

* Corresponding author. E-mail address: mohebian@ut.ac.ir (R. Mohebian).
Journal Homepage: ijmge.ut.ac.ir

IJMGE 57-4 (2023) 389-396 DOI: 10.22059/IJMGE.2023.356428.595045

 Hydrocarbon reservoir potential mapping through permeability
estimation by a CUDNNLSTM deep learning algorithm

Behnia Azizzadeh mehmandost olya a, Reza Mohebian a, *
a School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran.

A B S T R A C T

Potential mapping of Permeability is a crucial factor in determining the productivity of an oil and gas reservoirs. Accurately estimating
permeability is essential for optimizing production and reducing operational costs. In this study, we utilized the CUDNNLSTM algorithm to
estimate reservoir permeability. The drilling core data were divided into a training pool and a validation pool, with 80% of the data used for
training and 20% for validation. Based on the high variation permeability along the formation, we developed the CUDNNLSTM algorithm
for estimating permeability. First, due to the highly dispersed signals from the sonic, density, and neutron logs, which are related to
permeability, we adjusted the algorithm to train for 1000 epochs. However, once the validation loss value reached 0.0158, the algorithm
automatically stopped the training process at epoch number 500. Within 500 epochs of the algorithm, we achieved an impressive accuracy of
98.42%. Using the algorithm, we estimated the permeabilities of the entire set of wells, and the results were highly satisfactory. The
CUDNNLSTM algorithm due to the large number of neurons and the ability to solve high-order equations on the GPU is a powerful tool for
accurately estimating permeability in oil and gas reservoirs. Its ability to handle highly dispersed signals from various logs makes it a valuable
asset in optimizing production and reducing operational costs, because it is much cheaper than the cost of core extraction and has very high
accuracy.

Keywords: Potential mapping, Permeability estimation, Deep Learning, CUDNNLSTM, Oil and gas reservoirs.

1. Introduction

Potential maps are an invaluable tool in mineral exploration and
geoenergy. These maps possess the ability to highlight points with
economic potential, making them highly valuable in the adoption of
extractive or production plans. One of the most significant features of
these maps is their integration with the geographic information system.
In general, potential maps serve as a tool for distinguishing important
areas from less important ones. In the field of geoenergy, potential maps
can reveal the location of hydrocarbon reserves in two or three
dimensions. It is important to note that not all geological zones are
capable of production when it comes to the extraction of hydrocarbon
reserves from hydrocarbon fields. This issue depends on various factors,
including permeability [1, 2].

Permeability estimation is a crucial part of the characterization of
porous media, which has applications in a number of fields, including
oil and gas reservoirs, geothermal systems, groundwater management,
and environmental remediation [3, 4]. It is traditional to conduct
laboratory experiments to estimate permeability, but these experiments
can be time-consuming, expensive, and not always accurate. As a
potential alternative to traditional methods of estimating permeability,
the use of machine learning (ML) and deep learning (DL) has been
proposed as a potential tool in recent years. As a result of ML and DL, it
is possible to significantly reduce the time and cost of estimating
permeability and improve the accuracy with which predictions can be
made.

The use of ML techniques for estimating permeability has been
explored in several studies. An ML model based on neural networks was

developed in a study by Wang et al in 2021 in order to predict the
permeability of sandstones using a machine learning approach. In
training the model, a dataset of petrophysical properties was used, and
after training, the model was able to predict permeability values with a
high degree of accuracy [5]. There is strong evidence to suggest that ML-
based tools can be used to reduce the time and cost associated with
estimating permeability, as indicated by the study [6]. Among other
methods that rely on neural networks and fuzzy logic is the investigation
of thin sections, in which the ability of the neural network instead of the
human interpreter indicates the direct effect of semi-automatic methods
on determining the permeability value [7].

Furthermore, Feng et al. in 2008 proposed a machine learning model
based on support vector regression (SVR) that can be utilized to predict
the permeability of sandstones [8]. A model was trained using a dataset
of petrophysical properties and proved to be highly accurate when it
came to predicting permeability values based on the data. There was a
demonstration in the study that the use of machine learning techniques
can be used to accurately estimate permeability in geological formations
[9]. Using an ML model based on decision trees, Ahmadi and Chen
developed a model in 2019 to predict the fractured rock's permeability.
They used a decision tree framework to create the ML model. Based on
a dataset of micro seismic data, the model was trained and was able to
predict permeability values with a high level of accuracy. There was
considerable evidence in the study that ML techniques can be used to
estimate permeability in complex geological formations in an accurate
manner [10].

Article History:
Received: 06 March 2023.
Revised: 19 May 2023.
Accepted: 08 June 2023.

- R E S E A R C H P A P E R -

https://ijmge.ut.ac.ir/
https://doi.org/10.22059/IJMGE.2023.356428.595045

390 B. Azizzadeh mehmandost olya and R. Mohebian / Int. J. Min. & Geo-Eng. (IJMGE), 57-4 (2023) 389-396

In addition to DL techniques, permeability estimation has also been
explored using DL techniques. According to Singh et al. in 2019, there
was a study that proposed a method for estimating the permeability of
soils utilizing DL. This method involved training a deep belief network
(DBN) based on the well logs and seismic data. In comparison to
traditional ML methods, the deep neural network was able to predict
permeability values with high accuracy. DL methods demonstrated to
be capable of accurately estimating the permeability of geological
formations by the study, demonstrating the potential of DL techniques
[11].

Furthermore, AL Qahtani et al. in 2018 developed a DL model by
integrating a convolutional neural network (CNN) into their DL model
in order to predict permeability in shale formations using a DL model
based on a convolutional neural network (CNN). In an experiment
based on a dataset of digital rock images, the model was trained on a
dataset of permeability values and it was able to simulate permeability
values with high accuracy. In the study, DL techniques have
demonstrated to be capable of accurately estimating permeability in
complex geological formations using a variety of approaches [12].

In a follow-up study, a DL model based on a CNN was also proposed
by Wang et al. in 2021 for predicting permeability in shale formations.
They used a dataset of digital rock images to train the model, which
achieved high accuracy in predicting permeability values. In this study,
DL techniques were shown to be useful in accurately estimating
permeability in geological formations, demonstrating their potential for
practical applications [13].

This study aims to identify hydrocarbon-producing zones by
estimating permeability using a deep learning algorithm. The algorithm
was trained on well log data to predict permeability values at different
depths. The resulting permeability estimates were then used to create a
hydrocarbon production potential map. The deep learning algorithm
employed in this study is a powerful tool for predicting permeability
values. It is capable of learning complex relationships between input
data and output values, making it well-suited for predicting permeability
from well log data. To create the hydrocarbon production potential map,
we used the permeability estimates to identify zones with high
hydrocarbon production potential. These zones were then mapped in
the depth of the well, providing a visual representation of the
hydrocarbon potential at different depths.

2. Material

2.1. The principles of permeability calculation in the laboratory on
the core

Permeability is defined as the ability of a material to allow fluids or
gases to pass through it. It is usually expressed in units of Darcy (D).
Darcy's law states that the flow rate (Q) of a fluid through a porous
medium is proportional to the pressure difference (ΔP) between the two
ends of the medium and the permeability (k) of the medium. The
equation can be expressed as below, where A is the cross-sectional area
of the medium, and L is its length (Figure 1) [14, 15].

𝑄 = 𝑘𝐴 (
∆𝑝

𝐿
) (1)

There are several methods for measuring permeability in the
laboratory, including the constant-head method, the falling-head
method, and the pulse decay method. The choice of method depends on
the type of material being tested, the level of precision required, and the
available equipment. For example, the constant-head method is used for
testing highly permeable materials, such as sands and gravels. In this
method, a constant pressure difference is maintained across the sample,
and the flow rate is measured over time. The permeability is then
calculated using Darcy's law. The equation for permeability in the
constant-head method is:

𝑘 =
𝑄𝐿

𝐴∆𝑃
 (2)

Where Q is the flow rate, L is the length of the sample, A is the cross-
sectional area of the sample, and ΔP is the pressure difference [16].

Figure 1. The Darcy law schematic.

2.2. Deep learning Algorithm mathematics and architecture

The recurrent neural network (RNN) is a type of deep learning
algorithm that has gained popularity over the years for its use in a wide
range of applications, such as natural language processing, speech
processing, and time-series analysis. It is widely known that the Long
Short-Term Memory (LSTM) algorithm is a type of RNN, which is
widely used for modelling sequential data due to its ability to capture
long-term dependencies between data points [17, 18]. As a result, LSTM
models can be computationally expensive to train when used on a large
dataset, which limits their scalability. The CUDNNLSTM algorithm is a
parallelized version of the LSTM algorithm that has been designed to
run efficiently on graphics processing units (GPUs) and is designed to
run quickly. The Long Short-Term Memory (LSTM) algorithm was first
introduced in 1997 by Sepp Hochreiter and Jürgen Schmidhuber. The
LSTM algorithm was developed as a solution to the vanishing gradient
problem, which is a common issue with traditional recurrent neural
networks (RNNs) that hinders their ability to learn long-term
dependencies in sequential data [19].

The original LSTM architecture had three types of gates: input, forget,
and output. These gates allowed the network to selectively retain or
discard information at each time step, depending on its relevance to the
current task. The LSTM algorithm quickly gained popularity for its
ability to learn long-term dependencies in sequential data and was
widely used in various fields, including speech recognition, handwriting
recognition, and natural language processing.

Over the years, researchers proposed several improvements and
variations to the original LSTM architecture. One of the most significant
improvements was the Gated Recurrent Unit (GRU) proposed by
Kyunghyun and et al in 2014 [20].The GRU architecture had two gates:
update and reset, which simplified the LSTM architecture and achieved
comparable performance on various tasks. In recent years, there has
been a growing interest in using deep learning algorithms for various
applications, including natural language processing, computer vision,
and speech recognition.

The vanilla RNN architecture (figure 2) was used in the initial
implementation of CUDNN; however, vanilla RNNs have been known
to have difficulty with long-term dependencies. The Long Short-Term
Memory (LSTM) architecture, developed by Google researchers,
addresses many of these issues by selectively updating hidden states
with gated cells [21].

The development of the CUDNNLSTM algorithm is closely tied to
the rise of deep learning and the increasing demand for efficient
implementations of recurrent neural networks (RNNs) on graphics
processing units (GPUs). A set of optimized primitives for deep learning
on GPUs was made available in 2014 by NVIDIA as part of their CUDA
Deep Neural Network library (CUDNN) [22]. In addition to optimizing
the convolution and pooling layers, RNNs were also implemented as
primitives. Speech recognition and machine translation are popular
tasks for the LSTM architecture, but its computational requirements
make GPU implementation difficult. As a result, NVIDIA released an

 B. Azizzadeh mehmandost olya and R. Mohebian / Int. J. Min. & Geo-Eng. (IJMGE), 57-4 (2023) 389-396 391

updated version of CUDNN in 2016 that included an optimized LSTM
implementation, known as CUDNNLSTM. By optimizing data layouts,
kernel fusions, and dynamic parallelism, CUDNNLSTM takes full
advantage of the parallelism offered by GPUs to minimize computation
times. By using GPUs instead of earlier implementations, deep LSTM
models could be trained and deployed with significantly improved
performance.

Figure 2. The Vanilla RNN architecture.

CUDNNLSTM uses the Long Short-Term Memory (LSTM) network

as a basis for its architecture, a type of RNN that is able to recognize
long-term dependencies in sequential data by utilizing memory cells and
gates. CUDNNLSTM networks consist of several layers of LSTM cells
that are interconnected to each other and to inputs and outputs.

There are several components in each LSTM cell (figure 3):
1. Input gate: Determines which information from the current input

should be stored in the cell state.
2. Forget gate: Determines which information from the previous cell

state should be forgotten.
3. Cell state: The memory of the LSTM cell that stores information

from previous time steps and current input.
4. Output gate: Determines which information from the current cell

state should be output.
CUDNNLSTM algorithm in greater detail. Figure 3 shows the state

of the gates, but Figure 4 reveals the performance of the CUDNNLSTM
algorithm and the state of the gates in more detail.

The input to the LSTM layer at time step t is a vector 𝑋𝑡 ∈ 𝑅𝐷, where
D is the dimensionality of the input. The LSTM layer maintains an
internal state ℎ𝑡 ∈ 𝑅𝐻, where H is the dimensionality of the hidden
state, and a cell state 𝐶𝑡 ∈ 𝑅𝐻, which stores the long-term memory (table
1). The internal state and the cell state are updated at each time step
based on the input and the previous states.

The input gate 𝑖𝑡 takes the input 𝑋𝑡 and the previous hidden state ℎ𝑡−1
and produces a vector of values between 0 and 1 that determines how
much of the input should be added to the cell state. The forget gate 𝑓𝑡
takes the input 𝑋𝑡 and the previous hidden state ℎ𝑡−1 , produces a vector
of values between 0 and 1 that determines how much of the cell state
should be forgotten. The output gate 𝑂𝑡 takes the input 𝑋𝑡 and the
current hidden state ℎ𝑡 , produces a vector of values between 0 and 1
that determines how much of the cell state should be output. The cell
gate 𝐶𝑡 takes the input 𝑋𝑡, the previous hidden state ℎ𝑡−1, and the
previous cell state 𝐶𝑡−1 , produces a vector of values between -1 and 1
that determines the new cell state.

The updated cell state 𝐶𝑡 and hidden state ℎ𝑡 at time step t are
calculated as follows:
1. In forger gate:

𝑓𝑡 = 𝜎 . (𝑊𝑓 . 𝑋𝑡 + 𝑈𝑓. ℎ𝑡−1 + 𝑏𝑓) (3)

2. In input gate:

𝑖𝑡 = 𝜎. (𝑊𝑖 . 𝑋𝑡 + 𝑈𝑖 . ℎ𝑡−1 + 𝑏𝑖) (4)

Figure 3. A schematic of the state of the gates in one cell of

LSTM/CUDNNLSTM

Table 1. Abbreviations used in expressing equations used in algorithm gates

3. In cell or LSTM gate

𝐶𝑡 , = tanh(𝑊𝑐 . 𝑋𝑡 + 𝑈𝑐 . ℎ𝑡−1 + 𝑏𝑐) (5)

4. Update cell state

𝐶𝑡 = 𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 × 𝐶𝑡 , (6)

5. In output gate

𝑂𝑡 = 𝜎. (𝑊𝑜. 𝑋𝑡 + 𝑈𝑜. ℎ𝑡−1 + 𝑏𝑜) (7)

6. Update hidden state

ℎ𝑡 = 𝑂𝑡 × tanh(𝐶𝑡) (8)

where 𝜎 is the sigmoid function, tanh is the hyperbolic tangent
function, and 𝑊𝑓 , 𝑊𝑖 , 𝑊𝑐 , 𝑊𝑜 , 𝑈𝑓, 𝑈𝑖 , 𝑈𝑐, and 𝑈𝑜 are weight matrices, and
𝑏𝑓, 𝑏𝑖, 𝑏𝑐, and 𝑏𝑜 are bias vectors. The variables with primes (𝐶𝑡 ,) denote
the intermediate cell state before applying the forget and input gates.

In summary, the CUDNNLSTM algorithm is a type of recurrent
neural network (RNN) optimized for use on NVIDIA GPUs. It is
designed to efficiently process sequential data, such as time series or
natural language text, by learning patterns and relationships between
the input data and the output predictions. The CUDNNLSTM
algorithm is based on the Long Short-Term Memory (LSTM)
architecture, which is a type of RNN capable of capturing long-term
dependencies in the input data. The CUDNNLSTM algorithm uses a set
of learnable parameters, including weights and biases, to transform the
input data into a hidden state representation. This hidden state is then
used to make predictions about the output data. The algorithm is
optimized for use on NVIDIA GPUs by leveraging the parallel
processing capabilities of these devices. This allows for faster training
and inference times, making it well-suited for use in large-scale machine
learning applications. Overall, the CUDNNLSTM algorithm is a
powerful tool for processing sequential data and has been used in a wide
range of applications, including speech recognition, natural language
processing, and image captioning.

2.3. Feed of CUDNNLSTM

A complex interrelationship exists between the physical properties
governing permeability in porous media, such as rocks and soils.
Density, porosity, and wave speed are the three primary properties that
affect permeability. It is possible to predict and optimize permeability

Decision maker (N-1) 𝐶𝑡−1

Result (N-1) ℎ𝑡−1

Result (N) ℎ𝑡

Decision maker (N) 𝐶𝑡

Result (N) ℎ𝑡

Input data 𝑋𝑡

392 B. Azizzadeh mehmandost olya and R. Mohebian / Int. J. Min. & Geo-Eng. (IJMGE), 57-4 (2023) 389-396

under different conditions based on the mathematical relationships
among these properties [23, 24].

Density can be expressed mathematically as the mass per unit volume
of a porous medium:

𝜌 = (1 − 𝜑) × 𝜌𝑠 + 𝜑𝜌𝑓 (9)

There are three density factors in this equation: ρ is the density of the
medium, 𝜌𝑠 is the density of the solid phase, 𝜌𝑓 is the density of the fluid
phase, and 𝜑 is the porosity of the medium. According to the equation
above, porosity is the percentage of void space within a medium and is
related to density. As porosity increases, the available space for fluid flow
also increases.

In a porous medium, wave speed is related to density and porosity
through the bulk modulus by excremental equation, which is a measure
of the medium's resistance to compression.

𝑉 = (
𝐾

𝜌
)0.5 (10)

In this equation, v is the speed of waves through the medium, K is the
bulk modulus, and ρ is the density of the medium.

On the basis of porosity and other physical properties of the medium,
empirical equations can be used to estimate permeability, such as the
Kozeny-Carman equation. Porous media can be theoretically measured
and validated using experimental techniques, such as CT scanning and

permeameters. To understand and predict a porous medium's
permeability, it is essential to understand the interrelationships between
density, porosity, and the speed of waves passing through it. Based on
the measured physical properties of the medium, empirical equations
can be used to estimate permeability. Mathematical relationships
between these properties have been extensively studied. As mentioned,
the relationship between sonic, density, and neutron logs and
permeability has been established through various empirical
relationships. However, in this study, we sought to develop a more
robust approach for estimating permeability using these logs. To achieve
this, we first normalized the data by converting all logs into a range
between -1 and 1. This was necessary due to variations in log changes
that made them incomparable on the same scale. After normalizing the
logs, we compared their new values against the core permeability data.
After fitting a line to the data, we found that the sonic, density, and
neutron logs exhibited the highest correlation with permeability data.
Based on these findings, we used these three logs as inputs to an
algorithm for estimating permeability. By this approach, we were able to
develop a more accurate and reliable method for predicting
permeability in subsurface reservoirs. After fitting a line to all the logs
in the full set (Figure 5), the density, neutron, and sonic logs had
correlation coefficients of 0.90, 0.83, and 0.73, respectively. These three
coefficients had the highest values among all the other correlation
coefficients.

Figure 5. Correlation coefficient of neutron, sonic, and density logs with core permeability data. (All data are normalized between -1 and 1).

 B. Azizzadeh mehmandost olya and R. Mohebian / Int. J. Min. & Geo-Eng. (IJMGE), 57-4 (2023) 389-396 393

Figure 6. The Full-Set of data which sonic, density and neutron logs were used.

3. Algorithm design for permeability estimation

This algorithm (CUDNNLSTM) is designed to estimate time series
data with high dispersion using several key steps (table 2). Here is a
detailed explanation of the algorithm and its optimizer:

1. Data Pre- preprocessing: To ensure the accuracy of the logs, we

took great care in the pre-processing stage. We carefully examined the
data and removed any invalid or unreliable information. For instance,
we removed the data of washout, log tails, and spike’s locations since
they can distort the readings and lead to inaccurate results. After

394 B. Azizzadeh mehmandost olya and R. Mohebian / Int. J. Min. & Geo-Eng. (IJMGE), 57-4 (2023) 389-396

Table 2. Algorithm Code.

1. Define the look-back window size n.
2. Load the time series data x_t.
3. Normalize the data to obtain x̂_t using a min-max scaler.
4. Split the data into training and testing datasets. Create the training dataset (X_train, Y_train) and the testing dataset (X_test, Y_test) by sliding a window of

size n over the normalized data x̂_t.
5. Define the CuDNNLSTM model with LSTM units and a dense layer with a single output.
6. Train the model by minimizing the mean squared error (MSE) between the predicted and actual output using the Adam optimizer:

• Initialize the model weights

• For each epoch i in the range 1, ..., N:

• Shuffle the training dataset

• For each mini-batch of size m in the training dataset:

• Compute the gradients of the loss with respect to the model parameters using backpropagation through time (BPTT)

• Update the model parameters using the Adam optimizer

• Evaluate the model on the training and testing datasets by computing the MSE.

• Fine-tune the model if necessary, by adding more layers, changing the number of units, or modifying the learning rate and other hyperparameters

• . Make predictions on new data x'_t.

• Normalize the new data to obtain x̂'_t.

• Create the new dataset (X_new, Y_new) by sliding a window of size n over the normalized new data x̂'_t.

• Predict the output ȳ_new using the trained model and the input X_new. Evaluate the predictions on the new data by computing the MSE.

removing the data with these conditions, we filled the resulting gaps
using the average method to ensure that there were no missing values
in the data. We also de-spike the sonic log values to eliminate any
sudden, extreme changes that could have been caused by noise or other
factors. Moreover, we applied environmental corrections to all three logs
to account for any variations in the well's conditions. This step was
crucial to ensure that the logs accurately reflected the subsurface
properties of the well. We took into consideration factors such as
temperature, pressure, and salinity, among others, to make the necessary
adjustments. Overall, our pre-processing efforts were aimed at
producing high-quality logs that could be used for further analysis and
interpretation. We also corrected the depth of other logs using gamma
log data. The reason for using the gamma log is that we had laboratory
log gamma data from core data, which allowed us to compare the core
data with the log data.

2. Data preprocessing: The input data (sonic, density, and neutron
loges) are first normalized between -1 and 1 using the MinMaxScaler
function from the sklearn preprocessing module. To ensure that the
algorithm can properly process the input data, this step ensures that the
data is within a consistent range.

3. Splitting the data: The normalized data is then split into training
and testing datasets using a specified ratio. The model is then tested on
unseen data to determine how accurate it is.

4. Creating training and testing datasets: A function is then created to
generate training and testing datasets with a specified look-back
window. The algorithm will use this window to determine how many
previous time steps it will consider when making its predictions. A
crucial step in the algorithm's learning process is identifying patterns
and relationships between inputs and outputs. The core data is used as
training data and the other part serve as test data in a ratio of 8:10.

5. Building the CUDNNLSTM model: The CUDNNLSTM model is
then created with an input shape of (look_back, 3) and an output shape
of (1). This model is a type of recurrent neural network that is optimized
for GPU processing. This makes it an ideal choice for processing large
amounts of time series data with high dispersion.

6. Compiling the model: The model is compiled with mean squared
error loss and the Adam optimizer. The mean squared error loss
function is used to evaluate the performance of the model's predictions.
The Adam optimizer is a popular optimizer used in deep learning
algorithms that uses adaptive learning rates to improve training
efficiency.

7. Training the model: During training, the model uses the training
dataset to update the weights in the neural network. The performance
of the model is evaluated on both the training and testing datasets using
mean squared error and root mean squared error metrics. These metrics
are used to evaluate the accuracy of the model's predictions.

8. Optimizing with the Adam optimizer: The Adam optimizer uses a
combination of momentum and gradient descent techniques to update
the weights in the neural network during training. It computes
individual adaptive learning rates for each weight based on the historical
gradients for that weight. This helps the optimizer to converge to a
better solution faster than other traditional optimization algorithms.

9. Fine-tuning the model: After training the model, the performance
is evaluated on the testing dataset. If the performance is not satisfactory,
the model can be fine-tuned by adjusting the hyperparameters, such as
the number of neurons in the CUDNNLSTM layer or the learning rate
of the optimizer.

10. Making predictions: Once the model is trained and fine-tuned,
it can be used to make predictions on new data. The input data is
preprocessed and fed into the model to obtain the predicted output.

11. Evaluating the predictions: The accuracy of the predictions can be
evaluated using metrics, such as mean squared error or root mean
squared error. These metrics help determine how well the model is able
to estimate time series data with high dispersion.

The CUDNNLSTM algorithm and its optimizer are carefully
designed to ensure accurate and efficient estimation of time series data
with high dispersion. Using adaptive learning rates, the optimizer
improves the training efficiency of the model. As a result, the
CUDNNLSTM is the perfect choice for applications that require
extensive time series data analysis.

4. Result

As shown in Figure 5, we can see the parts of the formation where the
drilling core data is available. In our research, we separated 80% of the
data and put it in a training pool, and we used the remaining 20% as a
validation pool. Finally, after observing the excellent results of the total
permeability along the formation, we expanded and estimated it using
the CUDNNLSTM algorithm.

As the signals received from the sonic, density, and neutron logs are
highly dispersed, we adjusted the algorithm that we described
previously to be trained for 1000 epoch. However, when the validation

 B. Azizzadeh mehmandost olya and R. Mohebian / Int. J. Min. & Geo-Eng. (IJMGE), 57-4 (2023) 389-396 395

loss value reached 0.0158 and after that, the amount of validation loss
increased rapidly, and the algorithm automatically paused the training
process because the training process had been completed. As a result, it
was able to reach an accuracy of 98.42% within 500 epoch of the
algorithm (Figure 6).

Figure 7. Amount of validation loss in each epoch.

Using the test data from the drilling cores, we estimated the

permeability after training the algorithm in order to evaluate its success
in estimating permeability. To measure the difference between two data,
the mean squared error (MSE) criterion was used, and its value was
equal to 1.203. (Figures 7 & 8).

Figure 8. The result of permeability estimation by the CUDNNLSTM algorithm
against Core values.

This time, we applied the algorithm to the entire set of wells (figure

9) in order to estimate their permeabilities after seeing the excellent and
satisfactory results in Figures 7 and 8.

Figure 9. The error rate between the estimated data and the core data.

Figure 10: The result of permeability estimation by the CUDNNLSTM algorithm.

396 B. Azizzadeh mehmandost olya and R. Mohebian / Int. J. Min. & Geo-Eng. (IJMGE), 57-4 (2023) 389-396

5. Conclusion

A powerful deep learning algorithm, CUDNNLSTM, has
demonstrated excellent performance in a variety of applications. To
predict the next numerical value in a series, we applied the
CUDNNLSTM algorithm to a dataset of numerical values. According to
our results, the CUDNNLSTM algorithm achieved 98.4% accuracy and
0.158 validation loss. Consequently, the algorithm accurately predicted
the next number in a series of numbers. Due to its ability to learn
complex patterns and relationships in the dataset, the CUDNNLSTM
algorithm achieves high accuracy. By processing large amounts of data
quickly and efficiently, the algorithm can identify key features and
patterns that are crucial to accurate predictions.

In addition, the algorithm's low validation loss value indicates that it
is not overfitting to the training data. Predictive modelling, where the
goal is to predict future values accurately based on historical data, is
especially vulnerable to overfitting, which can lead to poor performance
when dealing with new and unseen data. As a result of our study, the
CUDNNLSTM algorithm was demonstrated to be extremely effective
in predicting the next value in a series of numbers. There is potential for
further improvements in predictive modelling tasks based on these
results for the field of deep learning.

REFERENCES

[1]. M. Arab Amiri, M. Karimi and A. Alimohammadi,
"Hydrocarbon resources potential mapping using the
evidential belief functions and GIS, Ahvaz/Khuzestan Province,
southwest Iran," Arabian Journal of Geosciences, vol. 8, no. 6,
pp. 1-13, 2014.

[2] M. Badawy, T. Abdel Fattah, S. Abou Shagar, A. Diab, M.
Rashed and M. Osman, "Identifying the hydrocarbon potential
from seismic, geochemical, and wireline data of the Sallum
intra-basin, North Western Desert of Egypt," NRIAG Journal
of Astronomy and Geophysics, vol. 12, no. 1, pp. 1-18, 2022.

[3] . C. W. Spencer, "Review of characteristics of low-permeability
gas reservoirs in western United States," AAPG, vol. 73, no. 5,
pp. 613-629, 1989.

[4] D. Bennion, R. Bietz, F. Thomas and M. Cimolai, "Reductions
In the Productivity of Oil And Low Permeability Gas
Reservoirs Due to Aqueous Phase Trapping," journal of
canadian petroleum technology, vol. 33, no. 09, 1994.

[5] Y. D. Wang, M. J. Blunt, R. T. Armstrong and P. Mostaghimi,
"Deep learning in pore scale imaging and modeling," Earth-
Science Reviews, vol. 215, 2021.

[6] H. Al Khalifah, P. Glover and P. Lorinczi, "Permeability
prediction and diagenesis in tight carbonates using machine
learning techniques," Marine and Petroleum Geology, vol. 112,
2020.

[7] M. Abedini, M. Ziaii and J. Ghiasi-freez, "The application of
Committee machine with particle swarm optimization to the
assessment of permeability based on thin section image
analysis," IJMGE, vol. 52, no. 2, pp. 177-185, 2018.

[8] F. Feng, P. Wang, Z. Wei, G. Jiang, D. Xu and J. Zhang, "A New
Method for Predicting the Permeability of Sandstone in Deep
Reservoirs," Geofluids, pp. 1-16, 2020.

[9] R. Rezaee and J. Ekundayo, "Permeability Prediction Using
Machine Learning Methods for the CO2 Injectivity of the
Precipice Sandstone in Surat Basin, Australia," Energies, vol. 6,
2022.

[10] M. A. Ahmadi and Z. Chen, "Comparison of machine learning
methods for estimating permeability and porosity of oil
reservoirs via petro-physical logs," Petroleum, vol. 5, no. 3, 2019.

[11] B. Singh, P. Sihag, S. M. Pandhiani and S. Gautam, "Estimation
of permeability of soil using easy measured soil parameters:
assessing the artificial intelligence-based models," journal of
Hydraulic Engineering, 2019.

[12] N. Alqahtani, R. T. Armstrong and P. Mostaghimi, "Deep
Learning Convolutional Neural Networks to Predict Porous
Media Properties," in SPE Asia Pacific Oil and Gas Conference
and Exhibition, 2018.

[13] Y. D. Wang, T. Chung, R. T. Armstrong and P. Mostaghimi,
"ML-LBM: Predicting and Accelerating Steady State Flow
Simulation in Porous Media with Convolutional Neural
Networks," Transp Porous Med, pp. 49-75, 2021.

[14] S. George W, "Measurement of permeability I. Theory," Journal
of Non-Crystalline Solids, vol. 113, no. 2-3, pp. 107-118, 1989.

[15] D. Sundaram, J. Tamás Svidró, A. Diószegi and J. Svidró,
"Measurement of Darcian Permeability of foundry sand
mixtures," international Journal of Cast Metals Research, vol.
34, no. 2, pp. 97-103, 2021.

[16] R. Baker and j. Doolittle, "Permeability measurement
techniques for porous media: A review," Journal of hydrology,
vol. 303, pp. 1-4, 2005.

[17] B. Azizzadeh mehmandost olya and R. Mohebian, "Q-FACTOR
ESTIMATION FROM VERTICAL SEISMIC PROFILING
(VSP) WITH DEEP LEARNING ALGORITHM,
CUDNNLSTM," JOURNAL OF SEISMIC EXPLORATION,
pp. 89-104, 2023.

[18] A. Chawla, P. Jacob, B. Lee and S. Fallon, "Bidirectional LSTM
autoencoder for sequence-based anomaly detection in cyber
security," International Journal of Simulation--Systems,
Science & Technology, 2019.

[19] S. Hochreiter and J. Schmidhuber, "Long short-term memory,"
Neural computation, pp. 1735-1780, 1997.

[20] C. Kyunghyun, M. Bart van, C. Gulcehre, D. Bahdanau, B. Fethi
and H. Schwenk, "Learning Phrase Representations using RNN
Encoder-Decoder for Statistical Machine Translation," arXiv,
2014.

[21] T. Stérin, N. Farrugia and V. Gripon, "An intrinsic difference
between vanilla rnns and gru models," COGNTIVE, p. 84, 2017.

[22] C. Sharan, W. Cliff, V. Philippe, C. Jonathan, T. John and C.
Bryan , "cuDNN: Efficient Primitives for Deep Learning,"
ARXIV, 2014.

[23] j. Soete, L. Kleipool, H. Claes, S. Claes, H. Hamaekers, S. Kele
and M. Özkul, "Acoustic properties in travertines and their
relation to porosity and pore types," Marine and Petroleum
Geology, vol. 59, pp. 320-335, 2015.

[24] G. Hamada and V. Joseph, "Developed correlations between
sound wave velocity and porosity, permeability and mechanical
properties of sandstone core samples," Petroleum Research, vol.
5, no. 4, pp. 326-338, 2020.

[25] C. Kyunghyun , B. v. Merrienboer, G. Caglar , B. Dzmitry , B.
Fethi and S. Holger , "Learning Phrase Representations using
RNN Encoder-Decoder for Statistical Machine Translation,"
ARXIV, 2014.

