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Land degradation is a global natural hazard that can be controlled by distinguishing 

susceptible areas. Although new approaches for determining areas prone to land 

degradation are necessary, spatial modeling of this hazard remains a challenge. This study 

aimed to investigate the efficiency of the weight of evidence (WOE) and evidential belief 

function (EBF) models for spatial modeling of land degradation in a semi-arid region in 

Iran. The trend of Net Primary Production (NPP) changes related to 2001-2020, obtained 

from MOD17A3, was taken into account to specify the inventory of land degradation in 

the study area. 120 random points were chosen as degraded points in areas with decreasing 

trend in NPP during 20 years. 70% of the dataset was randomly selected as a training set 

for the modeling step and 30% of them were selected as the testing set for the validation 

step. Fifteen geo-environmental factors including temperature, precipitation, slope, 

aspect, altitude, land use, normalized difference vegetation index, normalized difference 

salinity index, vegetation soil salinity index, normalized difference moisture index, visible 

and shortwave infrared drought index, electrical conductivity, and sodium adsorption ratio 

of groundwater, groundwater table, and annual depletion of groundwater resources were 

selected as influential factors or independent variables for modeling. The modeling 

process was done in ArcGIS software after calculating the values of EBF and WOE in 

excel. And finally, the efficiency of the models was analyzed using the area under the 

ROC curve. The findings illustrated that EBF with AUC = 0.72 had better performance 

for spatial modeling of land degradation in the Qazvin plain. Also according to the outputs 

of both models, north, northeast, northwest, west, southwest, and south of the Qazvin 

plain were susceptible to LD. The results of this research successfully suggested a new 

land degradation modeling method that can be used in different areas. 
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Introduction 

 

Land degradation (LD) is a negative environmental process, accelerated by human activities 

(Omuto et al., 2014). Some researchers have defined LD as a general decrease in the productive 

potential of land (Foster, 2006) or a decline in ecosystem function (Bai et al., 2008). Others 

have described it as the negative change in land resources due to human activities (UNEP, 

1992). Despite different definitions of LD, there is an agreement on the characteristics of this 

phenomenon: it causes the reduction of the capability of the biological and economic 

productivity of land (Wieland et al., 2019) and threatens the ecosystem services, global food 
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security, economic development and the welfare of people around the world (Crossland et al., 

2018). Due to its impacts on food production, water supply, energy supply, and ecosystem 

services (Ewunetu et al., 2021), LD has become a critical problem globally. According to the 

UNCCD1 (2015), about 25% of Earth’s land area is severely degraded or undergoing 

degradation. Both human activities, e.g., land-use/land-cover change, and natural factors, e.g., 

climate change, influence LD (Haghighi et al., 2021). According to the literature, many studies 

have been done to assess, monitor, and detect sensitive areas to LD utilizing different methods. 

Mapping LD enables managers and decision-makers to ascertain susceptible areas to LD and 

make important decisions.  

     Most previous studies, assessing LD, have utilized various models such as IMDPA2 and 

MEDALUS3 (Boudjemline and Semar, 2018; Prăvălie et al. 2017; Rezaipoorbaghedar, 2015; 

Mesbahzadeh et al., 2013) or GIS and RS techniques (Bedoui et al., 2020; Mariano et al. 2018; 

Cerretelli et al. 2018). Recently, few studies have been done for spatial modeling and assessing 

land degradation using data mining techniques such as machine learning algorithms. 

Abolhasani et al. (2022) modeled land degradation in the Qazvin plain using machine learning 

algorithms and concluded that random forest was the best model for modeling LD in the Qazvin 

plain. Haghighi et al. (2021) used human-induced, and geoenvironmental variables and 

machine learning algorithms to map LD risk in the Pole-Doab watershed, Iran, and concluded 

that machine learning techniques can help policymakers prioritize land and water conservation 

efforts. Yousefi et al. (2021) applied three machine learning models to assess LD in the 

rangelands of the Alborz Mountains in Firozkuh County, Iran, and showed that machine 

learning techniques are a proper approach for estimating rangeland status all over the world. 

Moradi et al. (2020) assessed vulnerability, hazard, and risk of land degradation using machine 

learning models and remote sensing and showed that machine learning techniques have better 

performance than remote sensing.  

     So far, to the best of our knowledge, the applicability of statistical models has not been 

entirely explored in the context of land degradation and there is not enough study in this field 

while many studies have been done for modeling other natural hazards such as flood, landslide, 

etc. using these models (Chen et al., 2019; Tehrany et al., 2017 ). Also, previous studies in the 

field of LD modeling have utilized field surveys to determine LD sites. Therefore, the present 

study proposes a new conceptual framework for spatial modeling of land degradation based on 

the trends of changes in Net Primary Production (NPP) and statistical models including the 

Weight of Evidence function (WoE) and Evidential Belief Function (EBF). NPP is the Gross 

Primary Production (GPP) minus the carbon lack of plant breathing, which is the main index to 

show the function of ecosystems (Pan et al., 2021). The main objectives of the research were 

(1) spatial modeling of LD in the Qazvin plain which is considered a critical plain, and (2) 

comparison of the performance of WoE and EBF models for determining LD susceptibility 

using area under the ROC curve (AUC). The results of the study can help managers and 

decision-makers to conserve land sustainability.  

 

Material and methods 

 

Study area 

 

Qazvin plain is located between 49° 10' to 50° 40' eastern longitude and 35° 20' to 36° 30' 

northern latitude (fig 1). The area of the plain is 9500 Km2 and its maximum and minimum 

altitude are respectively about 2971 m and 950 m. The average annual rainfall of this region 

___________________________________________________________ 
1 United Nations Convention to Combat desertification 
2 Iranian Model of Desertification Potential Assessment 
3 Mediterranean Desertification and Land Use 
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varies from 210 mm in the eastern parts to more than 550 mm in the northeastern parts. Also, 

the minimum and maximum of the average annual temperature are respectively about 2 °C and 

18 °C. Based on DeMartonne's classification, most of the climatic zone of the plain is cold 

semi-arid.  

 
Figure 1. Location of the study area (Qazvin plain, Iran) 

 

Methodology 

 

Inventory factors 

 

To model the LD capability of Qazvin plain, the LD inventory of the study area was ascertained 

in the first step, utilizing the trend of changes in Net Primary Productivity (NPP). For this aim, 

the annual NPP related to 2001- 2020 was obtained using MOD17A3. Then, the trend of 

changes in NPP was determined using the Mann-Kendall trend test in TerrSet software. 

Locations with constant or increasing trends of NPP were considered non-degraded areas and 

sites with decreasing trends of NPP were considered degraded locations. 120 random points 

were chosen in degraded areas. 70% of these sites (84 sites) were randomly chosen as the 

training set and the remainder (36 sites) of them were selected as the validation set. It should 

be noted that agricultural lands, urban areas, salt lands, and bare lands were ignored in selecting 

degradation points and the locations were randomly selected out of these land uses (fig 2). 

 

 
Figure 2. Training and testing set for spatial modeling of land degradation 
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Influential factors 

 

Due to the complexity of land degradation, there are no universal guidelines for selecting the 

exact variables that influence this phenomenon. But, according to different studies in this field, 

the most usual variables which influence LD are soil salinity (Sadeghiravesh et al., 2021), 

vegetation cover (Kirui et al., 2021), rainfall (Zhang et al., 2020), etc. In this study, according 

to the studies in the field of land degradation and desertification, slope, altitude, aspect, 

vegetation index (NDVI4), soil salinity indices (NDSI5, VSSI6), soil moisture indices (NDMI7, 

VSDI8), land-use, precipitation, temperature, EC, and SAR of groundwater, groundwater level, 

and annual groundwater decline were selected as influential factors or independent variables 

for modeling LD. Information layers of topographic factors were derived from ASTER DEM 

with a 30*30 m cell size. Meteorological data and groundwater features were obtained from 

Iran Meteorological Organization and Iran Water Resources Management Organization, 

respectively. The averages of the precipitation, temperature, EC, SAR, annual groundwater 

decline and groundwater level related to 2010-2019 were calculated and then interpolated in 

ArcGIS. Information layers of NDVI, NDSI, VSSI, NDMI, and VSDI indices were also 

prepared using remote sensing technique (Landsat 8) and ArcGIS software. The land use layer 

was obtained from the basic map of Forest, Range, and Watershed Management of Iran and 

then checked as much as possible using google earth and field visits (fig 3).  

     The name of various land uses is shown in table (1). 

 
                            Table 1. Various ladn uses  

Number of land use Name of land use 

1 Agricultural lands 

2 Dry farming 

3 Garden  

4 Good rangelands  

5 Poor rangelands 

6 Urban areas 

7 Poor rangelands- Fallow 

8 Mid-rangelands 

9 Bare lands 

10 Dry farming- Mid-rangelands 

11 Poor rangelands- Garden 

12 Wetlands-salt lands 

13 Poor rangelands- Dry farming 

 

     According to the determination coefficient, there was no correlation between NDSI and 

VSSI, and also NDMI and VSDI, therefore, we used these indices in the model simultaneously 

(fig 4).  

 

 

___________________________________________________________ 
4. Normalized Difference Vegetation Index 
5. Normalized Difference Salinity Index  
6. Vegetation Soil Salinity Index 
7. Normalized Difference Moisture Index 
8. Visible and Shortwave infrared Drought Index 
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Figure 3. Independent variables influencing LD  
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Figure 4. Coefficient of determination between NDSI-VSSI and NDM-VSDI 

 

Modeling 

 

LD capability maps were generated utilizing EBF and WOE methods. EBF, known as the 

Dempster-Shafer theory developed by Dempster (1976), is a generalization of the Bayesian 

theory of subjective probability (Tehrany et al., 2017). It has relative flexibility in accepting 

uncertainty and also the capacity to combine beliefs from multiple sources of evidence 

(Feizizadeh and Blaschke 2014). Parameters of the EBF model are calculated using equations 

(1) to (5).  

𝐵𝑒𝑙𝑖𝑒𝑓 (𝐵𝑒𝑙) =  
𝐵𝑒𝑙1+ 𝐵𝑒𝑙2+⋯+ 𝐵𝑒𝑙𝑛

𝐵
                                                                                                 (1) 

𝐷𝑖𝑠𝑏𝑒𝑙𝑖𝑒𝑓 (𝐷𝑖𝑠) =  
𝐷𝑖𝑠1+ 𝐷𝑖𝑠2+⋯+ 𝐷𝑖𝑠𝑛

𝐵
                                                                                             (2) 

𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦(𝑈𝑛𝑐) =  
∑ (𝑈𝑛𝑐𝑖−1𝑈𝑛𝑐𝑖+ 𝐵𝑒𝑙𝑖−1𝑈𝑛𝑐𝑖+ 𝐵𝑒𝑙𝑖𝑈𝑛𝑐𝑖−1+ 𝐷𝑖𝑠𝑖−1𝑈𝑛𝑐𝑖+ 𝐷𝑖𝑠𝑖𝑈𝑛𝑐𝑖−1)𝑛

𝑖=1

𝐵
                         (3)    

𝑃𝑙𝑢𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 (𝑃𝑙𝑠) = 𝐵𝑒𝑙 + 𝑈𝑛𝑐                                                                                                     (4) 

𝐵 = 1 −  ∑ (𝐵𝑒𝑙 𝑖−1  
𝑛
𝑖−2 𝐷𝑖𝑠𝑖 −  𝐷𝑖𝑠𝑖−1𝐵𝑒𝑙𝑖)                                                                                   (5) 

     Where 𝑛 is the number of factors, 𝐵𝑒𝑙 is the degree of confidence, 𝐷𝑖𝑠 is the degree of no 

confidence, 𝑈𝑛𝑐 is the degree of uncertainty, 𝑝𝑙𝑠 is the degree of plausibility between 0 and 1. 

𝐵𝑒𝑙𝑛 is the degree less than confidence for any factor, 𝐷𝑖𝑠𝑛 is the degree of no confidence for 

any factor, and 𝑈𝑛𝑐𝑛is the degree of uncertainty for any factor.  

     WOE is also a data-driven statistical method based on Bayesian statistics (Thongley and 

Chaiwiwa, 2020). It depends on the calculation of 𝑊+ and 𝑊− which are positive and negative 

weights respectively ( equations 6,7, and 8). 

𝑊+ = ln
𝑝 {𝐵|𝐴}

𝑝 {𝐵|𝐴}
                                                                                                                          (6)                                                                                                            

𝑊− = ln
𝑝 {𝐵|𝐴}

𝑝 {𝐵|𝐴}
                                                                                                                           (7) 

Where B is the presence of the influential factor, 𝐵 is the absence of the influential factor, A is 

the presence of LD and 𝐴 is the absence of LD. To measure the spatial correlation between LD 

and the influential factors 𝑊𝑓 is calculated.  

𝑊𝑓 =  𝑊+− 𝑊−                                                                                                                         (8) 

              

Validating 

 

Validation is performed in any modeling procedure to specify whether the results of the utilized 

model are accurate enough or not (Robinson, 2014). In the current study, the efficiency of the 

models was evaluated using AUC, the area under the receiver operating characteristic curve 

(ROC). AUC can distinguish the models’ susceptibility (Youssef et al., 2016) and compare the 
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performance between two or more alternative tests (Yang et al., 2017). In this study, the ROC 

curve was prepared using MedCalc software. The rule for interpreting the AUC value is 

illustrated in table (2).   

 
                                 Table 2. AUC values (Yesilnacar, 2005) 

AUC values Test quality 

0.5 – 0.6 Poor (Unsatisfactory)  

0.6 – 0.7 Average (Satisfactory) 

0.7 – 0.8 Good  

0.8 – 0.9 Very good 

0.9 - 1 Excellent  

 

Results  

 

Land degradation capability maps generated using EBF and WOE models are demonstrated in 

figure (5). The LD probability ranges from 0 to 1, with 0 representing no probability and 1 

representing 100% probability. According to both models, north, northeast, northwest, west, 

southwest, and south of the Qazvin plain are susceptible to LD.  

 

 
Figure 5. Land degradation capability 

 

     The susceptibility maps of LD were also classified into very low, low, moderate, high, and 

very high classes using the natural break method in ArcGIS (fig 6). According to the findings, 

high and very high classes of LD belonged to the north, northeast, northwest, west, southwest, 

and south of the study area which mainly include good, moderate, and poor rangeland.  

 

 
Figure 6. Classification of land degradation capability 
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     The estimated WOE and EBF for 15 land degradation influential factors are shown in tables 

(3) and (4). The WOE and EBF results on soil salinity indices showed that the range of NDSI 

between 0.6 and 0.8 and the range of VSSI between 0.8 and 1 received the most value. The 

outputs on vegetation cover using both WOE and EBF models indicated that classes of 0.4-0.6 

gained the most weight. Regarding the soil moisture indices, the classes of 0-0.2 of NDMI and 

the classes of 0.8-1 of VSDI received the highest EBF value while classes of 0.4-0.6 of NDMI 

and VSDI acquired the most value using the WOE model. The highest WOE and EBF values 

were related to the west class of the aspect layer. For the slope layer, the most EBF value was 

related to the class of more than 60% and the highest WOE value was related to the class of 30-

60%. The results on altitude showed that the most EBF weight belonged to the class of more 

than 2000 m and the highest WOE weight was related to the classes of 1500-2000 and 2000-

2500 m. For rainfall factor, the classes of 300-350 mm received the highest EBF and WOE 

values. The findings on temperature revealed that the most values of EBF and WOE were 

respectively related to the classes of less than 14 °C and 14-15 °C. For qualitative features of 

groundwater, the most EBF value was related to the class of less than 2 of SAR and the class 

of less than 2000 mho/cm of EC. Also, the highest WOE weights belonged to the classes of 2-

4 of SAR and the class of less than 2000 mho/cm of EC. The classes of 0.6-1.6 m of annual 

groundwater drop received the highest EBF and WOE values. In terms of the groundwater table, 

the class of more than 120 m and the classes of 40-60 m had the highest EBF and WOE values, 

respectively. Also for the land use layer, the highest value of EBF and WEO was related to the 

sum of good, moderate, and poor rangelands. 

 
   Table 3. Correlation between land degradation and influential factors using the EBF model 

Factors Class No. of pixels in domain No. of degradation Bel (belief) 

 

 

NDSI 

0-0.2 

0.2-0.4 

0.4-0.6 

0.6-0.8 

0.8-1 

317053 

830777 

2146607 

3623959 

3671189 

2 

3 

20 

35 

24 

0.1780 

0.1019 

0.2630 

0.2726 

0.1845 

 

 

VSSI 

0-0.2 

0.2-0.4 

0.4-0.6 

0.6-0.8 

0.8-1 

775482 

1862225 

3179429 

3172451 

1599998 

1 

1 

23 

31 

28 

0.0355 

0.0148 

0.1991 

0.2690 

0.4817 

 

 

NDVI 

0-0.2 

0.2-0.4 

0.4-0.6 

0.6-0.8 

0.8-1 

2223972 

4388896 

2565283 

1022560 

388874 

12 

40 

28 

1 

3 

0.1582 

0.2671 

0.3199 

0.0287 

0.2261 

 

 

NDMI 

0-0.2 

0.2-0.4 

0.4-0.6 

0.6-0.8 

0.8-1 

1441654 

4436524 

2983954 

1288641 

438812 

17 

30 

31 

4 

2 

0.3221 

0.1847 

0.2838 

0.0848 

0.1245 

 

 

VSSI 

0-0.2 

0.2-0.4 

0.4-0.6 

0.6-0.8 

0.8-1 

775482 

1862225 

3179429 

3172451 

1599998 

1 

1 

23 

31 

28 

0.0355 

0.0148 

0.1991 

0.2690 

0.4817 

 

 

 

 

Aspect 

Flat 

North 

Northeast 

East 

Southeast 

South 

664101 

981277 

1435746 

1393955 

1325186 

1484309 

1 

11 

10 

6 

14 

11 

0.0213 

0.1584 

0.0984 

0.0608 

0.1492 

0.1047 
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Southwest 

West 

Northwest 

1294949 

1043596 

966466 

8 

15 

8 

0.0873 

0.2030 

0.1169 

 

 

 

 

Slope  

0-5 

5-8% 

8-12% 

12-15% 

15-30% 

30-60% 

>60% 

5526478 

1486908 

1119021 

1143071 

703701 

558625 

51781 

18 

12 

13 

13 

11 

15 

2 

0.0282 

0.0699 

0.1006 

0.0985 

0.1354 

0.2326 

0.3346 

 

 

Altitude  

<1000 

1000-1500 

1500-2000 

2000-2500 

>2500 

16 

6354211 

3156856 

1034488 

44014 

0 

17 

45 

21 

1 

0.0000 

0.0446 

0.2378 

0.3386 

0.3790 

 

 

Rainfall 

 

<250 

250-300 

300-350 

>350 

2996929 

5355084 

1096310 

1141262 

6 

49 

15 

14 

0.0540 

0.2466 

0.3688 

0.3306 

 

Temperature 

 

<14 

14-15 

15-16 

>16 

1203692 

5140175 

3155296 

1090422 

14 

54 

12 

4 

0.3928 

0.3548 

0.1284 

0.1239 

 

 

SAR 

<2 

(2-4) 

(4-6) 

(6-8) 

>8 

1129229 

5900759 

2333135 

936530 

289932 

14 

64 

6 

0 

0 

0.4802 

0.4201 

0.0996 

0.0000 

0.0000 

 

EC 

<2000 

2000-4000 

>4000 

6862771 

3642573 

84241 

65 

19 

0 

0.6449 

0.3551 

0.0000 

 

 

Groundwater 

table 

<20 

20-40 

40-60 

60-80 

80-100 

100-120 

>120 

866033 

1735681 

3899705 

2754863 

1228441 

77556 

27306 

0 

4 

40 

25 

14 

0 

1 

0.0000 

0.0331 

0.1473 

0.1303 

0.1636 

0.0000 

0.5258 

 

Annual 

groundwater 

decline 

<0.6 

0.6-1.6 

1.6-2.6 

2.6-3.6 

>3.6 

1474865 

7620330 

1431472 

54830 

8088 

1 

78 

5 

0 

0 

0.0471 

0.7105 

0.2424 

0.0000 

0.0000 

 

 

 

 

 

Land use 

Agriculture 

Garden 

Bareland 

Dry farming 

Good rangeland 

Dry farming- 

mid rangeland 

Dry farming- 

poor rangeland 

Follow- poor 

rangeland 

Wetland-salt 

land 

Mid rangeland 

Poor rangeland 

Urban area 

3156493 

69000 

893447 

1251288 

640268 

277143 

112354 

363605 

37431 

1909261 

1726758 

152537 

0 

2 

0 

6 

7 

3 

2 

2 

0 

35 

27 

0 

0.0000 

0.2569 

0.0000 

0.0425 

0.0969 

0.0960 

0.1578 

0.0488 

0.0000 

0.1625 

0.1386 

0.0000 
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Table 4. Correlation between land degradation and influential factors using the WOE model 

Factors  Class  No. of pixels in domain No. of degradation 𝑾𝒇 

 

 

NDSI 

 

 

0-0.2 

0.2-0.4 

0.4-0.6 

0.6-0.8 

0.8-1 

317053 

830777 

2146607 

3623959 

3671189 

2 

3 

20 

35 

24 

-0.34 

-1.44 

0.48 

0.61 

-1.73 

 

 

VSSI 

0-0.2 

0.2-0.4 

0.4-0.6 

0.6-0.8 

0.8-1 

775482 

1862225 

3179429 

3172451 

1599998 

1 

1 

23 

31 

28 

-1.88 

-2.87 

-1.02 

0.73 

4.14 

 

 

NDVI 

0-0.2 

0.2-0.4 

0.4-0.6 

0.6-0.8 

0.8-1 

2223972 

4388896 

2565283 

1022560 

388874 

12 

40 

28 

1 

3 

-1.69 

1.15 

1.93 

-2.17 

-0.05 

 

 

NDMI 

0-0.2 

0.2-0.4 

0.4-0.6 

0.6-0.8 

0.8-1 

1441654 

4436524 

2983954 

1288641 

438812 

17 

30 

31 

4 

2 

1.75 

-1.14 

1.77 

-1.99 

-0.80 

 

 

VSDI 

0-0.2 

0.2-0.4 

0.4-0.6 

0.6-0.8 

0.8-1 

899690 

2330924 

3086367 

2766443 

1506161 

1 

7 

34 

24 

18 

-2.03 

-2.87 

2.26 

0.51 

1.87 

 

 

Aspect 

Flat 

North 

Northeast 

East 

Southeast 

South 

Southwest 

West 

Northwest 

664101 

981277 

1435746 

1393955 

1325186 

1484309 

1294949 

1043596 

966466 

1 

11 

10 

6 

14 

11 

8 

15 

8 

-1.70 

1.20 

-0.44 

-1.60 

1.14 

-0.24 

-0.75 

2.41 

0.13 

 

 

Slope  

0-5 

5-8% 

8-12% 

12-15% 

15-30% 

30-60% 

>60% 

5526478 

1486908 

1119021 

1143071 

703701 

558625 

51781 

18 

12 

13 

13 

11 

15 

2 

-5.22 

0.06 

1.45 

1.37 

2.32 

4.78 

2.24 

 

 

 

Altitude  

<1000 

1000-1500 

1500-2000 

2000-2500 

>2500 

16 

6354211 

3156856 

1034488 

44014 

0 

17 

45 

21 

1 

0 

-6.54 

4.57 

4.46 

1.05 

 

 

Rainfall  

<250 

250-300 

300-350 

>350 

2996929 

5355084 

1096310 

1141262 

6 

49 

15 

14 

-3.86 

1.42 

2.22 

1.72 

Temperature <14 

14-15 

15-16 

>16 

1203692 

5140175 

3155296 

1090422 

14 

54 

12 

4 

1.52 

2.84 

-3.00 

-1.62 

 

 

SAR 

<2 

(2-4) 

(4-6) 

1129229 

5900759 

2333135 

14 

64 

6 

1.76 

3.64 

-3.07 
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(6-8) 

>8 

936530 

289932 

0 

0 

0.00 

0.00 

 

EC 

<2000 

2000-4000 

>4000 

6862771 

3642573 

84241 

65 

19 

0 

2.37 

-2.24 

0.00 

 

 

Groundwater 

table 

<20 

20-40 

40-60 

60-80 

80-100 

100-120 

>120 

866033 

1735681 

3899705 

2754863 

1228441 

77556 

27306 

0 

4 

40 

25 

14 

0 

1 

0.00 

-2.67 

2.03 

0.78 

1.44 

0.00 

1.53 

 

Annual 

groundwater 

decline 

<0.6 

0.6-1.6 

1.6-2.6 

2.6-3.6 

>3.6 

1474865 

7620330 

1431472 

54830 

8088 

1 

78 

5 

0 

0 

-2.58 

3.83 

-1.96 

0.00 

0.00 

 

 

 

 

 

 

 

 

Land use 

Agriculture 

Garden 

Bare land 

Dry farming 

Good rangeland 

Dry farming- mid 

rangeland 

Dry farming- poor 

rangeland 

Follow- poor 

rangeland 

Wetland-salt land 

Mid rangeland 

Poor rangeland 

Urban area 

3156493 

69000 

893447 

1251288 

640268 

277143 

112354 

363605 

37431 

1909261 

1726758 

152537 

0 

2 

0 

6 

7 

3 

2 

2 

0 

35 

27 

0 

0.00 

1.84 

0.00 

-1.31 

0.88 

0.55 

1.15 

-0.53 

0.00 

5.32 

3.80 

0.00 

 

     Evaluating the efficiency of the models demonstrated that the AUC values of EBF and WOE 

models were respectively 0.72 and 0.69 (fig 7). According to the results, the EBF model had a 

better performance than the WOE model in spatial modeling of land degradation in the Qazvin 

plain.   
 

 
 

Figure 7. AUC of the models using the training dataset 
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Discussion 

 

Although new different approaches such as machine learning algorithms have been used for 

assessing LD capability, the application of WOE and EBF models has not been tested in this 

field. In this research, a comparative estimation of EBF and WOE statistical models was 

undertaken to map LD capability in the Qazvin plain and the results of the models were 

validated using AUC. Based on AUC values, the EBF model had a better proficiency than the 

WOE model for modeling LD capability in the study area.  

     The EFB results on soil salinity illustrated that the class of moderate to high soil salinity had 

a strong correlation with LD in the Qazvin plain. These findings prove that soil salinity has a 

specific effect on LD in our study area and are consistent with Moradi et al. (2020) and Hailu 

and Mehari (2021) who stated that soil salinity is one of the most significant factors in LD. 

Regarding topographic factors, slope and altitude had a direct correlation with LD in the Qazvin 

plain, and susceptible areas to LD are mostly highlands with 15% slope and above. The altitude 

factor not only has a role in soil evolution directly but also affects important atmospheric 

parameters and is considered a climate change factor at the regional level and a key factor in 

land degradation (Jokar Sarsangi et al., 2008). Soil and land degradation are also directly related 

to the land slope and with an increase in slope, the intensity of erosion and degradation also 

increases (Ziadat and Timeh, 2013). The outputs of WOE and EBF also showed that the sum 

of good, moderate, and poor rangelands received the most value among various classes of land 

use and had a significant role in LD in the Qazvin plain. In addition, the vulnerable areas with 

the highest LD susceptibility are mostly rangelands especially those with good and medium 

quality. These land uses, located at high altitudes and steep slopes are susceptible to land 

degradation maybe because of livestock grazing. Soil trampling and reduction of vegetation 

cover due to grazing, have exposed these areas to land degradation. These findings are in line 

with the results of Donovan and Monaghan (2021), Narantsetseg et al. (2018), and Goudie 

(1990) who stated that grazing pressures increase soil erodibility and impact vegetation 

composition and reduction. The class of land degradation susceptibility was low for bare lands, 

located in the central parts of the plain because bare lands are now degraded and have no plants 

or a very poor density of plants.   

 

Conclusion 

 

This research was done to map LD capability using EBF and WOE statistical models in Qazvin 

plain which has a critical condition. The main conclusion of this study are as follows: 

 Based on AUC values, the EBF model’s performance for modeling LD in Qazvin plain was 

better than the WOE’s. 

 According to the maps of LD capability, the north, northeast, northwest, west, southwest, 

and south of the Qazvin plain were susceptible to LD that mainly consisted of rangelands 

of good, moderate, and poor quality.  

It is necessary to mention that the derived correlation between the influential factors and LD 

using EBF and WOE is specific to this research and applying these models in other regions may 

lead to different results.  
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