تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,093,085 |
تعداد دریافت فایل اصل مقاله | 97,197,411 |
Recycling Polyethylene Terephthalate for use in Structural Concrete with Natural River Aggregates | ||
Pollution | ||
دوره 9، شماره 3، مهر 2023، صفحه 856-869 اصل مقاله (1.58 M) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/poll.2023.351113.1683 | ||
نویسندگان | ||
Samuel Huaquisto-Caceres* 1؛ Darwin Quenta-Flores2؛ Eduardo Luis Flores-Quispe3 | ||
1Professional School of Civil Engineering, National University of the Altiplano of Puno, Perú | ||
2Professional School of Civil Engineering, National University of Moquegua, Perú | ||
3Professional School of Environmental Engineering, National University of Moquegua, Ilo, Perú | ||
چکیده | ||
Polyethylene terephthalate (PET) is one of the most common types of plastic waste found in municipal waste and has a negative impact on the environment, recycling and its use in concrete is an alternative solution to address these problems. The objective of the study was to evaluate the physical-mechanical behavior of hydraulic concrete with additions of PET plastic bottle fibers and natural river aggregates. The concrete was evaluated in its fresh state by means of the Slump and in its hardened state by means of density and compressive and flexural strengths, for which cylindrical and prismatic specimens were prepared with PET fibers at proportions of 2%, 4%, 6% and 8% by weight of cement plus the standard concrete designed for 21 MPa. It was found that the slump and density of the concrete decreased with additions of PET fibers. The 28-day compressive and flexural strengths increased to optimum values of 22.79 MPa and 3.19 MPa at 2% and 6% PET fibers, respectively. It is concluded that the viable application of 2 mm by 30 mm PET fibers in concrete is at 4% with dosages of 15.78 kg/m3 added to the standard concrete for structural elements subjected to compression and flexure with sustainable production at low cost. | ||
کلیدواژهها | ||
Concrete؛ Plastic؛ Slump؛ Strength؛ Waste | ||
مراجع | ||
Abdulridha, M. A., Salman, M. M., & Banyhussan, Q. S. (2020). Prediction the Strength of Fibered Reinforced Concrete Pavement Using Response Surface Methodology: Parametric Study. {IOP} Conference Series: Materials Science & Engineering, 881, 12180. https://doi.org/10.1088/1757-899x/881/1/012180 ACI 363R. (2010). Report on High-Strength Concrete. American Concrete Institute. Farmington Hills, USA. Aghayan, I., & Khafajeh, R. (2019). Recycling of PET in asphalt concrete. In Use of Recycled Plastics in Eco-efficient Concrete. Elsevier Ltd. https://doi.org/10.1016/b978-0-08-102676-2.00012-8 Ahdal, A. Q., Amrani, M. A., Ghaleb, A. A. A., Abadel, A. A., Alghamdi, H., Alamri, M., Wasim, M., & Shameeri, M. (2022). Mechanical performance & feasibility analysis of green concrete prepared with local natural zeolite & waste PET plastic fibers as cement replacements. Case Studies in Construction Materials, 17, e01256. https://doi.org/10.1016/j.cscm.2022.e01256 Al-Hadithi, A. I., Noaman, A. T., & Mosleh, W. K. (2019). Mechanical properties & impact behavior of PET fiber reinforced self-compacting concrete (SCC). Composite Structures, 224, 111021. https://https://doi.org/10.1016/j.compstruct.2019.111021 Ali, B., Qureshi, L. A., & Kurda, R. (2020). Environmental & economic benefits of steel, glass, & polypropylene fiber reinforced cement composite application in jointed plain concrete pavement. Composites Communications, 22, 100437. /https://doi.org/10.1016/j.coco.2020.100437 Almeshal, I., Tayeh, B. A., Alyousef, R., Alabduljabbar, H., & Mohamed, A. M. (2020). Eco-friendly concrete containing recycled plastic as partial replacement for sand. Journal of Materials Research & Technology, 9(3), 4631–4643. https://doi.org/10.1016/j.jmrt.2020.02.090 AlShareedah, O., & Nassiri, S. (2021). Pervious concrete mixture optimization, physical, & mechanical properties & pavement design: A review. Journal of Cleaner Production, 288, 125095. https://doi.org/10.1016/j.jclepro.2020.125095 ASTM C143. (2012). Método de ensayo normalizado para asentamiento de concreto de cemento hidráulico. American Society for Testing & Materials (ASTM). ASTM C33. (2003). Standard Specification for Concrete Aggregates. American Society for Testing & Materials (ASTM). ASTM C39. (2018). Método de ensayo normalizado para resistencia a la compresión de especímenes cilíndricos de concreto. American Society for Testing & Materials (ASTM). ASTM C595. (2020). Standard Specification for Blended Hydraulic Cements. American Society for Testing & Materials (ASTM). ASTM C78. (2002). Standard test method for flexural strength of concrete (using simple beam with third–point loading). American Society for Testing & Materials (ASTM). Azhdarpour, A. M., Nikoudel, M. R., & Taheri, M. (2016). The effect of using polyethylene terephthalate particles on physical & strength-related properties of concrete; a laboratory evaluation. Construction & Building Materials, 109, 55–62. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2016.01.056 Bozyigit, I., Bulbul, F., Alp, C., & Altun, S. (2021). Effect of randomly distributed pet bottle strips on mechanical properties of cement stabilized kaolin clay. Engineering Science & Technology, an International Journal, 24(5), 1090–1101. https://doi.org/10.1016/j.jestch.2021.02.012 Bui, N. K., Satomi, T., & Takahashi, H. (2018). Recycling woven plastic sack waste & PET bottle waste as fiber in recycled aggregate concrete: An experimental study. Waste Management, 78, 79–93. https://doi.org/10.1016/j.wasman.2018.05.035 Chan, R., Santana, M. A., Oda, A. M., Paniguel, R. C., Vieira, L. B., Figueiredo, A. D., & Galobardes, I. (2019). Analysis of potential use of fibre reinforced recycled aggregate concrete for sustainable pavements. Journal of Cleaner Production, 218, 183–191. https://doi.org/10.1016/j.jclepro.2019.01.221 Christ, R., Pacheco, F., Ehrenbring, H., Quinino, U., Mancio, M., Muñoz, Y., & Tutikian, B. (2019). Study of mechanical behavior of ultra - high performance concrete ( UHPC ) reinforced with hybrid fibers & with reduced cement consumption. Revista Ingenieria de Construccion, 34(2), 159–168. https://doi.org/10.4067/S0718-50732019000200159 Comité ACI 211. (1991). Práctica estándar para seleccionar proporciones para concreto normal, pesado y masivo. Instituto Americano del Concreto, Farmington Hills,USA. Cui, X., Liu, G., Wang, C., & Qi, Y. (2019). Effects of PET Fibers on Pumpability, Shootability, & Mechanical Properties of Wet-Mix Shotcrete. Advances in Civil Engineering, 2019, 2756489. https://doi.org/10.1155/2019/2756489 Dawood, A. O., AL-Khazraji, H., & Falih, R. S. (2021). Physical & mechanical properties of concrete containing PET wastes as a partial replacement for fine aggregates. Case Studies in Construction Materials, 14, e00482. https://doi.org/10.1016/j.cscm.2020.e00482 Fadhil, S., & Yaseen, M. (2015). The Production of Economical Precast Concrete Panels Reinforced by Waste Plastic Fibers. American Journal of Civil Engineering & Architecture, 3, 80–85. https://doi.org/10.12691/ajcea-3-3-4 Farfán, M., & Leonardo, E. (2018). Caucho reciclado en la resistencia a la compresión y flexión de concreto modificado con aditivo plastificante. Revista Ingeniería de Construcción, 33(3), 241–250. https://doi.org/10.4067/s0718-50732018000300241 Fioriti, C., Segantini, R., Pinheiro, J., Akasaki, J., & Spósito, F. (2020). Bloques de mampostería de hormigón liviano fabricados con caucho de neumáticos y metacaolín. Revista Ingeniería de Construcción, 35(3), 295–307. https://doi.org/10.4067/s0718-50732020000300295 Foti, D. (2019). Recycled waste PET for sustainable fiber-reinforced concrete. In F. Pacheco-Torgal, J. Khatib, F. Colangelo, & R. Tuladhar (Eds.), Use of Recycled Plastics in Eco-efficient Concrete (pp. 387–410). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102676-2.00018-9 Hameed, A. M., & Fatah, B. A. (2019). Employment the plastic waste to produce the light weight concrete. Energy Procedia, 157, 30–38. https://doi.org/10.1016/j.egypro.2018.11.160 Hao, H., Bi, K., Chen, W., Pham, T. M., & Li, J. (2023). Towards next generation design of sustainable, durable, multi-hazard resistant, resilient, & smart civil engineering structures. Engineering Structures, 277, 115477. https://doi.org/10.1016/j.engstruct.2022.115477 Hassouna, F. M. A., & Jung, Y. W. (2020). Developing a Higher Performance & Less Thickness Concrete Pavement: Using a Nonconventional Concrete Mixture. Advances in Civil Engineering, 2020, 8822994. https://doi.org/10.1155/2020/8822994 Hussain, I., Ali, B., Akhtar, T., Jameel, M. S., & Raza, S. S. (2020). Comparison of mechanical properties of concrete & design thickness of pavement with different types of fiber-reinforcements (steel, glass, & polypropylene). Case Studies in Construction Materials, 13, e00429. https://doi.org/https://doi.org/10.1016/j.cscm.2020.e00429 Islam, M. J., Meherier, M. S., & Islam, A. K. (2016). Effects of waste PET as coarse aggregate on the fresh & harden properties of concrete. Construction & Building Materials, 125, 946–951. https://doi.org/10.1016/j.conbuildmat.2016.08.128 Khatab, H. R., Mohammed, S. J., & Hameed, L. A. (2019). Mechanical Properties of Concrete Contain Waste Fibers of Plastic Straps. {IOP} Conference Series: Materials Science & Engineering, 557, 12059. https://doi.org/10.1088/1757-899x/557/1/012059 Macedo, A., & Lorenzetti, A. (2021). Behavior analysis of high strength concrete containing macro-polymeric fibers based on workability & mechanical properties. Revista Ingeniería de Construcción, 36(2), 142–156. http://dx.doi.org/10.4067/S0718-50732021000200142 Małek, M., Jackowski, M., Łasica, W., & Kadela, M. (2020). Characteristics of Recycled Polypropylene Fibers as an Addition to Concrete Fabrication Based on Portland Cement. Materials, 13(8). https://doi.org/10.3390/ma13081827 Martínez-Soto, I. E., & Mendoza-Escobedo, C. J. (2006). Comportamiento mecánico de concreto fabricado con agregados reciclados. Ingeniería Investigación y Tecnología, 7(3), 151–164. https://doi.org/10.22201/fi.25940732e.2006.07n3.012 Meza de Luna, A., & Shaikh, F. U. A. (2020). Anisotropy & bond behaviour of recycled Polyethylene terephthalate (PET) fibre as concrete reinforcement. Construction & Building Materials, 265, 120331. https://doi.org/10.1016/j.conbuildmat.2020.120331 Mohammed, A. A., & Rahim, A. A. (2020). Experimental behavior & analysis of high strength concrete beams reinforced with PET waste fiber. Construction & Building Materials, 244, 118350. https://doi.org/10.1016/j.conbuildmat.2020.118350 Mohseni, E., Kazemi, M. J., Koushkbaghi, M., Zehtab, B., & Behforouz, B. (2019). Evaluation of mechanical & durability properties of fiber-reinforced lightweight geopolymer composites based on rice husk ash & nano-alumina. Construction & Building Materials, 209, 532–540. https://doi.org/10.1016/j.conbuildmat.2019.03.067 Ojeda, J. P., & Mercante, I. T. (2021). Reciclaje de residuos plásticos para la producción de agregados livianos. Revista Internacional de Contaminación Ambiental, 37, 489–499. https://doi.org/10.20937/rica.54081 Olarte, S. (2022). Study of the mechanical behavior of hydraulic concrete: Addition of fibers & microparticles from plastic bottles. Revista Ingeniería de Construcción, 37(3), 435–443. https://doi.org/10.7764/ric.00045.21 Sharma, R., & Bansal, P. P. (2016). Use of different forms of waste plastic in concrete – a review. Journal of Cleaner Production, 112, 473–482. https://doi.org/10.1016/j.jclepro.2015.08.042 Shubbar, S. D., & Al-Shadeedi, A. S. (2017). Utilization of waste plastic bottles as fine aggregate in concrete. Kufa Journal of Engineering, 8(2), 132–146. https://www.iasj.net/iasj/download/3e4ebf31139fc017 Subramani, T., & Rahman, A. F. (2017). An Experimental Study On The Properties Of Pet Fibre Reinforced Concrete. International Journal of Application or Innovation in Engineering & Management (IJAIEM), 6(3), 58–66. https://www.ijaiem.org/Volume6Issue3/IJAIEM-2017-03-14-18.pdf Thomas, L. M., & Moosvi, S. A. (2020). Hardened properties of binary cement concrete with recycled PET bottle fiber: An experimental study. Materials Today: Proceedings, 32, 632–637. https://doi.org/10.1016/j.matpr.2020.03.025 Torres, D. A., Bastidas, J. G., & Ruge, J. C. (2018). Reinforced Concrete with Synthetic Fibers (PET+PP) for Rigid Pavement Structures. 2018 Congreso Internacional de Innovación y Tendencias En Ingeniería (CONIITI), 1–5. https://doi.org/10.1109/CONIITI.2018.8587056 Yin, S., Tuladhar, R., Shi, F., Combe, M., Collister, T., & Sivakugan, N. (2015). Use of macro plastic fibres in concrete: A review. Construction & Building Materials, 93, 180–188. https://doi.org/10.1016/j.conbuildmat.2015.05.105 Zhao, Z., Xiao, F., & Amirkhanian, S. (2020). Recent applications of waste solid materials in pavement engineering. Waste Management, 108, 78–105. https://doi.org/10.1016/j.wasman.2020.04.024 | ||
آمار تعداد مشاهده مقاله: 711 تعداد دریافت فایل اصل مقاله: 1,161 |