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Most analysts believe that the network-based dynamic data envelopment analysis 

needs to define a set of endogenous/exogenous weights to evaluate the performance 

scores of stages and periods. Against this background, the general aim of this study 

is to introduce heuristic novel approaches based on fuzzy interpretive structural 

modeling along with the historical value of periods to obtain such weights. In this 

context, a closer look is taken at how to perfect the model established by Kalantary 

and its shortcomings. The models are initially developed here in both weighted and 

unweighted forms, in which a company's current performance can be influenced by 

its past socio-environmental performance. In the next step, heuristic methods for 

finding weights for stages and periods are described, and depending on the specific 

conditions of the models, two alternatives are proposed to combine and formulate the 

calculated weights. This method is then applied to data from a company, Nirou 

Moharekeh Industrial Group, to demonstrate the capabilities of the proposed models. 

The results of probing 12 suppliers show the power of the developed models in the 

differentiation of the decision-making units since there are no two units with the 

same ranks. In sum, the results can provide rich information for decision-makers. 

However, analysts must decide which characteristics to prioritize for evaluation 

purposes to achieve the best results for each situation. 
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1. Introduction 
So far, as a non-parametric technique, Data Envelopment Analysis (DEA) has been used in numerous 

studies, both within organizations and supply chains, to the extent that the related literature is rich 

enough in this line of work. Although previous research has contributed to the understanding of the 

evaluation process in this regard, there have been some shortcomings. In this way, no models for 

supply chain sustainability have attention to the socio-environmental backgrounds of organizations in 

their assessments but are only concerned with the economic ones. Despite numerous studies on the 

significance of weights for stages and periods in assessment models, until now, no standard approach 

for determining these weights has been developed. Besides, it is unclear which subsection of a station 

causes inefficiency at each stage. Therefore, it seems essential to provide an approach and 

subsequently develop a model to address these shortcomings.  

In today's competitive business environment, supply chain performance has also become a critical 

issue in a wide variety of industries [1]. Many businesses have faced challenges resulting from 

accelerated globalization, outsourcing, technological advances, lowered geographical borders, and 

customer expectations regarding sustainable development. Consequently, organizations are now 

rigorously evaluating their suppliers to ensure they meet their sustainability goals, missions, and 

requirements [2]. As has already been indicated, the DEA method has been extensively exploited in 

numerous studies to date to assess the relative performance of various structures. Over the years, 

researchers have further developed it by proposing a wide variety of DEA-based models, each with its 

benefits and drawbacks [3]. Given the supply chain's multi-stage structure and the shortcomings of the 

classical, network-based, and dynamic DEA models alone, this study attempts to develop the so-called 

Dynamic Network DEA (DNDEA) model. 

There are several issues to consider when implementing the DNDEA models, including the need 

for assigning endogenous/exogenous weights to the efficiency scores of periods or stages [4]. 

However, many DNDEA-based studies that have fulfilled this purpose over time have either 

completely ignored this requirement or simply assigned the same weight to all components or periods 

during the process, regardless of whether the efficiency of the evaluated units has been important. 

Another concern regarding the supply-chain sustainability assessment is the emphasis on short-term 

profits from a purely cost-oriented perspective, which favors one aspect of sustainability over others. 

Sustainability can be viewed as the extent to which an organization's current decisions will impact its 

future socioeconomic and environmental status [5,6]. It is reasonable to conclude that the current state 

of organizations is generally influenced by the socio-environmental and economic decisions made in 

the past. Thus, in the models developed here, the current performance of a business is affected by prior 

socio-environmental actions as the main key aspect of sustainability, and results from the 

implementation of the heuristic methods can be controlled. In particular, in addition to presenting an 

equation to measure the historical value weights of periods, a Common Set of Weights (CSWs) is 

extracted using a new heuristic method based on fuzzy interpretive structural modeling (FISM) for the 

first time. As a result, two strategies -centralized and decentralized- are provided for calculating 

efficiency based on the data conditions. The first strategy is centralized, which directly calculates the 

weighted efficiency scores based on CSWs. Depending on the data type, this strategy can have its own 

restrictions, such as requiring each decision-making unit (DMU) to have at least one input greater than 

or equal to one; otherwise, it is almost impossible to use this strategy. In these cases, a second strategy, 

called decentralization, should be used, where each stage is weighted individually by the CSW for 

each supplier. In addition, two alternatives presenting to formulate the weights obtained with the 

DNDEA models. The first is to directly introduce them to the model if it meets the requirements to do 

so. If this is not possible, the overall efficiency can then be improved by combining component 

efficiency with a weighted harmonic mean. Based on our knowledge: 

- Developing hybrid models for the first time to assess sustainable supply chains and giving a 

case study to demonstrate the model's use. 

- For the first time, the fuzzy-ISM-based heuristic method for determining a set of weights for 

process components is proposed. 

- For the first time, we propose a relation termed the historical value of periods to evaluate the 

periodic performance weight of DMUs, which provides more weight to recent years' efficiency. 
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Given the foregoing, this research aims to create DNDEA models based on the Range-Adjusted 

Measure (RAM) model proposed by Kalantary et al., )2018) and to present heuristic approaches for 

identifying a set of exogenous weights in DNDEA models. This methodology provides more insight 

into how processes should be weighted and the performance of DNDEA models should be improved, 

allowing us to not only measure supplier performance but also track dynamic changes over time. 

Additionally, the proposed method broadens the field of ISM's use. The remainder of this study is 

structured as follows: Part two examines the research literature. Part three develops the proposed 

models and includes a numerical example to demonstrate their capacity and application. The final 

section presents the conclusions. 

2. Literature Review 
 

The literature on the techniques utilized in the article is briefly reviewed in this part. 

2.1 Dynamic Network Data Envelopment Analysis 

In early DEA models, such as CCR [8] and BCC [9], inputs and outputs of independent DMUs were 

considered contemporaneously. However, these models consider a DMU as a black box and ignore its 

inner workings[10]. Following an earlier study by Färe )1991( and subsequent expansions by Chen et 

al. )2009(; Fukuyama & Weber )2010(, researchers created DEA models that can assess both the 

overall and partial DMU efficiencies within a single structure. This approach is called Network DEA 

(NDEA). However, these models do not consider time because they are static. Later, Nemoto & Goto   )

2003) introduced the Dynamic DEA (DDEA) model to solve this problem, but this model completely 

ignored the internal structures, so a model that considered both the internal structure and time was 

required. Ratio and non-ratio are the two main approaches proposed in the existing literature to develop 

DEA models with dynamic network structures[4]. To generate possibility sets, Fare and Groskopf [18] 

used the non-ratio approach. Using the ratio approach, Tone and Tsutsui (2014) developed an NDEA 

model for dynamic structures followed by a Slack-based measurement (SBM) DNDEA model. In 

addition, taking another ratio approach to DNDEA, Avkiran & McCrystal (2014) developed two 

models: Dynamic Network Range-Adjusted Measure (DNRAM) and Dynamic Network Slacks-Based 

Measures (DNSBM). They showed that DNRAM is more resilient to data perturbations and has 

translation invariance properties, unlike DNSBM. However, like DNDEA, DNRAM requires 

endogenous or exogenous weight assignment to the efficiency of periods/stages. So far, many studies 

have emphasized the importance of weighting methods, but researchers have yet to agree on the use of 

specific weighting methods. Therefore, more advanced and efficient algorithms and approaches are 

needed to find new methods. The present study proposes a heuristic approach based on Fuzzy ISM for 

weight calculation and integration into DNDEA. 

2.2 Fuzzy Form of Interpretive Structural Modeling 
Warfield introduced ISM in 1974 [22], the methodology for identifying relationships among specific 

items [23]. Based on a binary spectrum, classical ISM only discusses the connections between 

components [24] and the idea that the system's more effective components are always more crucial [25]. It 

is possible that the classical ISM does not accurately represents reality [26], and binary values may also 

lead to undesirable relationships between certain elements in the final model. Generally, the amplitude 

and magnitude of the interaction between the factors are not taken into account by the classical ISM .This 

issue can be overcome by extending ISM with a fuzzy form [27,28]. As shown in Table , Fuzzy ISM 

utilizes a linguistic scale to construct contextual relationships based on group judgment by experts [27]. 

The remainder of the Fuzzy ISM process resembles the classical ISM. To the best of the authors' 

knowledge, while Fuzzy ISM has great potential, no algorithm has been developed to compute weights 

using this method, making this study the first attempt to extract weight for DNDEA using Fuzzy ISM. 

2.3 Background and Research gap 
 

In this study, the model presented by Kalantary et al. (2018) as a null model is initially described and 

then extended. Afterward, the gap in the research literature and the reasons for its development are 

described. Using the RAM model designed by Cooper, Park, and Pastor (1999) as the foundation, 
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Kalantary et al. (2018) extended the input-oriented model into a DNDEA one. In this model, there is 

no surplus, shortages are also allowed across the supply chain, and no preference had assumed for the 

stages, inputs, and periods. Moreover, the intermediate and carry-over variables, as defined in Tone 

and Tsutsui's (2014) classification, are treated as the constants and outputs, respectively. The objective 

function of this model focuses entirely on the input variables representing economic and financial 

aspects of sustainability. Although these are precious works that lay the groundwork for better 

sustainability assessment and provide a better understanding of this process, it needs to be further 

developed for the following reasons: 
 

1. This model simply focuses on short-term profits from a purely cost-oriented perspective, which 

makes it ignore the socio-environmental background of an organization during evaluations, 

despite the fact that socio-environmental sustainability is turning into one of the key competitive 

priorities for many businesses [30]. According to Sy (2016), All three sustainability pillars - 

economic, social, and environmental - can have significant impacts on the performance and 

efficiency of businesses. 

2. This model ignores previous research on sustainability. With reference to the studies by Paul et 

al. (2021); Elmsalmi et al. (2021), sustainability can be defined as the extent to which current 

decisions in organizations will impact the socio-economic and environmental status of the 

organization in the future. From this definition, it is reasonable to conclude that the current state 

of organizations is often inspired by the socio-environmental decisions made in the past. 

3. According to Kou et al. (2015), the DNRAM, like the DNDEA, requires endogenous or 

exogenous weight assignment to the efficiency of stages or periods. While this model has 

defined weights for this purpose, these match the component's efficiency arithmetic mean 

values, and also the source of the inefficiency in each period is unknown. 

Therefore, the proposed models offer several innovations to achieve a higher degree of practicality 

compared to the existing ones for supplier selection in supply chains. 

3. The Proposed Methods 
 

3.1 Dynamic Network Data Envelopment Analysis 

In the present study, Kalantary’s (2018) model is developed in two phases. In both phases, developed 

models provide an integrated platform for calculating overall, partial, periodic, and periodic-partial 

efficiency scores. Provided that the following is a description of the variables and parameters used in 

these models: 
 

t

ijax :
 

The ith input of the jth DMU in the ath stage in time t. 

 
t

rjay :
 

The rth output of the jth DMU in the ath stage in time t. 

 
t ,t

ujaC :1

 
The thu (u 1,...,U)  carry-over of the jth DMU in the ath stage from time t to time t+1. 

t ,t

ujaC :1

 
The t 1hu (u 1,...,U)   carry-over of the jth DMU in the ath stage from time t-1 to time t. 

t

qj(a z)l :  
The thw (u 1,...,W)  intermediate measure of the jth DMU which sent from ath stage to zth stage in 

time t. 
t

ioaR :  The range of inputs in time t; 
t t t

ioa ija ija
R max(x ) min(x )  . 

t

uoaR :1  The range of carry-over variables in time t-1; 
t 1 t 1,t t 1,t

uoa uja uja
R max(C ) min(C )

  
  . 

t

ioas :  Input slack for stage a in time t. 

t ,t

uoas :1  The bad carryover's slack for stage a, from time t-1 to t.  

aw :   Relative exogenous weight of stage a,  
A

a a

a

w 1, w 0   

tw :  Relative exogenous weight of period t, 
T

t t

t

w 1, w 0   

t

jk :
 

Intensity vector of jth DMU in the ath stage in time t. 
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3.2 Model Formulation 

To address the issues stated in notes 1 and 2 in the research background, the model developed by 

Kalantary et al. (2018) expanded at the first phase in such a way as to avoid over-focusing on short-

term profits from a purely cost-oriented perspective and ensure that the socio-environmental effects of 

supply chain activities are appropriately represented in the model. This helps lay the foundation for 

making supply chain activities much more sustainable by addressing the factors that influence the 

environment surrounding the chain. This model also incorporates variables taking value from previous 

periods t-1 (t=2, 3, …, T) that could affect the current performance. Therefore, Constraint 6 is 

introduced to the formulation as follows: 
 

(1) 

t t 1,tT A m R
ioa uoa

t t 1
t 1 a 1 i 1 r 1 ioa uoa

S S1 1 1
mine 1

T A m r R R




   

  


    

n t t t t

ija ja ioa ioaj
s.t. x s x , i 1, ,m, A,T     L  

n t t t

rja ja roaj
y y , r 1, ,R, A,T    L  

n nt t t t

qj(a z) jk qj(a z) jhj j
l l , q 1, ,Q, a 1, ,A 1, T         L L  

n nt,t 1 t t,t 1 t 1

uja ja uja jaj j
C C , u 1, ,U, t 1, ,T 1, A          L L  

n t,t 1 t t,t 1

uja ja uoaj
C C , u 1, ,U, t 1, ,T 1, A       L L  

n t 1,t t t 1,t t 1,t

uja ja uoa uoaj
C s C , u 1, ,U, t 2, ,T 1, A         L L  

n t

jaj
1, A,T,    

t t t 1,t

ja ioa uoa,s ,s 0, i, j, r    

In the second phase, the DNDEA model is assigned to work with the exogenous weights, resulting 

in a weighted version of the DNDEA model, to tackle the problem indicated in note 3 of section 2.3. 

For the first time, the stages of each process are further assigned a set of weights (wa) determined by a 

heuristic model based on the FISM, which reflects on the expert’s knowledge of the relative 

significance of each stage for process efficiency. A set of weights (wt) is then assigned to the periods, 

reflecting the historical value of periods for efficient assessment. 

 

(2) 

t t 1,tT A m R
a ioa uoa

t t t 1
t 1 a 1 i 1 r 1 ioa uoa

w S S
mine 1 w

m r R R




   

 
   

 
    

Subject to the constraints of (1). 

3.3 Proposed Weight Extraction Algorithm 

Consider the hypothetical multistage structure illustrated in Figure 1. Each stage has its inputs and 

outputs. One of the merits of Figure 1 is that it can be simultaneously defined as network analysis in 

DEA and, given time, as dynamic network analysis in DEA. 

 
Figure 1. Assumed multistage structure 
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Where: 
 

Xija: The ith input of DMU j at stage a. 

Cuja: The uth output of DMU j at stage a. 

lwj(a-z): The wth intermediate variable of DMU j which sent from stage a to stage z. 

The input, output, and intermediate variables are represented by the non-negative coefficients Vija, 

uija, and ƞwj(a-z), respectively. Using fuzzy-ISM, we can derive criteria weights by following these ten 

steps: 

1- Pairwise comparison matrix formation: Once the indicators have been identified and selected, 

a pairwise comparison between each pair of variables should be performed. 

12 1n

21 2n

r

m1 m2

p p

p p
C

p p

 
 


 
 
 

 

% %K

% %L

M M M

% % L
 

In this case, Cr represents the pairwise comparison matrix filled by the rth expert. The linguistic 

scale utilized in fuzzy-ISM is shown in Table 1. 

Table 1. Fuzzy linguistic scale 
Linguistic description Notation Triangular fuzzy number 
Very low influence VL  0 0 0.25  

low influence L  0 0.25 0.5  

Mediocre M  0.25 0.5 0.75  

High influence H  0.5 0.75 1  

Very high influence VH  0.75 1 1  

Source:[28] 

To check the consistency of responses, it is necessary to calculate the rate of inconsistency after 

completing the questionnaire. It can be said that the response matrix is completely consistent if the rate 

of inconsistency is less than 5%. 
n n 1n n
ij ij

n
i 1 j ij

t t1
IR *100%

n(n 1) t











 

(3) 

where: 
 

n: The number of variables. 

IR: The rate of inconsistency. 

tij
n: Experts' mean score given to the i-th variable compared to the j-th variable for 1≤ i ≤ n, and 1 ≤ j ≤ n. 

2- Aggregating expert opinions: To aggregate expert opinions, several methods have been 

developed. In the present study, the geometric mean (Gij) formulated below is used [35]. 

       
1 1 1

n n n
n n n

ij ij ij ij ij ij ij ij ij ijk 1 k 1 k 1
G l ,m ,u , l l , m m ,u u

  
       (4)   

where: 
 

(lij, mij, uij): The kth expert opinion on the relative importance of variables i, j. 

n: The rate of inconsistency. 

3- Normalized matrix formation: This,   must first be determined from Equation 5 then the 

normalized matrix (N) can be obtained by Equation (6). 
n

1 i n ij

j 1

max u 



    (5) GN 


 (5) 

where: 
 

uij: The maximum value for each row's fuzzy numbers in the decision matrix. 

N: The normalized matrix. 
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4 - Normalized matrix defuzzification: Different methods can be used to de-fuzziness the fuzzy 

number. In this investigation, the most widely defuzzification technique is employed (7). 

ij ij ij ij

ij ij

u l m l
l

3

  
    (7)   

5 – Threshold limit calculation: The arithmetic mean formula must be used to compute the 

threshold limit (Equation 8).  
n n

ij

j 1 i 1

2

a

T
n

 



 

(8)   

where: 

aij : Result of de-fuzzifying the normalized matrix, 1≤ i ≤ n and 1≤ j ≤ n 

n: A number of elements. 

T: Threshold limit's value. 

The incidence matrix (R) can then be obtained by using Equation (9). 

ij ij ij

ij ij ij

if T 1, 0

if T 0, 1

      

      
 (9)   

6 - The initial matrix of reachability: The incidence and identity matrices are combined to create 

the initial reachability matrix, as shown in the following formula. 
M R I   (10)   

7 - The final matrix of reachability: After checking and modifying the initial matrix for 

transitivity, the final reachability matrix is obtained, so that, such that: 
* p p 1M M M , p 1    (11)                        

where p and M represent natural numbers and the final reachability matrix, respectively. 

8 - Implement proposed weighting logic: The reachability and antecedent set for each factor are 

determined from the final reachability matrix. The reachability set includes the factor itself and the 

other factor that it may influence, whereas the antecedent set includes the factor itself and the other 

factor that may influence it. Therefore: 
2 2

ij ij ijD (Re ) (An )   (12)   

Reachability and antecedent degrees are ijR e  and ijA n , respectively. The exponent causes the 

variables to be weighted differently. The following will exist since some Dij values will be negative: 
 

ij ij ijZ D ( min D 1)    (13)   

Having a weight of "0" is impossible with the presence of "1". As the final step, the variable's 

weight is calculated based on (14). 

ij
ij ij

ij

z
L where L 1.

z
 

 (14)   

 

Lij is based on the type of the variable equivalent to the non-negative coefficients of the input ija(v ) , 

output 
uja(u ) , and intermediate 

wj(a z)( )  variables. In Equation (14) more significant variable is also 

given greater weight. Based on the dataset, weighted efficiency can be determined using two 

strategies.  

1. Centralized strategy: If the largest and smallest values in the data set do not differ significantly 

and each DMU has at least one input greater than or equal to 1, Equation (15) can be used to calculate 

the weighted efficiency score. 

w

m W m W

w aj uj za uj j( ) ija wj(a z)

i 1

(

w 1 i 1

a wj(a z) ija j a z)

w 1

e u c v ),( l ) ( x l


  

  

        (15)   

Here, 
ujau wj(a z)  and ijav are optimal values of (14). in the above equation, the yield is not 

necessarily expressed in unit value, so: 
j j j jmax ( ) j.      (16)   
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2. Decentralized strategy: If the largest and smallest values in the data set differ significantly, using 

the extracted weights set, each part is weighted separately for each supplier. The stage weight (wa) is 

reasonably determined by the ratio of the resources allocated in stage a to all resources consumed in 

the process[36], so: 

a

W m m A W m

wj(a z) ija ijwj(a z) ija ij1 wj(a z)1 wj(a z) i ija

w 1 i 1 i 1 a 2 w 1

a

i

j

1

W l v vx x l xv , a 1  

    





     
   
   

    
       

              
(1)   

 
 

Equation (17) uses different weights depending on the supplier's specific conditions for the 

different stages of the process. The decentralized strategy provides two alternatives for combining and 

formulating the weight of the stages calculated using the DMU efficiency scores. 

a) When the value of the components is equal or ignored, such as Model (1), the overall efficiency 

of the multi-stage process is defined as the weighted harmonic mean of the efficiencies of multi-

individual stages, therefore: 
 

A
a a1 1

a 1 a a

a 11 a 1 a

w ww w
w w 1 , where w 1



   
            

      
L L L  (18)   

 

where: 

wa:   The relative contribution of the efficiency of Stage a  a 1,... ,A  

a :   Efficiency of stage a 

b) In weighted models such as Model (2), the weights of stages (wa) are formulated directly in the 

model. However, in this model, for the first time, the periods are also weighted (wt) based on the 

historical value of the data belonging to those periods using a novel formulation: 

(19) 
n n

jt

Total t jt t Total2 2

t 1 t 1

2 t q2 t
q w q w q

n n n n 

 
    

 
   

 

where: 

jtq
:   

Periodic efficiency of DMUj at time t  t 1, ... ,n  

n :   The review period 
 

In Equation (19), as the years get closer to the end of the period under study, the weight increases 

[19,37]. Figure 2 illustrates the conceptual framework for the Integrated Approach of Fuzzy ISM and 

DNDEA. 
 

 
Figure 2. Framework for the FISM-DNDEA Integrated Approach 

3.4 Numerical Illustration 

An Iranian company called Nirou Moharekeh Industrial Group (NMI) produces spare components 

such as gearboxes, splines, and shafts. This study focused on 12 suppliers that provide parts that NMI 

needs to manufacture gearboxes. Each DMU has three stages, including processing (Stage.1), packing 
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(Stage.2), and distribution (Stage.3). Apart from the first stage, each stage has three inputs, including 

the labor costs, energy costs, and material costs (economic factors), two carryovers including 

environmental initiatives like ISO TS and green programs, and social initiatives like human care 

programs. Moreover, each stage has one intermediate measure (products). Each NMI supplier's 

structure is shown in Figure 3. 

 
Figure 3. Structure of each supplier of NMI 

Based on the case study data, the largest and smallest values are significantly different, so the 

decentralized strategy should be followed. Considering that the present study provides two alternatives 

to integrate the exogenous stage weight into the DNDEA models in the decentralized strategy, the 

Fuzzy ISM model is used to calculate stage weights, and the heuristic method is used to calculate 

period weights. Subsequently, the developed Models (1) and (2) are implemented in the Lingo 

software, and the results are tabulated. According to Figure 1 and the structure of NMI, suppliers are 

inputs (xija: cost of labor, energy cost, material cost), outputs (Cuja: green programming and human 

care programming), and intermediate link (lwj(a-z): product). Table 2 shows the symbol of sustainability 

measures of the suppliers of NMI. 

Table 2. NMI's suppliers' sustainability measures 

 
A pairwise comparison questionnaire is designed and distributed to 14 experts and managers. 

Experts were selected based on their theoretical knowledge, practical experience, and willingness and 

ability to participate. The respondents filled out the questionnaire using linguistic variables. The 

linguistic scales utilized in fuzzy-ISM are shown in Table 1. According to experts, the questionnaire 

showed excellent content validity. The inconsistency rate for each stage of the system confirmed its 

reliability. Based on the pairwise comparison matrices for the three stages, the inconsistency rate was 

equal to 0.0328, 0.0345, and 0.0337 (Table 3). Next, we have obtained the decision matrix, 

normalized, and defuzzification normal matrices. 

Then, we calculated the threshold limit and obtained a value of 0.102, 0.083, and 0.123 for stage 1, 

stage 2, and stage 3, respectively. As shown in Table 4, the incidence and initial reachability matrices 

were calculated next. 

Sustainability variable 

of NMI 

labor 

Costs 

Energy 

Cost 

Material 

Cost 

ISO TS &green 

program 

human care 

programs 
Products 

Symbols S1 S 2 S 3 S 4 S 5 S 6 
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Table 3. The defuzzification of normal matrices of stages 
 

STAGE. 1 S6 S 5 S 4 S 2 S 1 

S1 0. 1540 0. 1351 0. 0273 0. 0315 - 

S2 0. 1341 0. 0319 0. 0585 - 0. 1521 

S4 0. 1520 0. 1462 - 0. 1686 0. 0498 

S5 0. 1318 - 0. 1124 0. 1422 0. 1545 

S6 - 0. 0273 0. 0983 0. 0307 0. 0559 
 

 

STAGE. 3 S 6 S 4 S 3 S 2 S 1 

S1 0. 0726 0. 0253 0. 0315 0. 0334 - 

S2 0. 0910 0. 0351 0. 0297 - 0. 1464 

S3 0. 1330 0. 0345 - 0. 0264 0. 0359 

S4 0. 1271 - 0. 0970 0. 0962 0. 0659 

S5 0. 1211 0. 0459 0. 0241 0. 1190 0. 1543 

 

STAGE. 

2 
S6 S 5 S 4 S 3 S 2 S 1 

S1 0. 0630 0. 1261 0. 0217 0. 0238 0. 0233 - 

S2 0. 0971 0. 0289 0. 0357 0. 0283 - 0. 1503 

S3 0. 1392 0. 0265 0. 0332 - 0. 0245 0. 0327 

S4 0. 1341 0. 0866 - 0. 1008 0. 0995 0. 0599 

S5 0. 1216 - 0. 0397 0. 0211 0. 1216 0. 1539 

S6 - 0. 0245 0. 0209 0. 0240 0. 0172 0. 0492 

Table 4. Matrix of initial reachability  

DIV. 1 S6 S 5 S 4 S 2 S 1 

S1 1 1 0 0 1 

S2 1 0 0 1 1 

S4 1 1 1 1 0 

S5 1 1 0 1 1 

S6 1 0 0 0 0 
 

 

STAGE. 3 S 6 S 4 S 3 S 2 S 1 

S1 1 0 0 0 1 

S2 0 0 0 1 1 

S3 0 0 1 0 0 

S4 1 1 1 1 0 

S5 1 0 0 1 1 
 

STAGE. 

2 
S6 S 5 S 4 S 3 S 2 S 1 

S1 0 1 0 0 0 1 

S2 1 0 0 0 1 1 

S3 1 0 0 1 0 0 

S4 1 1 1 1 1 0 

S5 1 1 0 0 1 1 

S6 1 0 0 0 0 0 

 

 
Equation 11 was used to calculate the final reachability matrices (Table 5). 

Table 5. Matrix of final reachability  
 

STAGE. 1 S6 S 5 S 4 S 2 S 1 

S1 1 1 0 1* 1 

S2 1 1* 0 1 1 

S4 1 1 1 1 1* 

S5 1 1 0 1 1 

S6 1 0 0 0 0 
 

 

STAGE. 3 S 6 S 4 S 3 S 2 S 1 

S1 1 0 0 1
*
 1 

S2 1
*
 0 0 1 1 

S3 0 0 1 0 0 

S4 1 1 1 1 1
*
 

S5 1 0 0 1 1 
 

STAGE. 2 S6 S 5 S 4 S 3 S 2 S 1 

S1 1
*
 1 0 0 1

*
 1 

S2 1 1
*
 0 0 1 1 

S3 1 0 0 1 0 0 

S4 1 1 1 1 1 1
*
 

S5 1 1 0 0 1 1 

S6 1 0 0 0 0 0 

 

Then the weight of the variables was calculated by Equation (14). 

Columns 4 and 5 of Table 6 contain the answer to Equations (12) and (13), while column 6 is the 

answer to Equation (14), showing the variable weights for each stage separately. Based on the weights 

obtained from the heuristic method (Table 7), the weight for each stage is calculated by Equation (17). 
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Table 6. Proposed weighting logic 
 

STAGE. 1 ijRe
 
 

ijAn  
ijD  ijZ  

ij 1totalL (Stage )  

S1 4 4 0 25 0.2000 V11 

S2 4 4 0 25 0.2000 V12 

S4 5 1 24 49 0.3920 U11 

S5 4 4 0 25 0.2000 U12 

S6 1 5 -24 1 0.0080 Ƞ11 

 

 

STAGE. 

3 
ijRe

 

ijAn

 
ijD  

ijZ  ij 3 totalL (Stage )  

S1 3 4 -7 1 0.0250 V31 

S2 3 4 -7 1 0.0250 V32 

S3 1 2 -3 5 0.1250 V33 

S4 5 1 24 32 0.8000 U31 

S5 3 4 -7 1 0.0250 U32 
 

STAGE. 

2 
ijRe

 

ijAn

 
ijD  

ijZ  ij 2 totalL (Stage )  

S1 4 4 0 36 0.1667 V21 

S2 4 4 0 36 0.1667 V22 

S3 2 2 0 36 0.1667 V23 

S4 6 1 35 71 0.3287 U21 

S5 4 4 0 36 0.1667 U22 

S6 1 6 -35 1 0.0046 Ƞ22 

Table 7. Weight of each stage 
DMU DMU 1 DMU 2 DMU 3 DMU 4 DMU 5 DMU 6 DMU 7 DMU 8 DMU 9 DMU 10 DMU 11 DMU 12 

P
ar

ti
al

 
W

ei
g
h
ts

 

 

Stage1 0. 4107 0. 3736 0. 3100 0. 3770 0. 3222 0. 4752 0. 3673 0. 2945 0. 1306 0. 3647 0. 1382 0. 1484 

Stage 2 0. 4664 0. 4571 0. 4901 0. 4679 0. 4641 0. 431 0. 4548 0. 4833 0. 5309 0. 4733 0. 5304 0. 5232 

Stage 3 0. 1268 0. 1664 0. 1999 0. 1551 0. 2426 0. 1158 0. 2061 0. 242 0. 2879 0. 2019 0. 2774 0. 2674 

T
er

m
 e

ff
ic

ie
n
cy

 

2
0
1

1
 Stage 1 0. 4658 0. 2954 0. 3145 0. 3901 0. 2781 0. 4051 0. 1873 0. 3751 0. 3274 0. 3797 0. 1142 0. 34674 

Stage 2 0. 4394 0. 4953 0. 4818 0. 4614 0. 4841 0. 463 0. 4765 0. 4475 0. 4671 0. 4725 0. 5383 0. 51849 

Stage 3 0. 0948 0. 2093 0. 2037 0. 1484 0. 2378 0. 1319 0. 3362 0. 1774 0. 2055 0. 1478 0. 3475 0. 13477 

2
0
1
2
 Stage 1 0. 4421 0. 3402 0. 3661 0. 3603 0. 2662 0. 3075 0. 4337 0. 4402 0. 1655 0. 3538 0. 2509 0. 4402 

Stage 2 0. 4483 0. 482 0. 4636 0. 4700 0. 5295 0. 5235 0. 4498 0. 3395 0. 517 0. 4744 0. 4963 0. 3395 

Stage 3 0. 1096 0. 1778 0. 1703 0. 1695 0. 2043 0. 169 0. 1165 0. 2203 0. 3175 0. 1718 0. 2528 0. 2203 

2
0
1
3
 Stage 1 0. 4448 0. 4303 0. 4164 0. 4130 0. 1738 0. 4346 0. 4567 0. 4402 0. 273 0. 2775 0. 4402 0. 2076 

Stage 2 0. 4492 0. 4304 0. 4447 0. 4618 0. 4976 0. 4567 0. 3681 0. 3395 0. 4685 0. 4941 0. 3395 0. 5064 

Stage 3 0. 106 0. 1393 0. 1389 0. 1251 0. 3286 0. 1087 0. 1752 0. 2203 0. 2586 0. 2284 0. 2203 0. 286 

2
0
1
4
 Stage 1 0. 3372 0. 3874 0. 3329 0. 3670 0. 4402 0. 4931 0. 3053 0. 3303 0. 0711 0. 1244 0. 1137 0. 0272 

Stage 2 0. 5075 0. 444 0. 4806 0. 4703 0. 3395 0. 4221 0. 4683 0. 4797 0. 5516 0. 5065 0. 5399 0. 5579 

Stage 3 0. 1552 0. 1686 0. 1865 0. 1626 0. 2203 0. 0848 0. 2264 0. 1900 0. 3773 0. 3691 0. 3464 0. 4149 

2
0
1
5
 Stage 1 0. 3256 0. 4371 0. 3012 0. 3337 0. 439 0. 5001 0. 3627 0. 0501 0. 216 0. 4545 0. 4402 0. 2093 

Stage 2 0. 5063 0. 4261 0. 4865 0. 4823 0. 3386 0. 415 0. 4611 0. 548 0. 5037 0. 4533 0. 3395 0. 5096 

Stage 3 0. 1681 0. 1368 0. 2123 0. 1839 0. 2223 0. 0849 0. 1763 0. 402 0. 2803 0. 0922 0. 2203 0. 2811 
 

 

As mentioned earlier, in the decentralized strategy, two alternatives should be considered to 

combine and formulate the calculated weight of the stages with the efficiency scores of DMUs: 

a: Based on the fact that Model (1) does not reflect the relative importance of the components, the 

overall, periodic, partial, and periodic-partial efficiency of the suppliers of the NMI has first been 

calculated using Model (1). The harmonic weighted mean of the process's components is then used to 

calculate the overall and periodic efficiency. As shown in Table 8, Model 1 can rank suppliers by 

overall, periodic, partial, and periodic-partial efficiency and then identify the most efficient options. 

Regarding the values assigned to the stages and periods, the objective function of Model 1 undergoes 

some changes. Specifically, the objective function is 
t t 1,tT A m R
ioa uoa

t t 1
t 1 a 1 i 1 r 1 ioa uoa

1 1 1 S S
mine 1

T a m r R R




   

 
   

 
   for overall 

efficiency, t t 1,tA m R
ioa uoa

t t 1
a 1 i 1 r 1 ioa uoa

S S1 1
min e 1

A m r R R




  

 
   

 
  for periodic efficiency, 

t t 1,tT m R
ioa uoa

t t 1
t 1 i 1 r 1 ioa uoa

1 1 S S
mine 1

T m r R R




  

 
   

 
  for 

partial efficiency, and 
t t 1,tm R
ioa uoa

t t 1
i 1 r 1 ioa uoa

1 S S
mine 1

m r R R




 

 
   

 
 periodic-partial efficiency. It seems easy to rank 

DMUs using overall efficiency, which helps identify the most efficient supplier in this study. Periodic 

efficiency can be further utilized to monitor the dynamic state of suppliers in each period, partial 

efficiency can be applied to identify the impressive stages as well and periodic-partial efficiency can 

be recruited to identify the source of inefficiency in each period. As pointed out, in section 3.3, the 

relative importance of the components is not reflected in Model (1). Thus, the proposed heuristic 

method (FISM) was employed, which gives weight to each stage separately for each supplier. 

Therefore, the efficiency of the process is defined as the harmonic weighted mean of the efficiency of 

the constitutive stages of the process. Table 8 shows how the CSWs assigned to stages affect the 

overall and periodic efficiency scores of all suppliers of the NMI. In both, KARAN earned the highest 

efficiency score. Other suppliers have also gained efficiency scores between 0.6409-0.9994 and 

0.6298-0.9998 from the Model (1) and the weighted model, respectively. 
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Table 8. Efficiency scores of the supplier of NMI according to Model (1) and weighted harmonic mean 

D

M

Us 
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ll 

efficie

ntly 

Rank  

Partial 

efficiency 
Term efficiency 

S
ta
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e.1
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Reference 

source not 

found. 
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T 
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b: The aw  values obtained from the Fuzzy ISM-based heuristic method and the tw  values based 

on historical periods' values were directly formulated in Model (2), and implemented in the Lingo 

software. The results are as follows: 
 

Table 9. Efficiency scores of the suppliers of NMI according to the Model (2) 
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0.8978 

FARA

ZAN 
3 

0.9912 

0.9918 

0.9915 

0.9916 

0.9840 0.9494 1.0000 0.9964 1.0000 

0.9899 

0.9815 

0.9820 

0.9598 

0.9455 

0.9462 

1.0000 

1.0000 

1.0000 

0.9920 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

SIRIN.

S.N. 
12 

0.6195 

0.6087 

0.6234 

0.6707 

0.5876 0.7860 0.5832 0.5744 0.6172 
0.5418 

0.6180 

0.6219 

0.7918 

0.7829 

0.7848 

0.6351 

0.5307 

0.5975 

0.5121 

0.6319 

0.6504 

0.6102 

0.6096 

0.6951 

PIROZ 5 

0.9831 

0.9830 

0.9831 

0.9834 

1.0000 0.9400 1.0000 1.0000 0.9733 

1.0000 

1.0000 

1.0000 

0.9409 

0.9392 

0.9399 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

0.9725 

0.9735 

0.9742 

ALSA

N 
4 

0.9840 

0.9875 

0.9839 

0.9839 

0.9995 1.0000 1.0000 1.0000 0.9522 

0.9988 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

0.9627 

0.9516 

0.9516 

KARA

N 
1 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 1.0000 1.0000 1.0000 1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

TIR 8 

0.9037 

0.9138 

0.8977 

0.9013 

0.6613 0.6711 1.0000 1.0000 0.9103 

0.6350 

0.6762 

0.6809 

0.7638 

0.6201 

0.6210 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

0.9090 

0.9098 

0.9194 

BARA

N 
7 

0.9344 

0.9772 

0.9052 

0.9676 

0.6447 0.9029 1.0000 0.9188 0.9781 

0.8919 

0.6128 

0.6129 

0.9445 

0.8324 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

0.8496 

1.0000 

0.9754 

0.9803 

0.9803 

HAMR

AH 
2 

0.9998 

0.9994 

1.0000 

1.0000 

0.9969 1.0000 1.0000 1.0000 1.0000 

0.9917 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

 

Table 9 also depicts the rate of the changes in the weighted periodic efficiency, resulting from the 

Model 2 implementation, compared to the harmonic efficiency scores in Table 8 that have augmented 

in 0.13 cases, dwindled in 0.41 cases, and remained unchanged in 0.45 cases. Compared to the results 

of the implementation Model 1 (Table 8), the efficiency scores have elevated in 0.08 cases, reduced in 

0.45 cases, and remained unaffected in 0.46 cases. As a result of the weights defined for the model, 

efficient supplier scores did not change. Other suppliers' efficiency scores vary from those in Table 8 

as well, as a result of fluctuations in their efficiency scores for each stage and the weights assigned to 

each stage and period. The objective function of Model (2) changes based on the type of efficiency 

calculated about the weights assigned to stages and periods. Specifically, the objective function is 



272 Interdisciplinary Journal of Management Studies (IJMS), 17(1), 2024 

t t 1,tT A m R
a ioa uoa

t t t 1
t 1 a 1 i 1 r 1 ioa uoa

w S S
min e 1 w

m r R R




   

  
       

   for overall efficiency, t t 1,tA m R
a ioa uoa

t t 1
a 1 i 1 r 1 ioa uoa

w S S
mine 1

m r R R




  

  
       

  for periodic 

efficiency, 
t t 1,tT m R
ioa uoa

t t t 1
t 1 i 1 r 1 ioa uoa

S S1
min e 1 w

m R R R




  

  
       

  for partial efficiency, and 
t t 1,tm R
ioa uoa

t t 1
i 1 r 1 ioa uoa

1 S S
mine 1

m r R R




 

 
   

 
 periodic-

partial efficiency. This method, i.e., inserting the weights inside the model, has several advantages 

over the decentralized strategy. The first advantage of this method is that the efficiency scores are 

calculated with the weight of stages and periods weights already included in the model, which makes 

it less computationally expensive than the first one. In addition, this method establishes a logically 

weighted relationship between the overall, partial, and periodic efficiency scores and the process 

components, allowing numerical values to be compared logically. Also, overall and partial efficiency 

scores produced by the first method fail to reflect the historical value of periods, ignoring the fact that 

recent efficiency scores tend to be a better indicator of future potential than unstable achievements in 

the past. 

4. Findings and managerial implications 
There are several managerial implications of our framework and discussion. Sustainable supply chain 

models have been developed in this study as a means of providing an overview of the multiple factors 

and relationships involved. This allows supply chain managers to anticipate the threats and risks that 

may impede their transition to sustainability and can make prudent decisions by adjusting the distance 

between analysis and simulation. Noteworthy is that the proposed models are independent of the 

criteria utilized in this study, so managers can modify them to suit their needs. In comparison to earlier 

research, this study's main contributions and benefits are the development of an expert-centered 

heuristic method based on the FISM, the introduction of a novel integrated approach to the FISM and 

the DNDEA, and the extension of the applicability of the ISM. This heuristic method helps provide a 

set of weights on which experts have agreed because they were derived by integrating their subjective 

preferences. 

In addition, the fuzzy approach increases the realism of the method by reflecting the uncertainty of 

expert opinions. In general, developed models, as well as their complementing strategies, are reliable 

in obtaining accurate results. Considering the alternative solutions, the model proposed in this study 

always has valid solutions, which is a computational advantage, as compared to earlier research. 

However, analysts need to decide which characteristics they prefer to prioritize for evaluation 

purposes to achieve the best results for each situation. Chen et al.(2009) modeled the two-stage 

process efficiency as the weighted sum of divisional efficiencies. However, we clearly show that the 

overall efficiency of the multi-stage process can be modeled as the weighted harmonic mean of the 

individual efficiencies if the analysts used non-weighted models to determine the efficiency score. 

In detail, the results of the models developed in this study differ from those obtained in Kalantary 

et al. (2018) because the company’s current efficiency in the models here is affected by its past socio-

environmental performance (Models 1 and 2). For the first time, incorporated weights of the stages 

were determined by a heuristic method based on the FISM, which denotes the relative importance of 

each division for process efficiency. Then, the periods are given weight to demonstrate their historical 

value for efficiency evaluations (Model 2). 

In addition, analyzing the model's efficiency scores reveals that it has much greater discriminative 

power than the null model. As an example, three suppliers (TECH A.T, KARAN, and HAMRAH) had 

an overall efficiency score of 1 in the null model, while using Models (1) and (2), there is only one 

efficient DMU (KARAN) in which their efficiency score is unity. One of the reasons why KARAN is 

the only supplier that has earned the highest efficiency score is that it has experienced bigger changes 

in the carry-overs (Kalantary et al., 2018). It means the supplier concerned has invested the most in the 

socio-environmental dimensions of sustainability. In the sensitivity analysis of the sustainability 

dimensions, Moradi et al. (2022) also proved that the highest changes in the efficiency of NMI 

suppliers could accrue in the socio-environmental dimensions [38]. Therefore, investing in those 

dimensions could have a sizeable effect on the performance of suppliers.  

Unlike the null model, the present study focuses on the process structure, stages, and time to 

pinpoint the cause of inefficiencies for each supplier annually. For all the developed models, the 

highest efficiency score goes to KARAN, and the lowest score goes to SIRIN.S.N. Moreover, 
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considering Model 1, the efficiency score of the 11 inefficient suppliers ranges from 0.6409 to 0.9994 

(Table 8). When the efficiency is calculated as the weighted harmonic mean of the components 

(Equation 18), it varies between 0.6298 to 0.9998 (Table 8), and when considering Model 2, it varies 

between 0.6195 and 0.9998 (Table 9). Compared with the Model (1), the weights assigned to the 

models lead to some changes in efficiency scores and supplier ratings, such as: 

When the overall and periodic efficiency of the multi-stage process is modeled as a weighted harmonic 

mean of the multiple stages, the other supplier’s efficiency scores decrease relative to Model (1), except for 

two suppliers (PARSHAM-2013, STEEL-2013), whose period efficiencies have increased. For instance, 

DMU 3 has an overall efficiency score of 0.7208, as opposed to 0.8046 in the Model (1). 

In general, STEEL.P tended to increase the most in 2013 (0.0169), and D.L. KARAN had the largest 

downward trend in 2014 (0.1047) in periodic efficiency, compared with the results of Model (1). Therefore, 

changes in suppliers' efficiency can be attributed to fluctuations in stages' efficiency and the weights 

assigned to them. Also, four suppliers received a different ranking based on harmonic weight.  

The implementation of the weighted model (Model 2) compared with the unweighted model 

(Model 1) produced some changes in the efficiency scores. Specifically, after implementing the 

proposed weighted model, the efficiency of other suppliers decreased in the period 2011-2015, except 

for four suppliers whose efficiency increased periodically. For instance, the DMU periodic efficiency 

score in 2013 was 0.9871, compared with 0.9690 in Model 1. Due to the choice of weights here, the 

DNDEA model introduces some sort of value judgment, with STEEL.P experiencing the most 

dramatic rise in 2013 (0.0181) and BARAN experiencing the greatest decline in 2011 (0.0612). Due to 

this, the efficiency scores of Model 1, in most cases, are larger than those of Model 2 and Equation 18, 

in which the weights of the stages are equal. In addition, in some cases, the ranking of the suppliers 

has changed. The most change in rating goes to TECH.AT, as this supplier has declining periodic 

efficiency in the final years, and Model 2 gives a higher weight to the efficiency of the last period. 

5. Conclusion  
This study provides an integrated DNDEA framework to address shortcomings in previous sustainable 

supply chain models. Nevertheless, particular suggestions can be addressed in future research. This study 

assumed that all experts have the same importance and that there is no preference between experts, 

whereas they may possess varying levels of expertise and experience due to unequal access to resources. 

For this reason, researchers should consider a different approach to expressing the opinions raised by 

experts and decision-makers. For example, they can classify experts into several categories with varying 

levels of importance in which the opinion of the higher category may have greater importance than those 

of the lower one. Then, two CSWs will introduce from the point of view of the best and the worst 

experts, which can be analyzed and compared. Moreover, the first decentralized strategy described in this 

study defined the overall efficiency as the sum of the weighted harmonic mean of the individual 

components. Future studies should thus exploit the weighted sum of stages and investigate the 

effectiveness of the changes in the calculation approach in the multi-stage processes. It is necessary to do 

additional research into new models and computational techniques to construct DEA-based models in 

situations like multi-stage production processes and methods for aggregating individual preferences. So, 

using the fuzzy ISM-based weighting algorithm to synthesize expert opinions as a stand-alone method 

could be a breakthrough in this field. This study will provide more alternative ways to measure multi-

stage process performance by enriching DEA theory and providing new ways to improve management 

and reduce risk in the supply chain, thereby helping NMI managers make better decisions to improve 

management and reduce risks in the supply chain to achieve sustainability. 
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