3, and Toluene parameters 
have excellent DPPM efficiency, with loss functions less than 1%, as shown in table 2. The loss 
functions for the PM10 and NO parameters are quite similar and indicate very good outcomes, 
with 1.41 and 1.4, respectively. The one parameter with a massive loss function relative to the 
others is the AQI, which is evident by the fact that it is mathematically dependent on the sum of 
several other parameters, including O3, particulate matter (PM2.5 and BM10), CO, SO2, and NO2.

Despite the inconstancy of the measured values in the station and the missing values 
procedures done on the data preprocessing, these findings assessed the effectiveness of DPPM. 

Table 2: The loss error of DPPM for the GJ001 dataset 
 

Parameters Loss Function testing 30% Matching Percentage
PM2.5 0.668 99.332 
PM10 1.141 98.859 
NO 1.140 98.86 
NO2 0.575 99.425 
NOX 0.470 99.53 
CO 0.220 99.78 
SO2 0.548 99.452 
O3 0.388 99.612 

Benzene 0.051 99.949 
Toluene 0.275 99.725 
Xylene 0.038 99.962 

AQI 4.466 95.534 
 
  

Table 2. The loss error of DPPM for the GJ001 dataset

 

 

 

   

Fig. 3. Loss functions and matching percentage chart of GJ001 parameters
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Table (2) illustrates the loss function error of DPPM for each parameter included in the GJ001 
dataset. Figure (3) illustrates the loss functions and matching percentage of parameters of GJ001 
station.
Simulated output results

The Gaussian output (simulated data) results demonstrate the high efficiency of DPPM 
with very low function loss. Table (3) shows the output of the Gaussian equation with the loss 
functions and their matching percentage for each parameter. The findings are relatively constant 
with little or no significant vacillation, which contributes to the effectiveness of the model. The 
smallest loss function was 0.0041 for the elements Fe2O3 and MgO, while the loss function close 
to them, which is 0.0042 for Al2O3 and 0.0045 for SO3, as well as the loss function for SiO2 was 
0.0073. While the largest values of the loss functions were 0.0174 and 0.0221 for CaCO3 and 
CaO respectively, they express the efficiency of DPPM due to its smallness values. Figure (4) 
states the loss functions and matching percentage of parameters of Laylan station.

The uncertainty level of the DPPM predictions represents by loss function which in general 

Table 3: The loss error of DPPM for Laylan District from (Simulated output) 
 

Parameters Loss Function testing 30% Matching Percentage
CaCO3 0.0174 99.9826 

SiO2 0.0073 99.9927 
Al2O3 0.0042 99.9958 
Fe2O3 0.0041 99.9959 
CaO 0.0221 99.9779 
MgO 0.0041 99.9959 
SO3 0.0045 99.9955 

 

Table 3. The loss error of DPPM for Laylan District from (Simulated output)

 

 

Figure (4): Loss functions and matching percentage chart of Laylan parameters 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Loss functions and matching percentage chart of Laylan parameters
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was less than 1% for simulated data of Gaussian Plume Model. Whereas at the Ahmedabad 
station, many of the contaminated elements had loss functions of less than 1%, with the exception 
of two elements, NO and PM10, which were slightly more than 1%, and the last element, whose 
loss function value was more than 4%, which remains because it is calculated from the total 
other contaminated elements. Based on these findings, we infer that the suggested DPPM model 
is quite efficient.

CONCLUSION

In this study, we developed a proposed model based on deep learning and named it as Deep 
Pollutant Prediction Model. This model has an efficient and high precision structure and it is 
containing from six layers of CNN with filter sizes of 16, 32, 64, 128, 256, and 512 with kernel 
size equal to (3). The strides and padding of CNN layers are the same and equal to (1). The 
activation function of CNN is the ReLU function and the input shape is equal to the number of 
items in the data. Furthermore, it has five Maxpooling layers, one Flatten layer, and one Dense 
layer.

Despite the reality that the data for Allahabad are noisy and unstable which is effect on 
model, DPPM demonstrated high efficiency in the prediction process for xylene and benzene 
parameters, with loss functions of 0.038 and 0.051, respectively. The PM2.5, NO2, NOX, CO, SO2, 
O3, and Toluene parameters have excellent DPPM efficiency, with loss functions less than 1%. 
The loss functions for the PM10 and NO parameters are quite similar and indicate very good 
outcomes, with 1.41 and 1.4, respectively.

The one parameter with a massive loss function relative to the others is the AQI, which is 
evident by the fact that it is mathematically dependent on the sum of several other parameters, 
including O3, particulate matter (PM2.5 and PM10), CO, SO2, and NO2. Despite the inconstancy 
of the measured values in the station and the missing values procedures done on the data 
preprocessing, these findings assessed the effectiveness of DPPM.

Seven parameters were used in the implementation of DPPM for the Laylan station which 
are CaCO3, SiO2, Al2O3, Fe2O3, CaO, MgO, and SO3. These parameters are the simulated data of 
Gaussian Plume Model outputs. The loss functions for all the parameters in the DPPM findings 
for the Laylan station were better than those for the parameters for the Allahabad station. Where 
elements Fe2O3 and MgO had the lowest loss function value of 0.0041, and element CaO had the 
greatest loss function value of 0.0221. 
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