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A B S T R A C T 

 

This paper investigates the effect of jointed rock mass properties on the Minimum Required Caving Span (MRCS) in the block caving method 
using numeric and heuristic approaches. To do so, the effects of five parameters of jointed rock mass, namely joint set number, joint spacing, 
joint inclination angle, joint surface friction angle, and undercut depth on MRCS, were investigated using a discrete element code. For this 
purpose, many numerical models were generated with various rock mass parameters. Moreover, Gene Expression Programming and Artificial 
Neural Networks were employed to create a heuristic model for MRCS. The model parameters were subjected to sensitivity analysis. All 
model input parameters showed sensitivity to the model. There are several effective parameters on MRCS, but joint dip and joint set numbers 
are the most important and the smallest. 
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1. Introduction 

The block caving method is an underground mining approach that 
can compete with open-pit mining methods because of its low operating 
costs and large mining scale. The advantages of this method are the high 
level of safety for personnel and the ability to use automation. Due to 
the decreasing rate of current open pit mine deposits and the increasing 
industrial demands for minerals, especially copper and iron, and because 
of the benefits of the block caving method, the mining industry has paid 
specific attention to the adoption of this large-scale approach. A 
prerequisite for applying this approach is cavability, one of the essential 
factors in block caving mining [1]. Rock mass caveability under certain 
conditions must be measured for the initiation, propagation, and 
continuity of caving [2]. The adoption of reliable approaches to predict 
caveability and the possibility of applying this method at the initial 
design stage is an essential demand. Not only do the results of caving 
studies affect the design and cost of exploitation, but they also impact 
the cost of secondary blasting, loading, and even processing operations 
[3]. The initiation of the caving process and its propagation during 
mining activity are crucial factors due to their impact on a mine's 
production and economic considerations [4]. Many researchers have 
adopted analytical, empirical, and numerical approaches to investigate 
the caveability of jointed rock mass [5-31]. 

The analytical method was used to investigate the behavior of caving 
propagation in a two-dimensional mode. This method considered 
assumptions, but later studies showed that these assumptions were 
incorrect. Also, in these methods, the geomechanical parameters of the 
rock mass were not considered. Empirical methods that use various rock 
mass classification systems have limitations, such as the dependence on 
personal opinion for selecting index value (RQD [32], MRMR [33,34], 
Q, N [35]), and the dependence of the results on input data accuracy. 
Numerical methods can simulate the caving of rock mass in complex 
geological conditions. The history of these methods, along with their 
advantages and disadvantages, has been explained by Alipenhani et al  

 
 
[36-39]. In this paper, the minimum caving span is determined using 
numerical modelling results. Several parameters were considered, 
including joint spacing, dip, angle of friction, and undercut depth. Gene 
Expression Programming was adapted to create a heuristic model to 
predict the Minimum Required Caving Span (MRCS) based on the 
input parameters. Each parameter of the MRCS model was subjected to 
multiple parameter sensitivity analysis (MPSA). 

Calculating the minimum caving span through a mathematical 
formula is an important issue that has not been investigated so far. 
However, in their paper, Alipenhani et al. obtained a simple relationship 
to calculate this variable using multivariate regression. In this paper, 
using the GEP algorithm, a new relationship for calculating the 
minimum caving span is presented. 

2. Methods 

This paper adopts a combination of numerical, heuristic, and 
statistical approaches to investigate the caveability of the jointed rock 
mass. For this purpose, through a discrete element code, numerical 
models were generated, and the effect of each parameter of the jointed 
rock mass on MRCS was investigated. Then, the GEP modelling was 
employed to create a heuristic model. Finally, the sensitivity analysis was 
done on the model output to determine the effect of each rock mass 
parameter on MRCS. 

2.1. Numerical Simulation 

In this research, to investigate the effect of discontinuity parameters 
on MRCS, the Distinct Element software was used to model the block 
caving process. Two-dimensional modelling can improve calculation 
speed and include more details about the geotechnical characteristics of 
the rock mass. As shown in Figure 1, the model's height is 350 meters, 

Article History: 
Received: 07 January 2023. 
Revised: 03 March 2023. 
Accepted: 22 May 2023. 
 

- R E S E A R C H    P A P E R - 

https://ijmge.ut.ac.ir/
https://doi.org/10.22059/IJMGE.2023.353554.595019
https://doi.org/10.22059/IJMGE.2023.353554.595019
https://doi.org/10.22059/ijmge.2022.328759.594922
https://doi.org/10.22059/ijmge.2022.328759.594922
https://doi.org/10.22059/ijmge.2022.328759.594922
https://doi.org/10.22059/ijmge.2022.328759.594922


224 B. Alipenhani et al.  / Int. J. Min. & Geo-Eng. (IJMGE), 57-2 (2023) 223-229 

 

and its width is 1000 meters (to avoid the influence of boundaries on the 
results). The numerical model is divided into two areas with and without 
joints to save running time. 

A jointed area and an unjointed area of the model were divided to 
save time (mesh lengths 0.5 m and 10 m, respectively). The model was 
wide (4.5 times the maximum span created) to prevent the effect of 
boundary conditions on the result. This geometry is used to reduce 
computational time. The characteristics entered in the model are similar 
to the values used by Alipenhani et al. 

 

 

Figure 1. The numerical model of block caving operation. 

2.2. Gene Expression Programming (GEP) 

In 1999, the GEP method was formulated and introduced by Ferreira 
[40]. To correct the GP trees, plain chromosomes and sprouted 
configurations of different sizes and shapes were combined. 

 A schematic view of the main steps in this method is shown in Figure 
2a. The suitability of the attained score is rechecked through the criteria. 
Modelling is complete at this point, and the information obtained from 
the model is encoded for the best solution [41-44]. There are five main 
steps in GEP modelling, as shown in Figure 2b. [40]. 

 

 
Figure 2. a) The schematic view of the GEP algorithm process; b) main steps in 
GEP modelling [45,46]. 

2.3. Multiple regression analysis 

Multiple Linear Regression (LR) analysis is a statistical approach to 
predict the values of one or more dependent variables from a wide array 
of (independent) variables [47-50]. LR models have been adopted to 
forecast MRCS. Generally, multiple regression models are shown by the 
following equation: 

 

𝑦 = 𝛽0 + 𝛽1𝑋1+. . . +𝛽𝑘𝑋𝑘 + 𝑒           (1) 
 

where y is the response variable whose outcome depends on the 
predictor variables (x1, x2, ... xk), chosen by the examiner, and 0, ... k are 
regression parameters [51-53]. To describe the predicted value of y in 
this context, the following formula is applied:  

 

𝑦∗ = 𝑥(𝑥′𝑥)−1𝑥′           (2) 
 

The residuals are defined as: 
𝑒 = 𝑦 − 𝑦∗           (3) 

3. Modeling 

3.1. Numerical simulation process 

Numerical modelling steps include solving the elastic model, 
applying gravity stress, and applying the Mohr-Coulomb criteria to the 
rock mass and joints. The boundary conditions of the model are shown 
in Figure 1. Undercuts are excavated in 2-meter steps from the center of 
the model. Then the caved material is removed from the model, and the 
run continues. The caving criterion was considered displacement greater 
than or equal to 1 meter. Figures 3 and 4 show the displacement counter 
in the first and last stages of drawing, respectively. 

3.2. Gene Expression Programming Modeling 

This part aims to establish an optimum GEP model to predict MRCS. 
In GEP modelling, access to an enriched database is mandatory to 
achieve proper results. Based on the numerical analyzes discussed in 
Section 3.1, about 480 data sets were arranged in the GEP model to 
invent the best relationship for MRCS assessment. 

The datasets were arbitrarily divided into test (30 percent) and train 
datasets (70 percent). The test datasets were not applied to the models 
in the training phase, but they were used for testing and validation. Five 
influential input variables, including joint set number (JN), joint spacing 
(JS), joint inclination angle (JI), joint surface friction angle (JF), and 
undercut depth (UD), were considered. Table 1 shows the statistics of 
the input and output variables of the GEP model and their symbols. 

The MRCS prediction was performed employing the GEP approach 
in five basic steps. In the first step, the fitness function should be 
selected. In this paper, root-relative standard error (RRSE) was selected 
as the optimum fitness function. The second stage is to choose the set of 
terminals (T) and functions (F). The influential parameters mentioned 
in the model determine the terminal sets. In addition, the nature of the 
problem governs the selection of the function sets. In this study, the 
terminal set, including joint set number (JN), joint spacing (JS), joint 
inclination angle (JI), joint surface friction angle (JF), and undercut 
depth (UD), was used for the MRCS estimate. Additionally, basic 
functions that contained the operators, such as plus, minus, 
multiplication, and division, and Logarithmic, power, trigonometric and 
radical functions were used. The third, fourth, and fifth primary phases 
are carried out according to Figure 2b. 

 

 
Figure 3. Displacement contours in the numerical model (Span = 60m). 

 

 
Figure 4. Displacement contours in the final step. 

 

The GeneXproTools 5 software was utilized to determine the values 
related to these steps through trial and error. A wide variety of 
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parameters were used for the GEP models, and the best one was chosen 
according to the least values of RMSE. The best parameters operated in 
the model are presented in Table 2 and Table 3. It is obvious from the 
tables that the least error has resulted from the GEP model with the 
addition of the linking function and type 5 operators. 

 
Table 1. Statistics of the input and output variables of the GEP model and their 
symbols. 

Type  Parameter Symbol Unit Min. Max. 

Input Joint set Number JN - 2 3 

 Undercut Depth  UD m 50 400 

 Joint Spacing  JS m 1 5 

 Joint Friction angle  JF Degree 10 40 

 Joint Inclination  JI Degree 25 70 

Output Minimum required caving span  MRCS m 2 98 

 
Table 2. Optimum parameters in the GEP modeling used for prediction. 

factor amount 

Number of chromosomes  30 

Head size  8 

number of Gene 5 

Mutation rate 0.00133 

Inversion rate 0.00545 

One point recombination rate 0.00277 

Two-point recombination rate 0.00277 

Gene recombination rate 0.122 

Gene transposition rate 0.1 

IS transposition rate 0.2 

Transposition of RIS 0.2 

Constant for each gene 3 

 
Table 3. Comparison of RMSE values for numerous functions in the MRCS 
prediction. 

Operator type Definition RMSE 

1 {+, −,×,÷} 0.124 
2 {+, −,×,÷, 𝑙𝑛𝑥, 𝑒𝑚} 0.365 

3 {+, −,×,÷, 𝑥, √𝑥3 , 𝑥2, 𝑥3 } 0.425 

4 {+, −,×,÷, 𝑒𝑥 , 𝑙𝑛𝑥, √𝑥 , √𝑥3 , 𝑥3, 𝑥2 } 1.582 

Linking 
functions 

  

Addition  0.025 
Multiplication   0.018 
Subtraction  0.017 
Division  0.025 

 
Based on the proper functions and parameters in Tables 2 and 3, the 

training and testing fitness of the best model resulted in 912.72 and 
926.48, respectively. Figure 5 shows the expression tree of the best 
models (GEP) to foresee MRCS. The indexes 3d0, d1, d6 m d7, and d8 
refer to a joint set number (JN), undercut depth (UD), joint spacing 
(JS), joint surface friction angle (JF), joint inclination angle (JI), 
respectively. Moreover, in each sub-ET, c0 and c3, c4, c5, c6, and c8 are 
the constant factors mined from the GEP model output. Finally, the 
ultimate function based on the best GEP procedures to forecast the 
MRCS was obtained as Eq. (1). 

 

𝑀𝑅𝐶𝑆 = [𝐴𝑟𝑐 𝑐𝑜𝑡( 0.0025 − √𝐽𝐼3 ) + (√𝑙𝑛( 𝐽𝐹))] +
𝐽𝑁/2.45

𝑒3.25−√𝐽𝑆
  

 

× [𝑠𝑖𝑛( 𝐴𝑟𝑐 𝑡𝑎𝑛( (6.41𝐽𝐹 − ((𝑙𝑛( 𝐽𝑆 − 0.11)) × 𝑈𝐷))))]   (Eq. 1) 
 

Mean absolute error (MAE), correlation coefficient (R), and relative 

root standard error (RRSE) criteria were used to evaluate the 
performance of the models. As can be seen in Table 4, the values 
obtained from the indices in both stages (high R-value and low RRSE 
and MAE) confirm the very good performance of the GEP model in 
predicting MRCS. 

 

 
Figure 5. The corresponding expression tree. 

 

Table 4. Statistical indices calculated for the GEP model in the training phase for 
MRCS estimation. 

 

Moreover, a comparison has been carried out in Fig 6 between the 
predicted and simulated MRCS. As shown in this figure, there is an 
excellent agreement between the predicted and simulated values in both 
phases of the proposed model. 

 
Figure 6. Comparison between values obtained from the numerical simulation and 
predicted from the GEP models in the training phase. 

 
Finally, the correlation between the suggested GEP model outcomes 

and the target MRCS value in the training phase is shown in Fig 7. From 
the diagram, it can be concluded that the proposed model can predict 
MRCS in the block-caving method with high confidence. 

 

 

 

 

 1 

Statistical Index GEP model 

R2 0.9487 
MAE 0.011822239 
RMSE 0.00000831 
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3.3. Linear Regression Modeling (LR) 

To predict the MRCS, efforts were made to employ conditions to 
solve the issue of providing a line by the smallest square. The coefficient 
of F was adopted to evaluate the statistical significance of the regression 
model, assuming that the same data is employed for GEP training. To 
do so, the collected datasets were arbitrarily divided to test (30 percent) 
and train datasets (70 percent), and the model was derived from the 
training data. The analysis of variance for the MRCS model is presented 
in Table 5. 

 
Table 5. The results of variance analysis for LR.  

Model Sum of Squares df Mean Square F Sig. 

Regression 116227.49 5 23245.4 159.92 0 

Residual 69190.562 476 145.35   

Total 185418.052 481    

 

Statistical indices calculated for the LR model in the training phase 
for the MRCS estimation are shown in Table 6. The best regression 
model for MRCS is given in Eq. 2. 

 

𝑀𝑅𝐶𝑆 = −8.659 − 5.903 × 𝐽𝑁 − 0.036 × 𝑈𝐷 + 5.661 × 𝐽𝑆 + 1.028 × 𝐽𝐹 +

                       0.155 × 𝐽𝐼      (Eq. 2) 

3.4. Artificial neural network (ANN)  

ANN is a branch of artificial intelligence, including a multilayer 
topology with interconnected layers. In the first layer, inputs are placed, 
while outputs are placed in the last layer. Besides the mentioned layers, 
one or more layers, called hidden layers, are located between the first 
layer (input) and the last layer (output). The components of the hidden 
layers, termed neurons conduct the needed computations. A try-and-
error approach determines the number of the hidden layer's neurons. 
When there is a very low correlation, the best solution is ANN compared 
to the present conventional alternatives [50]. Among the different 
benefits of ANN modelling, function approximation, and feature 
selection are regarded as particular capabilities [54]. 

It is required to collect an adequate number of datasets (a set of inputs 
and corresponding outputs) and use them for training different network 
architectures from which the best combination is chosen. In this process, 
a random weight would be first assigned to the connections between the 
neurons. Then, the initially set weights are updated in each modelling 
run to obtain the best possible network with the highest efficiency. An 
appropriate training approach should be adopted in the next step, like a 
backpropagation algorithm with significant benefits compared to other 
available methods [54].  

To train and test the groups, a total of 480 datasets were utilized in 
the present work. The model training was done by a backpropagation 
method. All datasets were normalized in the interval of -1 and 1 to have 
an applicable database and to improve the training process efficiency. 
Following preprocessing of the datasets, the best possible model with 
the lowest error and the highest accuracy was found by creating many 
networks with various related elements, including the number of hidden 
layers and their corresponding neurons [50]. The results indicate the 
best model as a backpropagation network with a 5-28-1 architecture, an 
exponential transfer function in the output, and a Logistic function in 
the hidden layers (No.1). Figure 7 also indicates the optimal architecture 
of the ANN model. The calculated R2 was 0.98, which is enough to show 
the competency of the presented ANN model. 

4. Discussion 

4.1. Comparative study 

Based on the test data, a comprehensive comparative analysis was 
conducted between the performance of three models (GEP, LR, and 
ANN). Some statistical indices, such as R, MAE, and RRSE, were 
employed to assess the performance of the models. The calculated values 

for both models are presented in Table 8. Table 7 shows the acceptable 
performance of all models. However, the reliability of the ANN model 
is better than the GEP model and linear regression model. Also, the 
accuracy of the GEP model in estimating MRCS is much higher than 
the LR model. For better evaluation and conformation, the correlations 
between the models by the simulated data are shown in Fig. 8. It can be 
inferred that the GEP model has a better correlation with the simulated 
data than the LR model. Finally, an evaluation of the results of the model 
with the simulated MRCS is shown in Figures 9-11. These figures 
indicate good conformity between the results of the models and the 
simulated MRCS. Moreover, the results of the ANN model have a better 
agreement with the numerical simulation results than the results of the 
GEP and LR models. In many conclusions, the ANN and GEP models 
can be applied as precise techniques, and the linear regression model 
may be utilized for issues where high accuracy is not required. 

 
Table 6. The statistical indices calculated for the LR model in the training phase 
for the MRCS estimation.  

 

 
Figure 7. The optimal ANN model architecture. 

 

 
Figure 8. The graph of the results of the GEP model according to the values 
obtained from the numerical simulation. 

 

Table 7. The statistical indices of models used in MRCS assessment. 

type of index 
MRCS assessment 

GEP  ANN LR  

R2 0.9511 0.98 0.82 
MAE 1.180579647 2.13 0.45 
RRSE 0.00372361 0.054 0.32 

Statistical Index GEP model 

R2 0.87 
MAE 0.54 
RMSE 0.039 
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(a) GEP model 

 
(b) LR model 

 

Figure 9. The correlation of the model’s results a) GEP and b) LR with the 
determined values. 

 
(a) GEP model 

 

Figure 10. The results of the GEP model and liner regression against simulated 
MRCS. 

Table 8. The equation used in MPSA 

Equation No. 

 
2

0 , l d, l

1

(j)

n

i

l
yF y

=

= −
 

(11) 

𝛿𝑙 =
𝑓𝑙

𝑥0,𝑙
 (12) 

𝛾 = ∑ 𝛿𝑙

𝑗𝑀𝑅𝐶𝑆,𝑚𝑎𝑥

𝑙=1

 (13) 

  

Fl: objective function value for a given MRCS variable l; 

 y0,l : its observed value; 

 𝑦 𝑗)𝑑,𝑙 : calculated value 𝑦𝑑for each input series;  

 n: the number of variables contained in the random series; 

l: each pair entry, the results were obtained for each evaluated parameter by 
applying the method described in the MRCS model; 

in equation 6: MRCS is evaluated from l=1 to the maximum value (𝑗𝑀𝑅𝐶𝑆,𝑚𝑎𝑥); and 

γ: indicates the importance of the parameter. 

 

 
Figure 11. The scatter plot of actual versus predicted MRCS for Artificial neural 
network method. 

 

 
Figure 12. The effect of each parameter on MRCS. 

5. MPSA (Multiple Parametric Sensitivity Analysis) 

To determine the minimum caving span, the output results of the 
GEP model were analyzed to determine which parameters had the 
greatest impact. The first step in this process is to select a parameter for 
testing. After that, a range is set. For each parameter, a series of 
independent and random numbers is generated with a normal 
distribution. In equation 11, the objective function is calculated using the 
selected series and the trained model. Equation 12 calculates the relative 
importance of each parameter. Equation 13 also evaluates parametric 
sensitivity [53]. 

The higher the γ value, the more sensitive the output variable is to 
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that parameter. The γ value has three categories, including Insensitive 
for γ values less than or equal to 1, Sensitive for values between 1 and 
100, and highly sensitive for values above 100. 

Figure 12 shows the values of γ for the MRCS model. As is apparent 
in Figure 11, the MRCS model is sensitive to all five investigated 
parameters. The JI and JN parameters have the most significant and 
minor influence on the MRCS model, respectively. It can be concluded 
that JN and JS, as well as UD and JF, have virtually the same effect on 
MRCS. 

6. Conclusion 

Using numerical simulations, the MRCS in a rock mass was estimated 
by GEP-based equations, artificial neural networks, and statistical 
models (LR models). To compare the results with the numerical model, 
a new GEP-based equation was evaluated using R2, MAE, and RMSE 
indices. This comparison shows that the proposed equation (using GEP) 
performs better than the statistical model. ANNs perform better than 
GEPs, but their performances are very similar. 

Also, the results obtained from the proposed GEP model are in 
agreement with those obtained from the numerical simulation. A 
sensitivity analysis of parameters affecting the MRCS was conducted in 
the end. According to the obtained results, the MRCS was sensitive to 
all selected parameters. Among these parameters, JI and JN have the 
most and minor effects on the MRCS model, respectively. It can also be 
concluded that JN and JS, as well as UD and JF, have virtually the same 
effect on MRCS. 
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