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Abstract: 

Travel time reliability affects the behavior of passengers in private or public transportation and 

can be seen as an important factor in the context of freight transportation. The main cause of 

travel time oscillation, known as travel time reliability, is congestion. Congestion is classified 

into two categories: recurring and nonrecurring. Recurring congestion, which is the topic of 

this study, is formed when supply surpasses capacity. Peak periods are good examples of 

recurring congestion. In this paper, by utilizing different bagging regressor methods, the effect 

of speed flow reduction, compared to free flow speed (FFS) in terms of congestion was studied 

on the planning time index (PTI) on a section of Interstate 64 in the United States (US). Then, 

by analyzing PTI changes based on congestion variation, it was revealed that when speed 

reduction surpasses 10%, travel time leaves its reliability. Also, when the congestion is 

somewhere around 0.7 to 0.75, the unreliability becomes severe. These findings were directly 

extracted from scatter plots drawn by bagging and bootstrapping samples which were used to 

improve the accuracy of PTI prediction. 

Keywords: Travel time reliability, Planning time index (PTI), Congestion, Bagging regressor, 

Peak period, Machine learning 
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1. Introduction 

The term travel time reliability (TTR) refers to the travel time fluctuations for the same trip 

from day to day. The same trip is implied on a trip that is done for the same purpose, the same 

origin, and destination, within the same time of day, and by the same mode and route. Large 

variability implies that travel time is unreliable, and this unpredictability causes travelers and 

shippers to have a challenge with planning their travel. The main cause of unreliability in travel 

time is congestion. With the occurrence of congestion, it could be expected that travel times 

become more variable, hence less reliable (National Academies of Sciences and Medicine, 

2013). 

Congestion can be studied in two categories: recurring and non-recurring. Recurring 

congestion is predictable and occurs when supply surpasses capacity, whereas the latter refers 

to conditions where an unexpected event occurs, such as crashes, inclement weather, work 

zones, and so on (Mahmassani et al., 2014). 

Studies have revealed that the average congestion level is continuing to grow in cities and 

regarding the points mentioned earlier, TTR is a key part of the congestion problem. Travelers 

try to lessen the negative effect of their tardiness by assigning additional time beyond typical 

travel time to ensure they arrive on time. Unfortunately, this extra time is associated with extra 

costs, which has not been considered in previous transportation analyses (Zegeer et al., 2014). 

Due to its importance, reliability has been the subject of many studies. Different researchers 

have attempted to depict the context of reliability by utilizing different methods, including 

linear regression, simulation, machine learning (ML) methods, and so on. This study is an 

attempt to provide further insight into the effect of recurring congestion (morning and evening 

peak periods) on TTR measurement, that is planning time index (PTI). What has made this 

study unique, is utilizing bagging regressors. The advantage of these regressors will be 

described in detail in the methodology section. The body of the paper is organized as follows: 
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the rest of this section analyzes conducted studies in the field of TTR from initial points, dating 

back to 1968, to the present studies. In the second section, the material and methods will be 

described and further information on dataset will be represented. Section three discusses 

modeling procedure and by utilizing scatter plots, depicts how congestion can affect PTI. 

Finally, the conclusion in section 4 is represented.  

The initial step of research in the field of congestion and travel time reliability started with 

Gaver’s study in 1968 at Berkeley University. His study looked at the policy choices that occur 

when both tardiness and an undesirable early departure are penalized (Gaver Jr, 1968). 

Connectivity reliability and travel time reliability were then introduced by Iida in 1999 to 

address core ideas, unsolved challenges, and future prospects of road network reliability 

analysis (Iida, 1999). The fact that reducing travel time uncertainty is as important as saving 

time, was pointed out by Chen and Recker's study in 2002 (Chen et al., 2002). 

Later on, researchers attempted to calculate and asses travel time reliability and its effect on 

different aspects of transportation systems’ behavior. The importance of travel time reliability 

as a decisive factor affecting travelers' route choice decisions was studied by Liu et al. (2004). 

(Liu et al., 2004). Emam and Al-Deek, 2006, created a novel approach for calculating travel 

time reliability using real-world traffic data from Florida's I-4 corridor (Emam and Al-Deek, 

2006). Lyman and Bertini predicted the reliability of travel time on a specific corridor in 2008 

by the use of archived intelligent transportation system (ITS) data and investigating the use of 

measured travel time reliability indices for enhancing real-time transportation (Lyman and 

Bertini, 2008). To examine travel time reliability in New York City, three travel time reliability 

metrics were used by Yazici et al to assess the influence of New York City's urban grid network 

on travel time (Yazici et al., 2012). Wang et al. in 2017 established a system for estimating 

highway vehicle travel time reliability for transportation planning utilizing probe GPS data 

(Wang et al., 2017). Also, Zheng et al. concluded that travelers' route and departure time 
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decisions are influenced by the expected travel time and its reliability (Zheng et al., 2018). In 

addition to the 2004 study by Liu et al., Li et al., 2019, investigated travel time reliability as a 

critical element influencing passenger behaviors. They used the Lempel-Ziv algorithm to make 

their study unique (Li et al., 2019). The study of Moghaddam et al. looked at how travelers 

perceive and respond to travel time information and its reliability in terms of route choice 

behavior, as measured by a driving simulator and a stated preference (SP) survey (Moghaddam 

et al., 2019). 

As another wave of modeling in the field of travel time reliability, researchers focused on 

congestion and factors that could cause it. Hojati et al. defined the extra buffer time index 

(EBTI) to quantify traffic incidents' effects on motorways TTR. The type of incident and the 

time it takes for travelers to arrive at their destination were factors that might also impact EBTI 

(Hojati et al., 2016). The study of Samal and Das in 2020 intended to investigate and assess the 

possibility of modeling congestion metrics under diverse traffic scenarios in the Patia region. 

(Samal and Das, 2020). Gu et al. performed a review of studies on transportation network 

performance under perturbations to address reliability, vulnerability, and resilience in 

networks. They determined that although these notions differ in terms of focus, measurement, 

and application, their outcomes are not different (Gu et al., 2020). The paper of Zhang and 

Chen developed an integrated data mining framework based on decision tree and quantile 

regression approaches to identify periods with varying traffic characteristics and evaluate the 

impact of rain and snow events on both congestion and system reliability (Zhang and Chen, 

2019). 

As the importance of TTR became more and more, many studies attempted to utilize novel 

approaches to address previous concerns and problems. Relying on the Cornish-Fisher 

expansion, the paper of Zang et al. used the travel time percentile function and provided a 

closed-form, adaptable, and high-quality technique that was sufficiently adaptive to predict the 
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percentile function of various travel time distributions (TTDs) (Zang et al., 2018). Ghader et 

al. in 2019 utilized Cumulative Prospect Theory (CPT) to study how travel mode choice is 

affected by travel time reliability. Their main focus was on mode choice, but their model could 

be extended to other choice dimensions (Ghader et al., 2019). Chen and Fan researched to 

provide a systematic framework for assessing TTR on highway segments in Charlotte, North 

Carolina. The numerical findings clearly demonstrated that TTR patterns in each case were 

unique, as well as on various days of the week and weather conditions (Chen and Fan, 2019). 

The principal focus of Saedi et al. research was to enhance the estimation of network travel 

time reliability by utilizing network partitioning (Saedi et al., 2020). The results of Chen and 

Fan's research are noteworthy because they provided a systematic framework to evaluate TTD 

on various types of highway segments throughout a corridor. They realized that the Burr 

distribution could give the highest acceptance rate when different times of day (TOD) and days 

of week (DOW) were considered (Chen and Fan, 2020). Zhu et al. provided numerous 

categories of perceived information based on a generalized Bayesian traffic model to simulate 

travelers' daily route choice behavior in terms of travel time reliability (Zhu et al., 2021). The 

paper of Zhang, X., et al. investigated statistical approaches for clustering Cumulative 

Distribution Functions (CDFs) of travel times at the segment level into an optimum number of 

homogenous clusters that could include all essential information about distributions (Zhang et 

al., 2021). The study of Hoseinzadeh et al. combined crowdsourced data from Waze to develop 

an algorithm for the hourly measurement of level of service (LOS) (Hoseinzadeh et al., 2021). 

Afandizadeh et al. evaluated the effect of recurrent congestion on travel time reliability on a 

1.467-mile section of the I-64 highway in Virginia. The authors proposed grey models (GM) 

and random forest regression (RFR) as evaluation tools (Zargari et al., 2022). Chen et al. 

developed a Collaborative Intelligent Transportation System (CITS) in 2022 to estimate 

present and future travel times. The findings indicated that the K-nearest neighbor (KNN) 



 

7 

 

model could deliver the most accurate short-term forecasts (Chen et al., 2022). Also, Udayanga 

et al. recommended using crowdsourced travel time data from Google distance matrix 

Application Programming Interface (API) as a feasible approach to combine traffic congestion 

monitoring in their study (UDAYANGA et al., 2022). The research of Meng et al. investigated 

the performance of the Support Vector Machine (SVM) in predicting short-term travel times 

(Meng et al., 2022). 

Delving deep into the chronological trajectory of the literature review reveals that travel time 

reliability was just a simple notion in the beginning, but as time went on, researchers concluded 

that TTR affects various parts of the transportation system. The tools for addressing these 

concerns were basic but became more complicated later. 

2. Materials and Methods 

To talk about bagging regressors, first, a background about ensemble methods is needed, then 

different branches of ensemble methods will be briefly discussed. Afterwards, bagging 

methods will be illustrated and finally, supplementary explanations about bagging regressor 

will be represented. 

Ensemble methods aim to increase generalizability/robustness over a single estimator by 

combining the predictions of numerous base estimators created using a specific learning 

methodology. Typically, two groups of ensemble approaches are distinguished: averaging and 

boosting methods. The core argument behind averaging approaches is to create numerous 

independent estimators, then average their estimations. Because its variance is decreased, the 

composite estimator is generally better than the individual single-base estimators. Unlike the 

first method, the latter produces sequential base estimators, and the composite estimator's bias 

is reduced. This method merges numerous weak models into a powerful ensemble. Examples 

of averaging methods are bagging methods and forest of randomized trees. Also, AdaBoost 
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and gradient tree boosting are examples of boosting methods. The interested reader is referred 

to the cited references for a detailed description of the methods (Zhou, 2012) 

Bagging methods are a class of algorithms in which numerous samples of black-box estimators 

are built on random subsets of the original training set, and then their individual estimations 

are aggregated to generate a final prediction. These techniques are used to lessen the variation 

of a base estimator by including randomization into its development mechanism and then 

constructing an ensemble from it. Under many circumstances, bagging methods are a fairly 

straightforward approach to improve compared to a single model without changing the 

underlying base algorithm. Bagging approaches perform best with strong and complicated 

models because they reduce overfitting. Please read this reference for further information on 

this method (Kadiyala and Kumar, 2018) 

As an ensemble estimator, a bagging regressor fits base regressors of the main database and 

then aggregates their individual forecasts (through voting or averaging) to generate a final 

prediction. A meta-estimator of this type is often used to minimize the variance of a black-box 

estimator by incorporating randomization into its building mechanism and then constructing 

an ensemble from it (Pedregosa et al., 2011). The parameters of the bagging regressor are as 

follows: base estimator (the base estimator that fits on subsets of the dataset which are created 

randomly), number of estimators (number of base estimators in the ensemble), maximum 

samples (number of samples which are drawn to train base estimators), maximum features 

(number of features to train base estimator), bootstrap (how samples are drawn, with or without 

replacement), bootstrap features (if features are extracted with replacement.), out-of-bag score 

(determines whether you utilize out-of-bag samples for estimating the generalization error), 

warm start, number of jobs, random state, and verbose. The utilized methods in this study are 

as follows. It should be noted that suggested studies and articles are for the future reference of 

interested readers.  
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• bagging regressor with Stochastic Gradient Descent (SGD) base estimator (Mazloumi et al., 

2022) 

•  Bagging regressor with Passive Aggressive base estimator (Mastelini et al., 2022) 

• Bagging regressor with Ridge base estimator (Abdulhafedh, 2022) 

•  Bagging regressor with linear base estimator (Shabbir et al., 2022) 

•  Bagging regressor with Support Vector Regression (SVR) (Kernel= radial basis function 

(RBF)) base estimator (Ara et al., 2020) 

• bagging regressor with Support Vector Regression (SVR), (Kernel= polynomial (Poly)) base 

estimator (Ara et al., 2020) 

• Bagging regressor with RANdom SAmple Consensus (RANSAC) base estimator (Almejrb 

et al., 2022) 

• Bagging regressor with Decision Tree (DT) base estimator (Abdulhafedh, 2022) 

• Bagging regressor with Theil-Sen base estimator (Szafranski and Duan, 2022) 

• Bagging regressor with Gradient Boosting (GB) base estimator (Khan et al., 2022) 

• bagging regressor with random forest (RF) base estimator (Zhan et al., 2021) 

• bagging regressor with polynomial (Poly) base estimator (Adhistian and Wibowo, 2022) 

• bagging regressor with support vector regression (SVR), (Kernel= linear) base estimator 

(Sarang, 2023) 

• bagging regressor with Bayesian ridge base estimator (Gacto et al., 2019) 

• bagging regressor with Quantile base estimator (Kang and Hansen, 2021) 

For more information, you can also refer to “sklearn ensemble module” in Python. In support 

vector regression (SVR) models, the type of kernel function has been written in parentheses. 

The dataset of this paper is composed of two elements, namely the travel time reliability (TTR) 

metric and congestion indices. As the dependent variable, congestion is defined as the ratio of 

traffic speed over a one-hour period to the free flow speed. This definition for congestion was 
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directly extracted from INRIX. Also, INRIX was used to obtain the TTR and congestion 

statistics. 

Every day, billions of data points are used by INRIX to gather anonymized data on traffic 

congestion, traffic incidents, and weather-related road conditions. The data has multiple 

sources, including connected cars and mobile devices, cameras and sensors on the road, major 

events that are expected to impact traffic, and other sources. This analysis is conducted by the 

company to comprehend mobility trends. To put it another way, INRIX offers cutting-edge 

solutions for real-time traffic. The interested reader can refer to INRIX’s website1 for further 

information. 

To calculate congestion, INRIX uses a multi-step process. First, the Space Mean Speed (SMS) 

is calculated for the desired segment. In fact, SMS is the mean speed of all cars crossing a 

specific segment of road over a given period. Then, this speed is divided by free flow speed to 

calculate the congestion of that segment for the specific period.   

Also, the planning time index (PTI), defined as the ratio of the 95th percentile of travel time to 

the free-flow travel time, is the independent variable (Lyman and Bertini, 2008). To extract 

PTI, INRIX builds a statistical distribution by the travel time data of vehicles passing a specific 

segment. Then, the 95th percentile of this distribution will be divided to travel time of free flow, 

which can be easily calculated, and PTI will be extracted.  

 The data collection period ranges from February 1, 2018, to October 31, 2018, for 273 days, 

and only considers workdays. Every day is split into 24 equal sections. Analyzing the trend of 

mean congestion values using the two-tailed comparing mean has proven that there are two 

peak periods in a day, namely morning peak and evening peak. The morning peak is from 7 

a.m. until 9 a.m. and the evening peak starts at 15 and ends at 18. Each observation represents 

the average amount of congestion (the ratio of flow speed in one hour to free flow speed) and 

 
1 https://inrix.com/ 
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PTI of vehicles that have passed through the 1.467-mile segment during one hour. Also, it 

should be pointed out that all passing vehicles, regardless of their type (the information is 

gathered anonymously from cars, trucks, and many other types of vehicles) were considered. 

Furthermore, the number of observations (samples) that have been analyzed in this research for 

various days are as follows (The numbers in the parenthesis represent morning and evening 

peaks respectively): Monday (78,117), Tuesday (74,111), Wednesday (76,114), Thursday 

(78,117), Friday (76,114). Table 1 summarizes the statistical features of morning and evening 

peaks. As a case study, in this paper, a road segment along the I-64 freeway in Chesapeake, 

Virginia was analyzed, which is the same as Afandizadeh et al dataset in their research (Zargari 

et al., 2022). This segment contains 3 sections whose lengths are 1.467, 0.036, and 0.777 miles 

respectively. The focus is on the first segment, which is shown in Fig 1. 

Table 1: Summary of PTI and congestion statistics 

M
et

ri
cs

 

Peaks Time periods 

Statistics 

Min Q1 Median Q3 Max Average 

P
T

I 

Morning 
7:00-8:00 1.0 1.1 2.1 3.4 20.3 2.9 

8:00-9:00 1.0 1 1.4 2.8 20.3 2.4 

Evening 

15:00-16:00 1.0 1.4 2.3 2.7 8.7 2.2 

16:00-17:00 1.0 2.2 2.8 3.4 12.2 3.0 

17:00-18:00 1.0 1.3 2.4 3.2 20.3 2.6 

C
o
n

g
es

ti
o
n

 

*
1
0
0
 

Morning 
7:00-8:00 10.1 44.1 76 98.4 100.0 69.8 

8:00-9:00 9.0 61.1 92.9 100 100.0 79.0 

Evening 

15:00-16:00 16.3 55.2 71.7 95 100.0 72.2 

16:00-17:00 16.2 39.1 46.9 69.3 100.0 54.6 

17:00-18:00 7.1 43.5 60.6 95.3 100.0 65.5 
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Fig 1: Location of the sample segment (Source: Google Maps& Virginia shape files) 

3. Results and Discussion 

To better explain the advantages of using bagging regressors, the results of modeling, including 

coefficient of determination, Mean Squared Error (MSE), and the stability ratio, are represented 

in tables 2 to 6. Coefficient of determination, 𝑅2, explains the variability of factors that would 

be caused by its relationship to another factor, and MSE assesses the average squared difference 

between the observed and predicted values. Coefficient of determination and MSE 

(consequently  RMSE) are among well-known measures for quantifying the quality of an 

estimator and numerus studies have taken the advantage of such measures, like the study of 

Nohekhan et al. (Nohekhan et al., 2022). Stability ratio, or simply, ratio, is the ratio of train set 

coefficient of determination to test set coefficient of determination and is a numerical criterion 

to show whether the model has overfitting or underfitting. The ideal value for this ratio is one. 

When the ratio equals one, it means that the performance of the train set and test set is the same, 

in terms of coefficient of determination. When overfitting occurs, this ratio becomes bigger 

than one, and in the case of underfitting, this ratio is less than one. The interested reader is 

referred to these publications for an in-depth review of the mentioned metrics: (Arias-Castro, 

2022). To opt for the prior model, three metrics will be used: coefficient of determination, 
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MSE, and ratio.  The closer the coefficient of determination is to one, the better the model is (in 

both training set and test set). Also, the prior model has less error, so models with less MSE 

should be considered. Furthermore, overfitting and underfitting, which are common issues in 

machine learning models, are monitored through the stability ratio. Akaike information 

criterion (AIC), and Bayesian information criterion (BIC) are two statistical metrics that could 

be utilized to estimate the quality of each model, relative to each of the other models. AIC is 

simply used as a metric to compare the performance of models. The model with the lowest AIC 

offers the best fit. The absolute value of the AIC value is not important. For further information 

about these two metrics, please read the following references: (Hastie et al., 2009). As 

explicitly stated by Chakrabarti and Ghosh, “The Bayesian Information Criterion (BIC) is more 

useful in selecting a correct model while the AIC is more appropriate in finding the best model 

for predicting future observations” since the purpose of this study is to predict fluctuations of 

PTI as congestion changes, AIC will be used for selecting prior model (Chakrabarti and Ghosh, 

2011). For Mondays, as the results of tables 2(a) and 2(b) reveal, AIC suggests that the bagging 

regressor with the gradient boosting as the base estimator is the prior model in both morning 

and evening peaks. 

Table 2 (a): Modeling results for Mondays-morning peak 

Models Training Validation Stability 

R2 MSE AIC R2 MSE AIC 

SVR (kernel=RBF) 0.55 2.46 -100.2 0.72 0.81 -27.09 0.76 

SVR (kernel=linear) 0.53 2.54 -100.2 0.69 0.91 -27.09 0.77 

RANSAC Regressor 0.6 2.19 -104.2 0.77 0.69 -31.09 0.78 

Decision Tree Regressor 0.59 2.21 -100.2 0.76 0.71 -27.09 0.78 

TheilSen Regressor 0.62 2.07 -110.2 0.78 0.64 -37.09 0.79 

Passive Aggressive Regressor 0.64 1.96 -94.2 0.8 0.6 -21.09 0.8 

SGD Regressor 0.58 2.28 -84.2 0.71 0.84 -11.09 0.81 

Ridge 0.62 2.06 -104.2 0.76 0.7 -31.09 0.82 

Linear Regression 0.68 1.73 -94.2 0.83 0.49 -21.09 0.82 

Quantile Regressor 0.66 1.87 -96.2 0.8 0.6 -23.09 0.82 

Bayesian Ridge 0.65 1.88 -112.2 0.79 0.61 -39.09 0.83 

SVR (kernel=poly, degree=2) 0.79 1.12 -88.2 0.86 0.41 -15.09 0.92 
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Polynomial Regression 0.88 0.64 -100.2 0.87 0.39 -27.09 1.02 

Gradient Boosting Regressor 0.87 0.73 -112.2 0.84 0.48 -39.09 1.03 

Random Forest Regressor 0.92 0.42 -80.2 0.87 0.4 -7.09 1.07 

Table 2 (b): Modeling results for Mondays-evening peak 

Models Training Validation Stability 

R2 MSE AIC R2 MSE AIC 

Quantile Regressor 0.7 0.42 -187.77 0.76 0.28 -62.91 0.91 

Passive Aggressive Regressor 0.69 0.44 -185.77 0.74 0.3 -60.91 0.93 

Ridge 0.67 0.45 -195.77 0.72 0.33 -70.91 0.94 

Bayesian Ridge 0.69 0.43 -203.77 0.74 0.3 -78.91 0.94 

TheilSen Regressor 0.66 0.47 -201.77 0.68 0.37 -76.91 0.98 

RANSAC Regressor 0.66 0.47 -195.77 0.67 0.37 -70.91 0.98 

Decision Tree Regressor 0.66 0.48 -191.77 0.66 0.39 -66.91 0.99 

SVR (kernel=linear) 0.59 0.56 -191.77 0.58 0.48 -66.91 1.02 

SVR (kernel=RBF) 0.63 0.52 -191.77 0.62 0.44 -66.91 1.02 

Linear Regression 0.75 0.35 -185.77 0.72 0.32 -60.91 1.04 

Gradient Boosting Regressor 0.88 0.17 -203.77 0.82 0.21 -78.91 1.08 

SGD Regressor 0.44 0.77 -175.77 0.4 0.69 -50.91 1.11 

SVR (kernel=poly, degree=2) 0.89 0.15 -179.77 0.79 0.24 -54.91 1.12 

Random Forest Regressor 0.95 0.07 -171.77 0.79 0.24 -46.91 1.2 

Polynomial Regression 0.96 0.05 -191.77 0.75 0.29 -66.91 1.28 

The results of modeling for Tuesdays are shown in tables 3(a) and 3(b). As it can be seen, in 

both morning and evening peaks, gradient boosting regressor has the best set of metrics and is 

opted for the modeling process. 

Table 3 (a): Modeling results for Tuesdays-morning peak 

Models Training Validation Stability  
R2 MSE AIC R2 MSE AIC 

SVR (kernel=linear) 0.52 2.62 -95.5 0.66 1.45 -19.46 0.8 

SGD Regressor 0.62 2.11 -79.5 0.71 1.21 -3.46 0.86 

SVR (kernel=RBF) 0.55 2.46 -95.5 0.64 1.53 -19.46 0.87 

Ridge 0.66 1.87 -99.5 0.76 1.01 -23.46 0.87 

Passive Aggressive Regressor 0.66 1.85 -89.5 0.76 1 -13.46 0.87 

TheilSen Regressor 0.64 1.98 -105.5 0.74 1.11 -29.46 0.87 

RANSAC Regressor 0.62 2.08 -99.5 0.72 1.2 -23.46 0.87 

Quantile Regressor 0.69 1.73 -91.5 0.78 0.93 -15.46 0.88 

Bayesian Ridge 0.68 1.77 -107.5 0.76 1 -31.46 0.89 

Decision Tree Regressor 0.71 1.58 -95.5 0.78 0.92 -19.46 0.91 

Linear Regression 0.84 0.91 -89.5 0.82 0.76 -13.46 1.02 

Gradient Boosting Regressor 0.97 0.18 -107.5 0.79 0.88 -31.46 1.22 
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SVR (kernel=poly, degree=2) 0.96 0.21 -83.5 0.78 0.91 -7.46 1.23 

Random Forest Regressor 0.99 0.06 -75.5 0.77 0.97 0.54 1.29 

Polynomial Regression 0.98 0.1 -95.5 0.76 1 -19.46 1.29 

Table 3 (b): Modeling results for Tuesdays-evening peak 

Models Training Validation Stability 

R2 MSE AIC R2 MSE AIC 

Bayesian Ridge 0.66 0.64 -203.04 0.53 1.23 -71.54 1.25 

Quantile Regressor 0.66 0.63 -187.04 0.52 1.24 -55.54 1.26 

Random Forest Regressor 0.97 0.05 -171.04 0.77 0.6 -39.54 1.27 

Ridge 0.64 0.68 -195.04 0.5 1.32 -63.54 1.28 

Linear Regression 0.78 0.41 -185.04 0.6 1.05 -53.54 1.31 

SVR (kernel=linear) 0.49 0.96 -191.04 0.37 1.64 -59.54 1.32 

Gradient Boosting Regressor 0.96 0.08 -203.04 0.72 0.73 -71.54 1.32 

SVR (kernel=poly, degree=2) 0.96 0.07 -179.04 0.72 0.73 -47.54 1.34 

TheilSen Regressor 0.6 0.76 -201.04 0.44 1.45 -69.54 1.34 

RANSAC Regressor 0.6 0.76 -195.04 0.44 1.46 -63.54 1.35 

SGD Regressor 0.5 0.94 -175.04 0.37 1.65 -43.54 1.35 

SVR (kernel=RBF) 0.57 0.81 -191.04 0.42 1.53 -59.54 1.37 

Decision Tree Regressor 0.82 0.34 -191.04 0.59 1.06 -59.54 1.38 

Polynomial Regression 0.97 0.05 -191.04 0.7 0.79 -59.54 1.4 

Passive Aggressive Regressor 0.5 0.95 -185.04 0.34 1.72 -53.54 1.45 

The same story goes true for morning and evening peaks of Wednesdays. Gradient boosting 

has shown the most satisfying performance metrics for both peaks and was chosen as the prior 

model of this day. 

Table 4 (a): Modeling results for Wednesdays-morning peak 

Models Training Validation Stability 

R2 MSE AIC R2 MSE AIC 

SVR (kernel=linear) 0.35 6.2 -93.94 0.74 0.6 -20.46 0.48 

SVR (kernel=RBF) 0.41 5.68 -93.94 0.79 0.48 -20.46 0.51 

RANSAC Regressor 0.45 5.24 -97.94 0.83 0.39 -24.46 0.55 

Decision Tree Regressor 0.49 4.88 -93.94 0.86 0.32 -20.46 0.57 

TheilSen Regressor 0.49 4.94 -103.94 0.84 0.37 -30.46 0.58 

Passive Aggressive Regressor 0.52 4.63 -87.94 0.76 0.55 -14.46 0.68 

SGD Regressor 0.55 4.32 -77.94 0.74 0.59 -4.46 0.74 

Ridge 0.58 4 -97.94 0.55 1.03 -24.46 1.06 

Quantile Regressor 0.59 3.95 -89.94 0.54 1.05 -16.46 1.09 

Random Forest Regressor 0.92 0.75 -73.94 0.82 0.41 -0.46 1.12 

Gradient Boosting Regressor 0.93 0.66 -105.94 0.81 0.43 -32.46 1.15 
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Polynomial Regression 0.96 0.35 -93.94 0.81 0.43 -20.46 1.19 

SVR (kernel=poly, degree=2) 0.88 1.12 -81.94 0.72 0.64 -8.46 1.23 

Bayesian Ridge 0.59 3.95 -105.94 0.47 1.2 -32.46 1.24 

Linear Regression 0.81 1.87 -87.94 0.77 0.31 -31.46 1.02 

Table 4 (b): Modeling results for Wednesdays-evening peak 

Models Training Validation Stability 

R2 MSE AIC R2 MSE AIC 

SVR (kernel=linear) 0.55 0.73 -184.96 0.67 0.44 -55.99 0.83 

SGD Regressor 0.5 0.82 -168.96 0.59 0.54 -39.99 0.84 

Ridge 0.64 0.58 -188.96 0.76 0.32 -59.99 0.85 

SVR (kernel=RBF) 0.59 0.67 -184.96 0.69 0.41 -55.99 0.85 

TheilSen Regressor 0.63 0.61 -194.96 0.74 0.35 -65.99 0.85 

RANSAC Regressor 0.62 0.62 -188.96 0.73 0.36 -59.99 0.85 

Passive Aggressive Regressor 0.61 0.64 -178.96 0.71 0.39 -49.99 0.86 

Quantile Regressor 0.68 0.53 -180.96 0.78 0.29 -51.99 0.87 

Bayesian Ridge 0.68 0.53 -196.96 0.78 0.29 -67.99 0.87 

Decision Tree Regressor 0.72 0.46 -184.96 0.82 0.24 -55.99 0.88 

Linear Regression 0.78 0.35 -178.96 0.74 0.34 -49.99 1.05 

SVR (kernel=poly, degree=2) 0.95 0.09 -172.96 0.74 0.35 -43.99 1.28 

Random Forest Regressor 0.97 0.05 -164.96 0.74 0.35 -35.99 1.32 

Gradient Boosting Regressor 0.95 0.07 -196.96 0.71 0.38 -67.99 1.34 

Polynomial Regression 0.96 0.06 -184.96 0.68 0.42 -55.99 1.41 

For Thursdays, as the results of tables 5(a) and 5(b) reveal, gradient boosting is the prior choice 

for both peaks and will be included in the sensitivity analysis stage. 

Table 5 (a): Modeling results for Thursdays-morning peak 
Models Training Validation Stability 

R2 MSE AIC R2 MSE AIC 

SVR (kernel=linear) 0.33 7.02 -96.45 0.47 3.04 -17.14 0.7 

TheilSen Regressor 0.45 5.78 -106.45 0.55 2.57 -27.14 0.82 

RANSAC Regressor 0.43 5.97 -100.45 0.52 2.71 -21.14 0.82 

SVR (kernel=RBF)) 0.39 6.37 -96.45 0.47 2.99 -17.14 0.82 

Passive Aggressive Regressor 0.51 5.12 -90.45 0.61 2.24 -11.14 0.84 

SGD Regressor 0.54 4.79 -80.45 0.64 2.06 -1.14 0.85 

Ridge 0.57 4.49 -100.45 0.63 2.08 -21.14 0.9 

Decision Tree Regressor 0.65 3.66 -96.45 0.69 1.75 -17.14 0.94 

Bayesian Ridge 0.6 4.22 -108.45 0.59 2.32 -29.14 1.01 

SVR (kernel=poly, degree=2) 0.9 1.03 -84.45 0.79 1.18 -5.14 1.14 

Random Forest Regressor 0.97 0.34 -76.45 0.83 0.98 2.86 1.17 

Quantile Regressor 0.6 4.18 -92.45 0.51 2.77 -13.14 1.17 
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Gradient Boosting Regressor 0.98 0.22 -108.45 0.8 1.13 -29.14 1.22 

Polynomial Regression 0.96 0.41 -96.45 0.77 1.32 -17.14 1.25 

Linear Regression 0.8 2.07 -90.45 0.63 2.11 -11.14 1.28 

Table 5 (b): Modeling results for Thursdays-evening peak 

Models Training Validation Stability 

R2 MSE AIC R2 MSE AIC 

SVR (kernel=linear) 0.2 5.11 -193.05 0.39 1.82 -62.21 0.53 

SVR (kernel=RBF) 0.28 4.62 -193.05 0.47 1.56 -62.21 0.59 

TheilSen Regressor 0.33 4.28 -203.05 0.55 1.32 -72.21 0.6 

SGD Regressor 0.36 4.08 -177.05 0.6 1.19 -46.21 0.61 

RANSAC Regressor 0.34 4.23 -197.05 0.56 1.31 -66.21 0.61 

Passive Aggressive Regressor 0.39 3.89 -187.05 0.63 1.08 -56.21 0.62 

Ridge 0.41 3.76 -197.05 0.65 1.03 -66.21 0.64 

Decision Tree Regressor 0.56 2.8 -193.05 0.88 0.36 -62.21 0.64 

Quantile Regressor 0.44 3.6 -189.05 0.65 1.04 -58.21 0.68 

Bayesian Ridge 0.44 3.57 -205.05 0.64 1.08 -74.21 0.7 

SVR (kernel=poly, degree=2) 0.89 0.71 -181.05 0.93 0.21 -50.21 0.96 

Gradient Boosting Regressor 0.96 0.27 -205.05 0.91 0.25 -74.21 1.05 

Random Forest Regressor 0.97 0.18 -173.05 0.92 0.24 -42.21 1.06 

Polynomial Regression 0.99 0.08 -193.05 0.9 0.29 -62.21 1.09 

Linear Regression 0.72 1.8 -187.05 0.57 1.29 -56.21 1.27 

Finally, the gradient boosting regressor is the prior model of both peaks for Fridays. 

Surprisingly, the results show that gradient boosting is the top model of all days in both peaks. 

Table 6(a): Modeling results for Fridays-morning peak 

Models Training Validation Stability 

R2 MSE AIC R2 MSE AIC 

SVR (kernel=linear) 0.27 7.63 -119.87 0.91 0.04 -58.81 0.3 

RANSAC Regressor 0.22 8.15 -123.87 0.65 0.14 -62.81 0.34 

SVR (kernel=RBF) 0.31 7.3 -119.87 0.82 0.07 -58.81 0.37 

Passive Aggressive Regressor 0.43 6.03 -113.87 0.95 0.02 -52.81 0.45 

Decision Tree Regressor 0.42 6.15 -119.87 0.87 0.05 -58.81 0.48 

Ridge 0.59 4.31 -123.87 0.77 0.09 -62.81 0.77 

SGD Regressor 0.61 4.09 -103.87 0.64 0.14 -42.81 0.96 

SVR (kernel=poly, degree=2) 0.92 0.89 -107.87 0.93 0.03 -46.81 0.98 

Gradient Boosting Regressor 0.97 0.31 -131.87 0.93 0.03 -70.81 1.05 

Random Forest Regressor 0.99 0.13 -99.87 0.94 0.02 -38.81 1.05 

Polynomial Regression 0.99 0.15 -119.87 0.93 0.03 -58.81 1.06 

Linear Regression 0.94 0.68 -113.87 0.44 0.22 -52.81 2.15 

TheilSen Regressor 0.67 3.44 -129.87 0.19 0.32 -68.81 3.47 
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Quantile Regressor 0.65 3.66 -115.87 0.82 0.29 -52.81 0.89 

Bayesian Ridge 0.69 3.22 -131.87 0.8 0.33 -52.81 0.92 

 

Table 6(b): Modeling results for Fridays-evening peak 

Models Training Validation Stability 

R2 MSE AIC R2 MSE AIC 

SVR (kernel=linear) 0.59 0.9 -167.91 0.73 0.44 -46.48 0.8 

SVR (kernel=RBF) 0.65 0.76 -167.91 0.78 0.36 -46.48 0.84 

SGD Regressor 0.61 0.84 -151.91 0.73 0.44 -30.48 0.84 

RANSAC Regressor 0.67 0.72 -171.91 0.8 0.33 -50.48 0.84 

TheilSen Regressor 0.69 0.66 -177.91 0.82 0.3 -56.48 0.85 

Passive Aggressive Regressor 0.67 0.73 -161.91 0.78 0.36 -40.48 0.85 

Ridge 0.71 0.62 -171.91 0.82 0.29 -50.48 0.87 

Quantile Regressor 0.73 0.59 -163.91 0.82 0.29 -42.48 0.89 

Bayesian Ridge 0.73 0.58 -179.91 0.81 0.3 -58.48 0.9 

Linear Regression 0.82 0.39 -161.91 0.85 0.24 -40.48 0.96 

Decision Tree Regressor 0.87 0.29 -167.91 0.9 0.16 -46.48 0.97 

Gradient Boosting Regressor 0.96 0.09 -179.91 0.9 0.17 -58.48 1.07 

SVR (kernel=poly, degree=2) 0.95 0.1 -155.91 0.89 0.18 -34.48 1.08 

Random Forest Regressor 0.97 0.06 -147.91 0.85 0.24 -26.48 1.14 

Polynomial Regression 0.97 0.08 -167.91 0.84 0.26 -46.48 1.15 

As the main method of this study (the prior model) is an ML method, sensitivity plots are very 

useful tools to visualize how congestion influences PTI. Scatter plots are simple and have made 

interpretation and usability easy for everyone. After choosing the prior models of different days 

and peaks, this section is assigned to depict the sensitivity analysis plot. This step will depict 

how speed reduction (hence congestion reduction) will affect PTI. The intensity of increase is 

somehow different. This paper uses bagging and bootstrapping to improve the model results 

and more accurately predict the PTI. To do so, by using different training sets, hundreds of 

models were randomly produced by bootstrapping from the original dataset to produce these 

plots. 

Figures 2 to 6, in two peaks ((a) for the morning peak, and (b) for the evening peak)) represent 

the fluctuations in a scatter plot.  According to Chen and Fan, it is reliable when PTI is below 

1.5. When it surpasses 1.5 but doesn’t reach 2.5, it is labeled as moderately to heavily 
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unreliable, and for the values of PTI bigger than 2.5, it is said to be extremely unreliable. 

Equations 1, 2, and 3 show this classification numerically. 

PTI < 1.5: Reliable 
(1) 

1.5 ≤  PTI ≤  2.5: Moderate to heavy  
(2) 

PTI >  2.5: Extremely unreliable 
(3) 

As figures 2 to 6 suggest, in both peaks, regardless of the day, when congestion is reduced to 

0.9, PTI reaches 1.5. It means that a 10% reduction in speed (compared to free-flow speed), 

causes a 50% increase in travel time compared to free-flow travel time. In other words, when 

congestion is in the range of 1 to 0.9, PTI is reliable in both peaks. Somewhere between 0.7 

and 0.75 is a point where the PTI reaches 2.5, meaning that PTI is leaving the moderate or 

heavy unreliable part, and enters an extremely unreliable phase. It is worth noting that, the 

intensity of PTI increase is slight until congestion is 0.5, then as congestion decreases, the PTI 

increase will be more severe. This study's findings are compatible with the results of utilizing 

random forest (RF) regression, which was the paper's main focus by Afandizadeh et al (Zargari 

et al., 2022).  

As the main aim of this study is to analyze on planning level, sub-temporal variations including 

possible variability between the months were excluded. Undoubtedly, such variations are 

interesting to study, but could be the subject of later studies, and is out of the scope of this 

manuscript. Also, the type of road, road geometry, and the type of traffic (modal split) can 

influence the results but requires more detailed data.
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Fig 2 (a): Comparison between GB and RF modeling results- Monday morning peak 

 

Fig 2 (b): Comparison between GB and RF modeling results- Monday evening peak 
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Fig 3 (a): Comparison between GB and RF modeling results- Tuesday morning peak 

 

Fig 3 (b): Comparison between GB and RF modeling results- Tuesday evening peak 
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Fig 4 (a): Comparison between GB and RF modeling results- Wednesday morning peak 

 

Fig 4 (b): Comparison between GB and RF modeling results- Wednesday evening peak 

0

3

6

9

12

15

18

21

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
T

I

Congestion

GB-Wed-MP RF-Wed-MP

0

3

6

9

12

15

18

21

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
T

I

Congestion

GB-Wed-EP RF-Wed-EP



 

23 

 

 

Fig 5 (a): Comparison between GB and RF modeling results- Thursday morning peak 

 

Fig 5 (b): Comparison between GB and RF modeling results- Thursday evening peak 
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Fig 6 (a): Comparison between GB and RF modeling results- Friday morning peak 

 

Fig 6 (b): Comparison between GB and RF modeling results- Friday evening peak 
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assessed by mean squared error (MSE), goodness of fit (R2), stability ratio, and Akaike 

information criterion (AIC). Surprisingly, the Gradient Boosting (GB) regressor could 

eliminate competitive methods (in terms of minimum AIC and stability ratio). After the model 

selection process, the results were separately depicted in a scatter plot for morning and evening 

peaks. The results revealed that when congestion reaches 0.9, PTI goes beyond the reliable area 

in both peaks. The corresponding congestion for entering the extremely unreliable area is 

between 0.7 and 0.75 for both peaks. Finally, somewhere between 0.5 and 0.4, the plots have 

shown an intense increase, meaning that for congestion values less than these values, the 

increase in PTI is severe. TTR is a crucial component of congested traffic regimes that has not 

been taken into account traditionally by the Congestion Management Process (CMP). The 

emphasis on travel time reliability is driven by elements like restrictions on roadway expansion. 

This research points out potential areas where the CMP could incorporate TTR. A 

comprehensive knowledge of the regional transportation systems and a toolbox of techniques 

are produced by incorporating TTR into CMP. A CMP that incorporates reliability will usually 

intend to take advantage of operational strategies like Advanced Traveler Information Systems 

(ATIS) rather than capacity improvements, so the utilized methodology in this study will depict 

a framework that explains the value of TTR incorporation into the CMP. Understanding the 

relationship between congestion and travel time reliability can improve the transportation 

system's performance in various ways. It can help in developing congestion mitigation 

strategies, identifying operation strategies, quantifying the benefits of traffic management, 

improving safety, and maximizing the use of existing capacity. Focusing on improving travel 

time reliability can lead to strategies that reduce the impact of congestion on travelers, improve 

safety, support economic growth, and make better use of existing infrastructure. Transportation 

agencies can use tools such as the Organizing for Reliability Tools from the Strategic Highway 
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Research Program 2 (SHRP2) to systematically improve their capabilities in transportation 

systems management and operations. 
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