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A novel hybrid surfactant-type polyoxometalate, [(C16H33) N(CH3)3]6 

[PV3W9O40] was synthesized and characterized by FT-IR, SEM, and EDX  

analysis. Oxidation of sulfur compounds in gas condensate with H2O2 as 

oxidant using surfactant-type polytangestovanado phosphoric catalyst and 

acetonitrile as solvent was studied. The total sulfur content of the samples 

was determined by UV Fluorescence.  The catalyst was evaluated for the 

oxidative desulfurization of gas condensate from Ilam Refinery Company 

and straight-run diesel from Kermanshah Oil Refining. The findings reveal 

that the catalysts preserve the Keggin structure. The sulfur level of a gas 

condensate can be lowered from a few hundred 1800 µg/g to 83 µg/g only 

at 5 min and the sulfur removal of 98.83% was obtained at 15 min. Also, 

the desulfurization rate of straight-run diesel can be up to 82% at 30 min. 

In addition, the reusability of the catalyst after five times showed that the 

catalytic activity had a decrease from 97.22 to 92.11 percent sulfur removal 

of gas condensate.  

 

Introduction 

Environmental concerns and the growing interest in fuel cell application have made it 

increasingly important to study the desulfurization of liquid transportation fuels. The 

combustion of fossil fuels containing sulfur generates sulfur oxides (SOx) and particulate 

matter (PM), leading to air pollution and cause to serious diseases of the human respiratory 

system [1]. Additionally, SOx molecules play a significant role in the formation of acid rain, 

which is dangerous for both the environment and man-made objects. [2]. Due to the extremely 

strict environmental rules, the sulphur content of diesel has been restricted to less than 15 g/g 

in the US since 2006, less than 15 g/g in Europe since 2009, and fewer than 50 g/g in Iran since 

2008. [3, 4]. One of the most popular desulfurization techniques used in refinery processes since 

the 1950s is hydrodesulfurization (HDS) [5]. At high temperatures and partial pressures of 

hydrogen, the HDS process involves catalytic treatment with hydrogen to convert various 

sulphur compounds to H2S and sulphur free organic compounds [6]. It is not possible to achieve 

ultra-low sulphur levels due to the refractory S-containing aromatic compounds such as 

dibenzothiophene (DBT) and its derivatives, particularly the alkyldibenzothiophenes, unless 
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extreme operating conditions of high temperature, high pressure, and high hydrogen 

consumption are met, as well as the use of a more active catalyst, which necessitates a 

significant capital investment. [7, 8]. As a result, alternative, more energy-efficient deep 

desulfurization methods, are desirable, such as extraction [9, 10], adsorption [11, 12], oxidation  

[13, 14],  as well as bioprocess[15, 16]. 

One of the most promising approaches for removing sulphur at ambient temperature and 

atmospheric pressure is oxidative desulfurization (ODS). Heavy sulphides are oxidised in ODS 

by adding one or two oxygen atoms to the sulphur without breaking any carbon-sulfur bonds, 

generating sulfoxide and sulfone, respectively. Due to their enhanced relative polarity, the 

oxidised chemicals are then removed or adsorbed from the light oil. [17]. The different oxidants 

used in ODS process, such as organic hydroperoxides [18], molecular oxygen [19], peracids 

[20], hydrogen peroxide [21] and others. H2O2 is considered one of the greatest oxidising 

agents and is often utilised due to its perceived environmental friendliness, generating just water 

as a by-product. [22]. 

A range of heterogeneous and homogeneous catalysts have been researched for ODS process 

enhancement to reduce hydrogen peroxide consumption and reaction time, such as formic acid 

[23], acetic acid [20, 23], transition metals supported on porous solid [24], zeolites [25], 

hetropolyacides [26] and hetropolyoxometalate [27]. 

POMs are anionic oxoclusters of early transition metals at their maximum oxidation state, 

such as Mo6+, W6+, V5+, and, less commonly, Nb5+ and Ta5+. POMs are classified into two 

groups based on their chemical composition: isopolyanions ([MmOy] p) and heteropolyanions 

([XxMmOy] q), where M is the primary transition metal atom and O is the oxygen atom. The 

principal heteroatom X, which might be a non-metal, can also be integrated into the 

heteropolyanions (such as P, Si, As, and Sb) [28]. The use of hetropolyoxometalate in 

combination with surfactants makes use of advantages emulsion phase that reduces mass 

transfer limitation between two phases. Several researchers reported several kinds of surfactant-

type polyoxometalate such as  Q4W10O32 (Q= quaternary ammonium cation with different 

lengths of the alkyl chain)[29], [(C18H37)2N(CH3)2][PW12O40][30], and Phosphomolybdic acid 

(HPMo) modified with quaternary ammonium cation [31] as catalysts, leading to the formation 

emulsion droplet in ODS system with H2O2 as oxidant. 

In this study, keggin tangestatvanadophsphoric acid was modified with hexadecyl 

ammonium [(CH3) N (C16H33)3] 
+ and used as a catalyst in an ODS system. The amphiphilic 

catalyst is made up of a lipophilic tail quaternary ammonium with a single long carbon chain 

that acts as a surfactant and a hydrophilic catalyst made up of hetropolyoxometalat. As an 

oxidant, hydrogen peroxide was employed, and gas condensate was chosen as the fuel model. 

Experimental  

Materials 

Sodium tangestate (NaWO4.2H2O), phosphoric acid(85%), and acetic acid(99%) were 

purchased from Merck Co. (Germany) and hydrogen peroxide( 30%) was purchased from B.P 

medical (Holland), and sodium metavanadate and acetonitrile from Sigma chemical co.  

Condensate with a sulfur content of 1800 µg/g and Straight-run diesel with a sulfur content of 

5500 µg/g were obtained from a domestic gas and petroleum refinery respectively. 
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 Characterization Methods 

A Nicolet Nexus 470 FT-IR spectrometer was used to obtain the infrared spectra (IR) of the 

catalysts. The scanning limitations were in the 4000 to 400 cm-1 range. The SEM picture was 

created using the JEM-2100F instrument. EDAX (energy dispersive X-ray analysis) was used 

to account for the C, P, W, and V elements. Antek multitek vertical sulphur Model 734 UV 

Fluorescence was used to determine the total sulphur content of the samples. 

Catalyst Preparation 

First, 12 g of Na2WO42H2O was stirred into 15 ml of distilled water. After that, we 

progressively add 0.4 ml of 85% H3PO4 to this solution while vigorously mixing it. The pH of 

the solution was then adjusted to 7.5 by adding 2.2 mL of acetic acid, and the solution was 

maintained for one hour. After a while, the solution became cloudy and gradually a heavy white 

precipitate formed. The solid was filtered and first dried for 8 h at 80⁰C, then, it was dried at 

120 °C for about 3 h to get the solid of B-Na8H[PW9O34]·7H2O[32].  

Then, 4 g of B-Na8H[PW9O34]·7H2O and 0.61 g of NaVO3 were dissolved in 20 ml of 1.0 

M sodium acetate/acetic acid buffered at pH 4.8 and the solution stirred at 25 °C for 48h [33]. 

To this solution, 6 ml of hexadecyltrimethyl ammonium chloride was added slowly under 

mixing. The mixture was stirred vigorously for 1 h. A red solid was filtered off and then washed 

with an excess amount of water, and then it was left in air for 12 h and dried at 80 for 12 h.  

Catalytic Reaction 

In a beaker fitted with a magnetic stirrer, the catalytic oxidation of sulfur-containing organic 

molecules in gas condensate with hydrogen peroxide was performed. In a typical run, the solid 

catalyst (100 mg) was suspended at a constant temperature in a combination of fuel (20 mL) 

and H2O2 (at varied molar ratios O/S) (between 313 and 353 K). After the specific time, the 

catalyst was filtered and acetonitrile was added to the fuel under stirring for 5 min. Then the 

aqueous and hydrocarbon phases were decanted in a separatory funnel.  Antek Instruments 

Model 734 Sulfur Analyzer was used to determine the sulphur content of the hydrocarbon 

phases. Finally, the catalyst was filtered and reused without further treatment. Using their 

starting concentration (C0) and concentration after t minutes of reaction (Ct), the removal or 

conversion (X) for a specific organic sulphur molecule was computed as X = (C0 - 

Ct)/C0Results and discussion 

Characterization of Catalyst 

Fig. 1 depicts the major elements of the catalyst's IR spectrum. Peaks in the 500-1100 cm1 

range, corresponding to Keggin structural vibrations, were recognised. This indicates that 

[(C16H33)N(CH3)3]6[PV3W9O40] maintains the Keggin structure [34-36]. 
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Fig. 1. The FT-IR spectra of (C16H33)N(CH3)3]6[PV3W9O40] 

Fig. 2 shows Scanning Electron Microscopy (SEM) of the synthesized catalyst to study the 

particle size and morphology. Filamentous structure with lengths less than 1μm was obtained. 

Fig. 3 and Table 1 exhibit the EDAX measurement findings, which revealed that the molar ratio 

of C:P:W:V in the catalyst was 118:1:8.8:3  in good agreement with the elemental analysis 

values. 

  
Fig. 2. The SEM images of (C16H33)N(CH3)3]6[PV3W9O40]: (a) scale of 500 nm, (b) scale of 2µm  

a b b 
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Fig. 3. The EDAX analyze of (C16H33) N(CH3)3]6[PV3W9O40] 

Table 1. EDX result of (C16H33) N(CH3)3]6[PV3W9O40] 

Element Weight (%wt) Atomic % 

C 31.13 35.41 

P 0.68 0.36 

W 35.54 42.83 

Catalytic Activity 

Many types of oxidative desulfurization systems were based on the use of H2O2 as an 

oxidant. These systems as a liquid biphasic reaction system are limited by the transfer of 

reagents between organic and aqueous phases, which results in an excessive consumption of 

hydrogen peroxide to accomplish ultra-desulfurization. Phase transfer catalysts are an attractive 

choice for minimising mass transfer limitations by promoting reagent transfer between phases 

and resulting in good mixing between two phases via the creation emulsion droplet. The 

amphiphilic catalyst composes of the hydrophilic active catalyst and the lipophile surfactant (as 

was shown in Fig.4) that causes the catalyst be neither soluble in the oil phase nor aqueous 

phase, but with stirring continuously, by forming an emulsion droplet, reaction between two 

phases is facilitated and consumption of hydrogen peroxide is reduced to stoichiometric [37]. 

 

Fig. 4. The oxidation of benzothiophene in emulsion droplets 
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The influence of the molar ratio O/S on the sulfur removal rate is shown in Fig. 5. 

Stoichiometrically, 2 moles of H2O2 is consumed by 1 mol of sulfur compounds. Sulfur removal 

of gas condensate increased with an increasing O/S molar ratio at a reaction temperature of 40 

℃. It can be seen from Fig. 5 that when the O/S molar ratio was increased from 2.5 to 5.5, the 

sulfur removal increased from 93.6% to 96.4%. Sulfur removal of 61.3% was obtained with no 

hydrogen peroxide only in the presence of catalyst and extraction at the next step which is 

referred to as catalyst activity and molecular oxygen diffused to the system as oxidant and 

extraction by acetonitrile. 

 
Fig. 5. The influence of the H2O2/sulfur molar ratio (O/S) on reaction rate. (T = 40 ◦C, gas condensate (S: 1800 

ppm), Catalyst: 0.1 g) 
Fig. 6 shows the sulfur removal with different amounts of catalysts. As the number of 

catalysts rose, the conversion increased. When the amount of catalyst was 0.1 g, sulfur in the 

gas condensate can be removed from 1800 to 99 ppm at the O/S=3.5 and to 67 ppm with 

increasing the amount of catalyst to 0.15 g. The experiment was also carried out in the absent 

catalyst at the molar O/S=4.5 the sulfur removal of 55.91% was obtained and this amount was 

increased to 97.17 % in the presence of 0.1 g of catalyst. 

 
Fig. 6. The influence of catalyst amount on the reaction rate At conditions: T = 40 ◦C, gas condensate (S: 1800 

ppm) 
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Fig. 7 shows the sulphur removal at different reaction times. The results demonstrated that, 

at 40 °C the sulfur in gas condensate can be removed from 1800 to 83 ppm only at 5 min. when 

reaction time rose from 5 to 15 min, the sulfur remain reached 62 ppm. 

 
Fig. 7. The influence of time on reaction rate, Conditions: T = 40 ◦C, gas condensate (S: 1800 ppm), O/S=4.5 

The Reusability of Catalyst 

The reusability of the catalyst was investigated in the ODS process of sulfur compounds in 

the gas condensate. After the reaction, the catalyst was recovered by filtration and reused in the 

next experiment run without any regeneration treatment of the catalyst. Results showed that the 

catalytic activity had a few decreases after the first run and in the next runs changes were not 

significant as was shown in Table 2. 

Table 2. The results of reusability of catalyst (C16H33) N(CH3)3]6[PV3W9O40] 

Sulfur Removal (%) Remain Sulfur(ppm) Recycle Number 

97.22 50 1 

94.72 95 2 

93.22 122 3 

93.16 123 4 

92.11 142 5 

 

Catalyst Performance for Straight-Run Diesel Fuel 

The ods process of sulfur compounds of straight run diesel from Kermanshah Oil Refining 

and Distribution Company with initial sulfur content of 5500 ppm. was carried out and showed 

in Fig. 8 with the molar ratio O/S=4 and amount of catalyst 0.2 g, the sulfur removal 78.69% 

was obtained at reaction time 60 min after two extraction step by acetonitrile. Also in the molar 

ratio O/S=8, ODS of diesel was carried out that sulfur removal of 81% was obtained at 30 min.  

Ghorbani et al. [38] applied MoO3/ SBA-15 catalyst for desulfurization of the same diesel 

samples from Kermanshah oil refinery (under operating conditions of T=67 °C, time=42  min, 

H2O2/S=8 and catalyst dosage=0.004 g/ml) and sulfur removal efficiency were reported 

46.29%. As can be shown, the (C16H33)N(CH3)3]6[PV3W9O40] catalyst has a greater 

efficiency in removing sulphur from diesel, indicating its superiority over comparable samples. 
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Fig. 8. The oxidation of sulfur compounds in diesel fuel versus time of reaction, Conditions: T = 40 ◦C, diesel (S: 

5500 ppm),O/S=4,cat. Amount=0.2gr 

Mechanism 

Fig. 9 illustrates a plausible mechanism for the biphasic oxidation of DBT. By reacting the 

Keggin heteropolyanion with hydrogen peroxide, an active hydroperoxo polyoxometalate is 

generated, and the hydroperoxo species then loses a water molecule to produce the active 

peroxo species. The oxygen atom transfer from peroxo polyoxometalate to the sulfur-organic 

substrate occurs in the emulsion phase to produce sulfoxide. The peroxo polyoxometalate is 

then regenerated at the interface by interaction with H2O2. The sulfoxide is then further 

oxidised by another peroxo group to generate sulfone [39, 40]. 

 

Fig. 9. The mechanism of the ODS process in the presence of (C16H33)N(CH3)3]6[PV3W9O40] 
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Conclusions  

(C16H33)N(CH3)3]6[PV3W9O40] catalyst was successfully prepared and used in the ODS 

process of sulfur compounds in gas condensate and straight-run diesel. This catalyst was solved 

neither in the oil phase nor in aqueous phase. But stirring by the formation of emulsion droplets 

caused better mixing of two phases and decrease mass transport limitation that resulted 

enhancement performance of the ODS process. Results showed that catalyst is very active in 

the oxidation sulfur compounds in gas condensate and diesel fuel. Only in five min, the sulfur 

removal of 96.38% of gas condensate was obtained. The reusability of the catalyst also was 

good and had no significant decrease in activity after five-run without any regeneration of the 

catalyst. Also, the sulfur removal of 81% was obtained at 30 min after two times extraction by 

acetonitrile for straight-run diesel.  
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