تعداد نشریات | 161 |
تعداد شمارهها | 6,573 |
تعداد مقالات | 71,037 |
تعداد مشاهده مقاله | 125,521,834 |
تعداد دریافت فایل اصل مقاله | 98,781,385 |
تأثیر محلولپاشی با اسید سالیسیلیک بر کاهش اثرات کم آبی در گیاه ریحان مقدس (Ocimum sanctum) | ||
علوم باغبانی ایران | ||
دوره 54، شماره 2، تیر 1402، صفحه 249-267 اصل مقاله (1.48 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijhs.2023.353738.2084 | ||
نویسندگان | ||
سودابه مفاخری* ؛ بهور اصغری | ||
گروه مهندسی علوم باغبانی. دانشکده کشاورزی و منابع طبیعی. دانشگاه بین المللی امام خمینی (ره). قزوین. ایران | ||
چکیده | ||
کمبود آب یکی از اساسیترین مشکلات سیستمهای کشاورزی در سراسر جهان است که بر عملکرد و کیفیت محصول تأثیر میگذارد. استفاده از ترکیباتی مانند اسید سالیسیلیک میتواند مقاومت گیاه را در برابر تنشهای محیطی بهبود بخشد. آزمایش حاضر به منظور بررسی تأثیر سطوح مختلف آبیاری و کاربرد اسید سالیسیلیک بر صفات کمی و کیفی ریحان مقدس (Ocimm sanctum) ، به صورت فاکتوریل در قالب طرح کاملا تصادفی در سه تکرار انجام گرفت. تیمارهای آزمایش شامل تنش خشکی در سه سطح (100، 70 و 50 درصد ظرفیت زراعی) و محلولپاشی با اسید سالیسیلیک در سه سطح (0، 75/0 و 5/1 میلیمولار) بود. نتایج نشان داد که کمبود آب سبب کاهش معنیدار شاخصهای رشدی گیاه، محتوای نسبی آب برگ و مقدار رنگدانههای فتوسنتزی گردید، درحالی که محلولپاشی با اسید سالیسیلیک باعث افزایش پارامترهای مذکور شد. تنش خشکی و محلولپاشی با اسید سالیسیلیک، باعث افزایش محتوای پرولین، محتوای تام ترکیبات فنولی و فلاونوئیدی، و مهار رادیکالهای آزاد DPPH شد. علاوهبراین، درصد اسانس تحت تنش خشکی افزایش یافت. همچنین، در گیاهانی که با اسید سالیسیلیک محلولپاشی شده بودند ، درصد اسانس افزایش معنیداری را نسبت به تیمار شاهد نشان داد. با کاهش آب آبیاری، از درصد اوژنول اسانس کاسته شد، اما محلولپاشی با غلظت بالای اسید سالیسیلیک سبب افزایش این ترکیب گردید. تیمارهای آزمایشی بر درصد 1و 8-سینئول و استراگول نیز تاثیر داشتند. بنابراین، استفاده از مقدار مناسب اسید سالیسیلیک را میتوان به عنوان یک راهکار عملی و ساده برای افزایش کیفیت و کمیت پیکر رویشی ریحان مقدس، در مناطق خشک و نیمه خشک در نظر گرفت. | ||
کلیدواژهها | ||
اسانس؛ تنش خشکی؛ گیاه دارویی؛ هورمون گیاهی | ||
عنوان مقاله [English] | ||
Effect of Foliar Application of Salicylic Acid on Reduction of Low Irrigation Impacts in Holy Basil (Ocimum sanctum) | ||
نویسندگان [English] | ||
Sudabeh Mafakheri؛ Behvar Asghari | ||
Department of Horticultural Sciences engineering, Faculty of Agriculture and natural resources, Imam Khomeini International University, Qazvin, Iran | ||
چکیده [English] | ||
Water deficit is one of the most fundamental problems of agricultural systems throughout the world, which influences both yield and quality of the products. Applying compounds such as salicylic acid (SA) can improve plant resistance against environmental stresses. The present study was conducted to evaluate the impact of drought stress and SA application on quantitative and qualitative traits of holy basil (Ocimum sanctum), based on a factorial experiment in the form of a completely randomized design in three replications. The experimental treatments included drought stress at three levels (100, 70, and 50% FC) and foliar application of salicylic acid at three levels (0, 0.75, and 1.5 mM). Obtained results showed that water deficit caused a decrease in plant growth factors, RWC, and the amount of photosynthetic pigments, while foliar application of salicylic acid increased the above-mentioned parameters. Drought stress and foliar application of salicylic acid increased proline content, total content of phenolic compounds, flavonoid compounds and DPPH free radicals inhibition. In addition, the percentage of essential oils increased under drought stress. Also, plants that were sprayed with salicylic acid, showed a significant increase in essential oil percentage compared to the control. By reducing irrigation water, the percentage of eugenol in essential oil was decreased, but foliar spraying with a high concentration of salicylic acid increased the percentage of this compound. The experimental treatments also had a significant effect on the percentage of 1, 8-cineole and estragole compounds. Therefore, the application of a proper amount of SA can be considered a practical and simple strategy for increasing the quality and quantity of holy basil in arid and semi-arid areas. | ||
کلیدواژهها [English] | ||
Drought stress, Essential oil, Medicinal plant, Phytohormone | ||
مراجع | ||
افکاری، احمد (1396). تأثیر تنش خشکی و مقادیر کود نیتروژنه بر میزان و عملکرد اسانس و برخی ویژگیهای فیزیولوژیکی گیاه دارویی ریحان. دوماهنامه علمی-پژوهشی تحقیقات گیاهان دارویی و معطر ایران، 33(6)، 1047-1059.
کامروا، سمیه؛ بابائیان، نادعلی و باقری، نادعلی (1396). تاثیر تنش خشکی بر صفات کلروفیل و پرولین در ژنوتیپهای مختلف سویا. پژوهشنامه اصلاح گیاهان زراعی، 9 (23)، 95-105.
REFERENCES Abbaszadeh, B., Layeghhaghighi, M., Azimi, R., & Hadi, N. (2020). Improving water use efficiency through drought stres and using salicylic acid for proper production of Rosmarinus officinalis L. Industrial Crops and Products, 144, 111893. https://doi.org/10.1016/j.indcrop.2019.111893. Afkari, A. (2018). Effects of drought stress and nitrogen fertilizer rate on some physiological characteristics, essential oil percentage, and yield of basil (Ocimum basilicum L.). Iranian Journal of Medicinal and Aromatic Plants Research, 33(6), 1047-1059. https://doi.org/10.22092/ijmapr.2018.112686.2085. (In Persian) Asghari, B., Mafakheri, S., Zarrabi, M.M., Erdem, S.A., Orhan, I.E., & Bahadori, M.B. (2019). Therapeutic target enzymes inhibitory potential, antioxidant activity, and rosmarinic acid content of Echium amoenum. South African Journal of Botany, 120, 191-197. https://doi.org/10.1016/j.sajb.2018.05.017. Asghari, B., Mafakheri, S., Zengin, G., Dinparast, L. & Bahadori, M.B. (2020). In-depth study of phytochemical composition, antioxidant activity, enzyme inhibitory and antiproliferative properties of Achillea filipendulina: a good candidate for designing biologically-active food products. Journal of Food Measurement and Characterization, 14, 2196-2208. https://doi.org/10.1007/s11694-020-00466-5. Askari, E. & Ehsanzadeh, P. (2015). Drought stress mitigation by foliar application of salicylic acid and their interactive effects on physiological characteristics of fennel (Foeniculum vulgare Mill.) genotypes. Acta Physiologiae Plantarum, 37 (4), 1-14. https://doi.org/10.1007/s11738-014-1762-y. Bahadori, M.B., Valizadeh, H., Asghari, B., Dinparast, L., Bahadori, S. & Moridi Farimani, M. (2016). Biological activities of Salvia santolinifolia Boiss. A multifunctional medicinal plant. Current Bioactive Compounds, 12(4), 297-305. https://doi.org/10.2174/1573407212666160426161112. Bannayan, M., Nadjafi, F., Azizi, M., Tabrizi, L., & Rastgoo, M. (2008). Yield and seed quality of Plantago ovata and Nigella sativa under different irrigation treatments. Industrial Crops and Products, 27(1), 11-16. https://doi.org/10.1016/j.indcrop.2007.05.002. Bates, L., Waldren, R.P. & Teare, I.D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207. Damalas, C.A. (2019). Improving drought tolerance in sweet basil (Ocimum basilicum) with salicylic Acid. Scientia Horticulturae, 246, 360-365. https://doi.org/10.1016/j.scienta.2018.11.005. Dehghani Bidgoli, R. (2018). Effect of drought stress on some morphological characteristics, quantity and quality of essential oil in Rosemary (Rosmarinus officinalis L.). Advancement in Medicinal Plant Research, 6 (3), 40–45. https://doi.org/10.30918/AMPR.63.18.019. Dere, Ş., Gunes, T., & Sivaci, R. (1998). Spectrophotometric determination of chlorophyll-A, B and total carotenoid contents of some Algae species using different solvents. Turkish Journal of Botany, 22(1), 13-18. Estajia, A. & Niknam, F. (2020). Foliar salicylic acid spraying effect on growth, seed oil content, and physiology of drought-stressed Silybum marianum L. plant. Agricultural Water Management, 234, 106-116. https://doi.org/10.1016/j.agwat.2020.106116. Farhoudi, R. (2013). Effect of drought stress on chemical constituents, photosynthesis and antioxidant properties of Rosmarinus officinalis essential oil. Journal of Medicinal Plants and By-product, 2(1), 17-22. https://doi.org/10.22092/JMPB.2013.108486 Ghilavizadeh, A., Hadidi, W., Zakerin, H.M., Valadabadi, S.A.R., Sayfzadeh, S & Yousefi, M. (2019). Influence of Salicylic Acid on Growth, Yield and Macro-elements Absorption of Fennel (Foeniculum vulgare Mill.) under Water Stress. Journal of Medicinal Plants and By-products, 1, 67-75. https://doi.org/10.22092/JMPB.2019.119386 Hashmi, N., Khan, M.M.A., Moinuddin, A., Idrees, M., & Aftab, T. (2012). Exogenous salicylic acid stimulates physiological and biochemical changes to improve growth, yield and active constituents of fennel essential oil. Plant Growth Regulation, 68, 281–291. https://doi.org/10.1007/s10725-012-9716-0. Hussain, H.A., Hussain, S., Khaliq, A., Ashraf, U., Anjum, S.A., Men, S. & Wang, L. (2018). Chilling and drought stresses in crop plants: Implications, cross talk, and potential management opportunities. Frontiers in Plant Science, 9, 393. https://doi.org/10.3389/fpls.2018.00393 Jalal, R., Bafeel, S. & Moftah, A. (2012). Effect of salicylic acid on growth, photosynthetic pigments and essential oil components of Shara (Plectranthus tenuiflorus) plants grown under drought stress conditions. International Research Journal of Agricultural Science and Soil Science, 2(6), 252-260. https://doi.org/10.3923/jbs.2019.372.380. Janda, T., Gondor, O.K., Yordanova, R., Szalai, G. & Pa´l, M. (2014). Salicylic acid and photosynthesis: signaling and effects. Acta Physiologiae Plantarum, 1-10. https://doi.org/10.1007/s11738-014-1620-y. Joseph, B., Jini, D. & Sujata, S. (2010). Insight into the role of salicylic acid on plant growth under salt environment. Asian Journal of Crop Science, 2, 226–235. https://doi.org/10.3923/ajcs.2010.226.235. Kalamartzis, I., Menexes, G., Georgiou, P. & Dordas, Ch. (2020). Effect of water stress on the physiological characteristics of five basil (Ocimum basilicum L.) cultivars. Agronomy, 10, 1-20. https://doi.org/10.3390/agronomy10071029. Kamrava, S., Babaeian Jolodar, N., & Bagheri, N. (2017). Evaluation of Drought Stress on Chlorophyll and Proline Traits in Soybean Genotypes. Journal of Crop Breeding, 9 (23), 95-105. http://dx.doi.org/10.29252/jcb.9.23.95. (In Persian)
Khan, M.I.R., Fatma, M., Per, T.S., Anjum, N.A. & Khan, N.A. (2015). Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in Plant Science, 6, 1–17. https://doi.org/10.3923/ajcs.2010.226.235. Kordi, S., Saidi, M. & Ghanbari, F. (2013). Induction of drought tolerance in sweet basil (Ocimum basilicum L.) by salicylic acid. International Journal of Agricultural and Food Research, 2(2), 18-26. https://doi.org/10.24102/ijafr.v2i2.149. Kulak, M., Jesús, Jorrín-Novo, V., Romero-Rodriguez, M., Yildirim, ED., Gul, F. & Karaman, S. (2022). Seed priming with salicylic acid on plant growth and essential oil composition in basil (Ocimum basilicum L.) plants grown under water stress conditions. Industrial Crops and Products, 161, 113225. https://doi.org/10.1016/j.indcrop.2020.113235. Milenkovic, L., Stanojevic, J., Cvetkovic, D., Stanojevic, L., Lalevic, D., Sunic, L., Fallik, E. & Ilic, Z.S. (2019). New technology in basil production with high essential oil yield and quality. Industrial Crops and Products, 140, 111718. http://doi.org/10.1016/j. Minhas, P.S., Rane, J., & Pasala, R.K. (2017). Abiotic stresses in agriculture: An overview. Abiotic stress management for resilient agriculture, Springer: Berlin/Heidelberg, Germany, pp. 3–8. http://doi.org/10.1007/978-981-10-5744-1_1 Mohammadi, B., Rezayian, M., Ebrahimzadeh, H., Hadian, J. & Mirmasoumi, M. (2017). Positive effects of salicylic acid on some biochemical and physiological parameters of Aloysia citrodora under drought stress. Progress in Biological Sciences, 7(2): 147-157. https://doi.org/10.22059/PBS.2019.288345.1336. Nguyen, T., Choi, W. S., Lee, JH., & Cheong, J. (2022). Biosynthesis of essential oil compounds in Ocimum tenuiflorum is induced by abiotic stresses. Plant Biosystems - An International Journal, 156, 353-357. https://doi. DOI: 10.1080/11263504.2020.1857870 Osama, S., El Sherei, M., Al-Mahdy, D., Bishr, M. & Salama, O. (2019). Effect of salicylic acid foliar spraying on growth parameters, γ-pyrones, phenolic content and radical scavenging activity of drought stressed Ammi visnaga L. plant. Industrial Crops and Products, 134, 1-10. https://doi.org/10.1016/j.indcrop.2019.03.035. Ozturk, A., Unlukara, A., Ipek, A. & Gurbuz, B. (2004). Effects of salt stress and water deficit on plant growth and essential oil content of lemon balm (Melissa officialis L.). Pakistan Journal of Botany, 36(4), 787-792. Rastogi, S., Shah, S., Kumar, R., Vashisth, D., Akhtar, M.Q., Kumar, A., Dwivedi, U.N. & Shasany, A.K. (2019). Ocimum metabolomics in response to abiotic stresses: Cold, flood, drought and salinity. Plos One, 14(2), 36-49. http://doi.org/10.1371/journal.pone.0210903 Sarker, U. & Oba, S. (2018). Drought stress enhances nutritional and bioactive compounds, phenolic acids and antioxidant capacity of Amaranthus leafy vegetable. BMC Plant Biology, 18, 22-38. http://doi.org/10.1186/s12870-018-1484-1 Senaratna, T., Touchell, D., Bunn, E. & Dixon, K. (2000). Acetyl salicylic acid (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plant. Plant Growth Regulation, 30, 157-161. https://doi.org/10.1023/A:1006386800974. Shahzad, S.M., Arif, M.S., Ashraf, M, Abid, M, Ghazanfar, M.U., Riaz, M., Yasmeen, T. & Zahid, M.A. (2015). Alleviation of abiotic stress in medicinal plants by PGPR, In D. Egamberdieva. Plant-growth promoting rhizobacteria (PGPR) and medicinal plants (Ed. II) Springer International Publishing. Sharma, P. (2014). Salicylic acid: a novel plant growth regulator - role in physiological processes and abiotic stresses under changing environments. In: Tuteja, N., Gill, S.S. (Eds.), Climate change and plant Abiotic stress tolerance. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim, Germany. Shi, Q., Bao, Z., Zhu, Z., Ying, Q. & Qian, Q. (2006). Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence and antioxidant enzyme activity in seedlings Cucumis sativa L. Plant Growth Regulation, 48, 127-135. https://doi.org/10.1007/s10725-005-5482-6. Siboza, I., Bertling, A. & Oduor, O. (2014). Salicylic acid and methyl jasmonate improve chilling tolerance in cold-stored lemon fruit (Citrus limon). Journal of Plant Physiology, 171(18), 1722-1731. https://doi.org/10.1016/j.jplph.2014.05.012. Verslues, P. E. & Sharma, S. (2010). Proline metabolism and its implications for plant environment interaction. The Arabidopsis Book, 8, 140. Singh, D. & Chaudhuri, P.K. (2018). A review on phytochemical and pharmacological properties of Holy basil (Ocimum sanctum L.). Industrial Crops and Products, 118, 367-382. http://doi.org/10.1016/j.indcrop.2018.03.048 Vicente, R. & Plasencia, J. (2011). Salicylic acid beyond defense: its role in plant growth and development. Journal of Experimental Botany, 62 (10), 3321–3338. https://doi.org/10.1093/jxb/err031. | ||
آمار تعداد مشاهده مقاله: 193 تعداد دریافت فایل اصل مقاله: 232 |