![سامانه نشر مجلات علمی دانشگاه تهران](./data/logo.png)
تعداد نشریات | 162 |
تعداد شمارهها | 6,578 |
تعداد مقالات | 71,072 |
تعداد مشاهده مقاله | 125,681,637 |
تعداد دریافت فایل اصل مقاله | 98,911,774 |
ارزیابی و تحلیل قیمت واحدهای مسکونی منطقة 5 شهرداری تهران با در نظر گرفتن نوسانات بازار ارز | ||
مجله علمی " آمایش سرزمین " | ||
دوره 16، شماره 1، فروردین 1403، صفحه 37-50 اصل مقاله (1.4 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jtcp.2023.358484.670388 | ||
نویسندگان | ||
سعید زالی1؛ پرهام پهلوانی* 1؛ بهناز بیگدلی2 | ||
1گروه مهندسی سیستم اطلاعات مکانی، دانشکدة مهندسی نقشهبرداری و اطلاعات مکانی، دانشکدگان فنی، دانشگاه تهران، تهران، ایران | ||
2دانشکدة مهندسی عمران، دانشگاه صنعتی شاهرود، شاهرود، ایران | ||
چکیده | ||
قیمت مسکن یکی از شاخصهایی است که شناخت عوامل مؤثر بر آن برای افزایش کارایی طرحها و ارائة راهبردها و سیاستهای برنامهریزی مسکن کمک شایانی میکند. با وجود نوسانهای فراوان نرخ ارز در سالهای اخیر لزوم استفاده از مدلی که در آن علاوه بر ویژگیهای مسکن به عوامل اقتصادی تأثیرگذار بر قیمت مسکن از جمله نرخ ارز توجه شود بیش از پیش احساس میشود. از آنجا که مدلسازی قیمت مسکن از جمله مسائلی است که دارای مؤلفة مکانی است باید در ارائة مدل مربوط به قیمت مسکن به مکان قرارگیری آن نیز توجه شود. از این رو در این پژوهش تحلیل پراکنش فضایی قیمت مسکن در منطقة 5 شهرداری تهران و عوامل مؤثر بر آن بررسی شده است. در این زمینه از دادههای خرید و فروش مسکن در این منطقه در بازة سالهای 1397 و 1398 و 1399 برای مدلسازی قیمت مسکن استفاده شده است. نتایج تحقیقات با استفاده از روش رگرسیون وزندار جغرافیایی چندمقیاسه (MGWR: Multiscale Geographically Weighted Regression) به دست آمده است که در قیاس با روشهای رگرسیون وزندار جغرافیایی (GWR: Geographically Weighted Regression) و حداقل مربعات معمولی (OLS: Ordinary Least Squares) نتایج بهتری را ارائه کرد. میزان ضریب تعیین تعدیلشده در الگوریتمهای OLS و GWR و MGWR به ترتیب برابر با 762/0 و 821/0 و 853/0 حاصل شد. در این زمینه روش MGWR توانست ناهمگونیهای فضایی موجود در دادههای قیمت مسکن را مدلسازی کند. بر اساس نتایج بهدستآمده متغیر نرخ ارز (قیمت دلار) بیشترین تأثیر را در مدلسازی قیمت مسکن دارد. | ||
کلیدواژهها | ||
تهران؛ رگرسیون وزندار جغرافیایی؛ رگرسیون وزندار جغرافیایی چندمقیاسه؛ قیمت مسکن؛ منطقة 5 | ||
عنوان مقاله [English] | ||
Forecasting the price of residential units in District 5 of Tehran Munici-pality, considering the fluctuations of the currency market | ||
نویسندگان [English] | ||
Saeed Zali1؛ Parham Pahlavani1؛ Behnaz Bigdeli2 | ||
1Department of GIS, School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran | ||
2Faculty of Civil Engineering, Shahrood University of Technology, Shahrood, Iran | ||
چکیده [English] | ||
Housing prices are one of the indicators that identify the factors affecting it and could help to increase the efficiency of plans and to present housing planning strategies and policies. Despite many exchange rate fluctuations in recent years, there is a need to create a model that pays attention to the economic factors affecting housing prices in addition to the ordinary housing features. Since the housing price modeling is one of the issues that has a spatial component, therefore, in presenting the model related to housing prices, its location should also be considered. Therefore, in this study, the analysis of the spatial distribution of housing prices in district 5 of Tehran municipality and the factors affecting that have been investigated. In this regard, housing sales data in this region in 2018, 2019, and 2020 have been used to model housing prices. The research results have been obtained by the Multiscale Geographically Weighted Regression (MGWR) method, which provided better results compared to those by both the Geographically Weighted Regression (GWR) and Ordinary Least Squares (OLS) methods. The adjusted coefficient of determination in OLS, GWR, and MGWR algorithms was obtained equal to 0.762, 0.821, and 0.853, respectively. The MGWR method is one of the methods that can model the spatial heterogeneity of housing price data. According to the results, the exchange rate variable (dollar price) has the greatest impact on housing price modeling. | ||
کلیدواژهها [English] | ||
Spatial governance system, Spatial planning, Organizational culture, Strategic leadership, Iran | ||
مراجع | ||
پیشگر، الهه و محمدی، علیرضا (1399). تحلیلی بر تغییرات نماگرهای مسکن در کلانشهر تهران طی دورة 1388 ـ 1398. اقتصاد و برنامهریزی شهری، 1 (2)، 106 ـ 118.
حاتمینژاد، حسین؛ واحدیانبیکی، لیلا و پرنون، زیبا (1393). سنجش الگوی توزیع فضایی خدمات شهری در منطقة ۵ شهر تهران به کمک مدل آنتروپی و ویلیامسون. تحقیقات جغرافیایی، د ۲9، ش 3، 17 ـ ۲8.
رضائیان، سجاد؛ عسگری، حشمتالله و درویشی، باقر (1398). بررسی عوامل تعیینکنندة اجارة مسکن در شهر ایلام با رویکرد اقتصادسنجی فضایی هدانیک. اقتصاد و مدیریت شهری، ۷ (۲۶)، 15 ـ ۲۷.
زالی، سعید؛ پهلوانی، پرهام و بیگدلی، بهناز (1402). تحلیل فضاییـ زمانی عوامل مؤثر بر قیمت مسکن (موردشناسی: منطقة 5 شهرداری تهران). آمایش سرزمین، 1 (15)، 115 ـ 130.
سوری، د. و منیریجاوید، س. (1390). مدل تعیین قیمت مسکن، کاربردی از روش رگرسیون موزون جغرافیایی. مدیریت شهری، 9 (ویژهنامه)، 7 ـ 28.
شهابیان، پ.؛ تابانتراشکار، س. و توسلی، مریم (1397). تحلیل رابطة میان تراکم ساختمانی با مؤلفههای اجتماعی و اقتصادی در محلة تختی منطقة 12 شهرداری شهر تهران با استفاده از مدل رگرسیون وزندار فضایی. معماری و شهرسازی آرمانشهر، 11 (25)، 329 ـ 342.
صارمی، ح.؛ حیدری، م. و آقایی، ف. (1397). تحلیل فضایی قیمت مسکن با استفاده از تکنیک رگرسیون موزون جغرافیایی (مورد مطالعه: منطقة 2 شهرداری تهران). اقتصاد شهری، 3 (2 ( پیاپی 5))، 19 ـ 38.
کوهپیما، ج.؛ ارگانی، م. و نیسانی سامانی، ن. (1396). تخمین قیمت آپارتمان با استفاده از رگرسیون خطی و وزندار جغرافیایی (مطالعة موردی: منطقة 6 شهر تهران). پژوهشهای جغرافیای برنامهریزی شهری، 8 (2)، 347 ـ 369.
ملکی، بهروز (1395). تحلیل بازار مسکن ایران. تهران: سازمان مدیریت صنعتی.
موحد، مرجان و شیخی، حجت (1399). بررسی تأثیر گسترش حملونقل عمومی بر قیمت مسکن با استفاده از مدل هدانیک (نمونة موردی: شهر کرمانشاه). آمایش محیط، 13 (51)، 159 ـ 178.
نیکپور، ع.؛ رضازاده، م. و الهقلی تبارنشلی، ف. (1398). تحلیل نقش عوامل مؤثر بر قیمت زمین با استفاده از مدل رگرسیون وزنی جغرافیایی (GWR) (موردشناسی: شهر بابلسر). جغرافیا و آمایش شهری ـ منطقهای، 9 (31)، 93 ـ 112.
Maleki, B. (2016). Iran Housing Market Analysis. Tehran: Industrial management institute. (in Persian)
Buja, A., Hastie, T., & Tibshirani, R. (1989). Linear Smoothers and Additive Models. Annals of Statistics, 17: 453-555.
Brunsdon, C., Fotheringham, A. S., & Charlton, M. E. (1999). Some notes on parametric significance tests for geographically weighted regression. Journal of Regional Science, Vol. 39, No. 3, 497–524.
Foody, G. M. (2004). Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy. Photogrammetric Engineering and Remote Sensing, 70, 627-633.
Geng, J., Cao, K., Yu, L., & Tang, Y. (2011). Geographically Weighted Regression model (GWR) based spatial analysis of house price in Shenzhen. Proceedings - 19th International Conference on Geoinformatics, 1-5.
Hataminejad, H., Vahedian Beiki, L., & Parnoon, Z. (2014). The spatial distribution pattern of urban services measurement in fifth region of Tehran using Entropy and Williamson models. GeoRes, 29 (3), 17-28. (in Persian)
Huang, B., Wu, B., & Barry, M. (2010). Geographically and temporally weighted regression for modeling spatiotemporal variation in house prices. International Journal of Geographical Information Science, 24 (3), 383-401.
Koohpayma, J., Argany, M., & Samani, N. (2020). Apartments Price Estimation using Linear and Geographically Weighted Regression (Case Study: District six of Tehran city). Geographical Urban Planning Research (GUPR), 8(2), 347-369. (in Persian)
(2011). The impact of location on housing prices: applying the artificial neural network model as an analytical tool. ERSA conference, 1-26.
Liu, J., Yang, Y., Xu, S., Zhao, Y., Wang, Y., & Zhang, F. (2016). A Geographically Temporal Weighted Regression Approach with Travel Distance for House Price Estimation. Entropy, 18(8), 303.
Movahed, M. & Sheikhi, H. (2021). Study the Effect of Public Transportation Expansion on Housing Price Using the Hedonic Model (A Case Study of Kermanshah). Environmental Based Territorial Planning (Amayesh), 13(51), 159-177. (in Persian)
Nikpour, A., Rezazadeh, M., & Allahgholi Tabar-Nashli, F. (2019). Analysis of the role of factors affecting land prices using geographically weighted regression model (A case study for Babolsar City, Iran). Journal of Geography and Urban Planning, 9, 93-112. (in Persian)
Oshan, T.M., Li, Z., Kang, M., Wolf, L.J., & Fotheringham, S. (2019). Mgwr: A Python implementation of multiscale geographically weighted regression for investigating process spatial heterogeneity and scale. ISPRS Int. J. Geo-Inf. 8(6), 269.
Pishgar, E. & Mohammadi, A. (2020). An analysis of changes in housing indicators in the metropolis of Tehran during the period 2009-2019. Urban Economics and Planning, 1 (2), 106-118. (in Persian)
Pourmohammadi, M., Hakimi, H., & Mirzaie, A. (2018). Studying the Relationship between Building Density and Land Price: Case Study of the Municipal Zone 1 of Tabriz Metropolis. Journal of Geography and Urban Space Development, 4, 169-188. (in Persian)
Rezaeian, S., Asgari, H., & Darvishi, B. (2019). The Study of Determinants of Rent Housing in Ilam City Based on Hedonic Spatial Econometrics. IUESA, 7(26), 15-27. (in Persian)
Saremi, H., Heydari, M., & Aghaei, F.A. (2018). Spatial Analysis of Housing Prices Using Geographically Weighted Regression (A Case Study for District 2 of Tehran Metropolitan City, Iran). Urban Economics, 3, 19-38. (in Persian)
Shahabian, P., Taban Tarashkar, S., & Tavasoli, M. (2019). Analyzing the Relationship between Social and Economic Factors of Floor Area Ratio in Takhti Neighborhood, Zone 12 of Tehran Using GWR. Armanshahr Architecture & Urban Development, 11(25), 329-342. (in Persian)
Sisman, S. & Aydinoglu, A.C. (2022). A modelling approach with geographically weighted regression methods for determining geographic variation and influencing factors in housing price: A case in Istanbul. Land Use Policy, Elsevier, Vol. 119 (C).
Sori, D. & Moniri-Javid, S. Estate pricing model, an application of geographic balanced regression.
Urban Management (2011). 9: 7-28. (in Persian)
Stone, C. J. (1986). [Generalized additive models]: comment. Statistical Science, 1(3), 312-314.
Zali, S., Pahlavani, P., & Bigdeli, B. (2023). A Spatial-Temporal Analysis of the Factors Effective on Housing Prices (Case study: District 5 of Tehran Municipality). Town and Country Planning, 15(1), 115-130. (in Persian)
| ||
آمار تعداد مشاهده مقاله: 427 تعداد دریافت فایل اصل مقاله: 357 |