تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,500 |
تعداد مشاهده مقاله | 124,090,033 |
تعداد دریافت فایل اصل مقاله | 97,193,735 |
استفاده از لاتکس نانوکامپوزیت پلیمری بر پایه نشاسته برای پوششدهی کودهای شیمیایی و بررسی اثر عوامل مختلف در کنترل رهاسازی عناصرغذایی | ||
تحقیقات آب و خاک ایران | ||
دوره 53، شماره 12، اسفند 1401، صفحه 2905-2919 اصل مقاله (1.5 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2023.351739.669404 | ||
نویسندگان | ||
مهری سلیمی1؛ الهه معتمدی سده* 2؛ بابک متشرع زاده3 | ||
1گروه علوم خاک، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران | ||
2عضو هیئت علمی، بخش نانوتکنولوژی، پژوهشگاه بیوتکنولوژی کشاورزی، کرج، ایران | ||
3گروه علوم و مهندسی خاک دانشکده مهندسی و فناوری کشاورزی دانشگاه تهران | ||
چکیده | ||
در این پژوهش از یک رویکرد جدید برای کاهش میزان حلالیت کودهای شیمیایی استفاده گردید. این پژوهش در سال 1399 در پژوهشگاه بیوتکنولوژی کرج انجام گرفت. کود اوره گرانوله و NPK با استفاده از لاتکس نانوکامپوزیت پلیمری بر پایه نشاسته با سه فرمولاسیون متفاوت A (بدون نانوذره)، B (حاوی نانوذره) وC (لاتکس تجاری) با استفاده از دستگاه روتاری درام پوششدهی شدند و اثر عوامل مختلف مانند دما، تعداد لایههای پوششی و اندازه ذرات بر میزان رهاسازی عناصرغذایی مورد بررسی قرار گرفتند. نتایج حاصل از آنالیز میکروسکوپ الکترونی گسیل میدانی نشان داد که نانوکامپوزیت پلیمری بر پایه نشاسته به صورت یک پوشش کاملاً یکنواخت و صاف سطح اوره گرانوله را پوشانده است. کودهای پوششداده شده با فرمولاسیونB (حاوی نانوذرات) عملکرد بهتری داشتند. بنابراین حضور نانوذرات در ساختار پوشش پلیمری با بهبود خواص پوششی، رهاسازی عناصرغذایی را کنترل میکند. بعد از گذشت 120 دقیقه میزان رهاسازی اوره از سه فرمولاسیون A، B و C به ترتیب 3/63، 41/48 و 85/66 درصد برآورد گردید که تفاوت معنیداری با هم داشتند. علاوه بر این نتایج نشان داد که با افزایش تعداد لایه پوششی زمان رهاسازی اوره و فسفر افزایش مییابد در حالیکه رهاسازی پتاسیم با افزایش لایه پوششی روند مشخصی نداشت و غیرقابل پیش بینی بود. با افزایش دما میزان رهاسازی اوره افزایش یافت. بررسی اثر اندازه ذرات بر رهاسازی اوره نشان داد که دانههای گرانوله پوششداده شده بزرگتر از ۲ میلیمتر میزان رهاسازی کمتری نسبت به دانههای گرانوله کوچکتر از 2 میلیمتر داشتند. | ||
کلیدواژهها | ||
اوره؛ لاتکس نانوکامپوزیت پلیمری؛ نانوذرات بیوچار؛ نشاسته؛ NPK | ||
عنوان مقاله [English] | ||
The use of starch-based polymer nanocomposite latex for coating chemical fertilizers and investigating various factors releasing nutrients | ||
نویسندگان [English] | ||
Mehri Salimi1؛ Elaheh Motamedi2؛ Babak Motesharezadeh3 | ||
1Department of Soil Science College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran | ||
2Nanotechnology Department, Agricultural Biotechnology Research Institute of Iran | ||
3Department of Soil Science College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran | ||
چکیده [English] | ||
In this study, a new approach was used to reduce the solubility of chemical fertilizers. This research was conducted in Karaj Biotechnology Research Institute in 2020. Granular urea and fertilizers were coated with starch-based polymer nanocomposite latex with three different formulations A (without nanoparticle), B (containing nanoparticle), and C (commercial latex) using a rotary drum machine. The effects of different factors such as temperature, number of coating layers and particle size on the release rate of nutrients were investigated. The results of the field emission scanning electron microscope (FESEM) analysis showed that the starch-based polymer nanocomposite formed a completely uniform and smooth coating film on the surface of urea granules. Fertilizers coated with formulation B (containing nanoparticles) showed higher efficiency. Therefore, the presence of natural char nanoparticles in the structure of the polymer coating controlled the release rate of nutrients by improving the coating properties. After 120 min, the release rate of urea from three formulations A, B and C was estimated to be 63.3, 48.41 and 66.85%, respectively which were significantly different from each other. In addition, the results showed that with increasing the number of coating layer, the release time of urea and phosphorus was increased while the release of potassium did not show a definite trend with increasing the coating layer and was unpredictable. With increasing temperature urea release was increased. Investigation of the effect of particle size on urea release showed that coated granules larger than 2 mm had less release rate than granules smaller than 2 mm. | ||
کلیدواژهها [English] | ||
nanobiochar, NPK, polymer nanocomposite latex, Starch, Urea | ||
مراجع | ||
Abouchenari, A., Hardani, K., Abazari, S., Naghdi, F., Ahmady Keleshteri, M., Jamavari, A., & Modarresi Chahardehi, A. (2020). Clay-reinforced nanocomposites for the slow release of chemical fertilizers and water retention. Journal of Composites and Compounds, 2, 85-91. https://doi.org/10.29252/jcc.2.2.4 Azeem, B., KuShaari, K., & Man, Z. (2016). Effect of Coating Thickness on Release Characteristics of Controlled Release Urea Produced in Fluidized Bed Using Waterborne Starch Biopolymer as Coating Material. Procedia Engineering, 148, 282–289. https://doi.org/10.1016/j.proeng.2016.06.615 Azeem, B., Kushaari, K., Man, Z. B., Basit, A., & Thanh, T. H. (2014). Review on materials & methods to produce controlled release coated urea fertilizer. Journal of Controlled Release, 181(1), 11–21. https://doi.org/10.1016/j.jconrel.2014.02.020 Bamatov, I. M., Sapaev, K. K., & Rumyantsev, E. V. (2019). Coating of NPK fertiliser with astarch-based biodegradable polymer by using a v-star reactor. Key Engineering Materials, 816 KEM, 318 322. https://doi.org/10.4028/www.scientific.net/KEM.816.318 Beinaye Motlagh, P.(2011). Guidelines and methods for measuring physico-chemical factors and toxic mineral chemicals in drinking water. Ministry of Health and Medical Education, Department of Health.(In Persian). Chapman, H. I., & Pratt, P. F. (1961). Methods of Analysis for Soils, Plants and Waters. The University of California's Division of Agricultural Science, Berkeley, California, USA. Chen, S., Yang, M., Ba, C., Yu, S., Jiang, Y., Zou, H., & Zhang, Y. (2018). Preparation and characterization of slow-release fertilizer encapsulated by biochar-based waterborne copolymers. Science of the Total Environment, 615, 431–437. https://doi.org/10.1016/j.scitotenv.2017.09.209 Ibrahim, K. R. M., Babadi, F. E., & Yunus, R. (2014). Comparative performance of different urea coating materials for slow release. Particuology, 17, 165–172. https://doi.org/10.1016/j.partic.2014.03.009 Ito, R., Golman, B., & Shinohara, K. (2003). Controlled release with coating layer of permeable particles. Journal of Controlled Release, 92(3), 361–368. https://doi.org/10.1016/S0168-3659(03)00363-8 Khan Mohammadi, Y & Movahedi Rad, S. (2018). In vitro production of slow release coated fertilizer using biodegradable materials in a fluidized bed. Chemistry and Iran Chemical Engineering, 37 (3). 119-124. https://www.sid.ir/paper/26294/fa. .(In Persian) Motamedi, E., Motesharezedeh, B., Shirinfekr, A., & Samar, S. M. (2020). Synthesis and swelling behavior of environmentally friendly starch-based superabsorbent hydrogels reinforced with natural char nano/micro particles. Journal of Environmental Chemical Engineering, 8(1), 103583. https://doi.org/10.1016/j.jece.2019.103583 Ni, B., Liu, M., & Lü, S. (2009). Multifunctional slow-release urea fertilizer from ethylcellulose and superabsorbent coated formulations. Chemical Engineering Journal, 155(3), 892–898. https://doi.org/10.1016/j.cej.2009.08.025 Olad, A. &.Gharakhani, H. (2016, August). Synthesis, characterizaition and fertilizer release behavior of NaAlg-g-poly (AA-co-co-Aam)/silica silica superabsorbent nanocomposite. The first seminar on applied chemistry in Iran, chemistry college. Tabriz university,Tabriz. (In Persian) Pang, W., Hou, D., Wang, H., Sai, S., Wang, B., Ke, J., Wu, G., Li, Q., & Holtzapple, M. T. (2018). Preparation of microcapsules of slow-release NPK compound fertilizer and the release characteristics. Journal of the Brazilian Chemical Society, 29(11), 2397–2404. https://doi.org/10.21577/0103-5053.20180117 Ramli, R. A. (2019). Slow release fertilizer hydrogels: A review. Polymer Chemistry, 10(45), 6073–6090. https://doi.org/10.1039/c9py01036j Ransom, C. J., Jolley, V. D., Blair, T. A., Sutton, L. E., & Hopkins, B. G. (2020). Nitrogen release rates from slow- And controlled-release fertilizers influenced by placement and temperature. PLoS ONE, 15, 1–21. https://doi.org/10.1371/ journal.pone.0234544 Salimi, M., Motamedi, E.,Motesharezadeh, B., Alikhani, H. A., & Mir Seyed Hosseini, H. (2022). Production of slow release urea fertilizer using polymer starch nanocomposite by three methods of rotary drum coating, insitu and two-stage hydrogel synthesis and evaluation their performance in tomato greenhouse cultivation, Iranian Journal of Soil and Water Research.doi: 10.22059/ijswr.2022.333757.669128.(In Persian) Salimi, M., Motamedi, E.,Motesharezadeh, B., Davoodi, D., Alikhani, H. A., & Mir Seyed Hosseini, H (2021). Synthesis of Slow-release Urea Fertilizer Using Starch-based Polymer Nanocomposite Coating and Investigation of Its Effect on Tomato Growth, Iranian Journal of Soil and Water Research. 52 (2), 301-312. doi:10.22059/IJSWR.2020.313429.668798.(In Persian) Salimi, M., Motamedi, E., Motesharezedeh, B., Hosseini, H. M., & Alikhani, H. A. (2020). Starch-g-poly(acrylic acid-co-acrylamide) composites reinforced with natural char nanoparticles toward environmentally benign slow-release urea fertilizers. Journal of Environmental Chemical Engineering, 8(3), 103765. https://doi.org/10.1016/j.jece.2020.103765 Salimi, M., Motamedi, E., Safari, M., & Motesharezadeh, B. (2021). Synthesis of urea slow-release fertilizer using a novel starch-g-poly (styrene-co-butylacrylate) nanocomposite latex and its impact on a model crop production in greenhouse. Journal of Cleaner Production, 322, 129082. https://doi.org/10.1016/j.jclepro.2021.129082 Sofyane, A., Ben Ayed, E., Lahcini, M., Khouloud, M., Kaddami, H., Ameduri, B., Boufi, S., & Raihane, M. (2021). Waterborne butyl methacrylate (co)polymers prepared by pickering emulsion polymerization: Insight of their use as coating materials for slow release-fertilizers. European Polymer Journal, 156, 110598. https:// doi.org/10.1016/j eurpolymj.2021.110598 Suardi, M., Rahmayulis., Ben, E., & Djamaan, A. (2020). Slow-Release NPK Double-Coating Granules Using Bioblends Polystyrene–Polycaprolactone as a Coating Polymer. IOSR Journal of Agriculture and Veterinary Science (IOSR-JAVS). 13 (1), 59-64. DOI: 10.9790/2380-1301035964 Tian, H., Zhang, L., Sun, X., Cui, J., Dong, J., Wu, L., Wang, Y., Wang, L., Zhang, M., Liu, Z., & Lu, P. (2022). Self-healing modified liquefied lignocellulosic cross-linked bio-based polymer for controlled-release urea. Industrial Crops & Products, 186, 115241. https://doi.org/10.1016/j.indcrop.2022.115241 Thanh, H., Trinh, T. H., Shaari, K. Z. K., Basit, A., & Azeem, B. (2014). Effect of Particle Size and Coating Thickness on the Release of Urea Using Multi-Diffusion Model. International Journal of Chemical Engineering and Applications, 5(1), 58–63. https://doi.org/10.7763/ijcea.2014.v5.351 Trinh, T. H., KuShaari, K., Basit, A., Azeem, B., & Shuib, A. (2014). Use of Multi-diffusion Model to Study the Release of Urea from Urea Fertilizer Coated with Polyurethane-like Coating (PULC). APCBEE Procedia, 8(Caas 2013), 146–150. https://doi.org/10.1016/j.apcbee.2014.03.017 Witono, J. R., Noordergraaf, I. W., Heeres, H. J., & Janssen, L. P. B. M. (2014). Water absorption, retention and the swelling characteristics of cassava starch grafted with polyacrylic acid. Carbohydrate Polymers, 103(1), 325–332. https://doi.org/10.1016/j.carbpol.2013.12.056 Yu, X., & Li, B. (2019). Release mechanism of a novel slow-release nitrogen fertilizer. Particuology, 45, 124–130. https://doi.org/10.1016/j.partic.2018.09.005 Zafar, N., Niazi, M. B. K., Sher, F., Khalid, U., Jahan, Z., Shah, G. A., & Zia, M. (2021). Starch and polyvinyl alcohol encapsulated biodegradable nanocomposites for environment friendly slow release of urea fertilizer. Chemical Engineering Journal Advances, 7, 100123. https://doi.org/10.1016/j.ceja.2021.100123
| ||
آمار تعداد مشاهده مقاله: 216 تعداد دریافت فایل اصل مقاله: 243 |