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A B S T R A C T 

 

Potential mapping of Permeability is a crucial factor in determining the productivity of an oil and gas reservoirs. Accurately estimating 
permeability is essential for optimizing production and reducing operational costs. In this study, we utilized the CUDNNLSTM algorithm to 
estimate reservoir permeability. The drilling core data were divided into a training pool and a validation pool, with 80% of the data used for 
training and 20% for validation. Based on the high variation permeability along the formation, we developed the CUDNNLSTM algorithm 
for estimating permeability. First, due to the highly dispersed signals from the sonic, density, and neutron logs, which are related to 
permeability, we adjusted the algorithm to train for 1000 epochs. However, once the validation loss value reached 0.0158, the algorithm 
automatically stopped the training process at epoch number 500. Within 500 epochs of the algorithm, we achieved an impressive accuracy of 
98.42%. Using the algorithm, we estimated the permeabilities of the entire set of wells, and the results were highly satisfactory. The 
CUDNNLSTM algorithm due to the large number of neurons and the ability to solve high-order equations on the GPU is a powerful tool for 
accurately estimating permeability in oil and gas reservoirs. Its ability to handle highly dispersed signals from various logs makes it a valuable 
asset in optimizing production and reducing operational costs, because it is much cheaper than the cost of core extraction and has very high 
accuracy. 
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1. Introduction 

Potential maps are an invaluable tool in mineral exploration and 
geoenergy. These maps possess the ability to highlight points with 
economic potential, making them highly valuable in the adoption of 
extractive or production plans. One of the most significant features of 
these maps is their integration with the geographic information system. 
In general, potential maps serve as a tool for distinguishing important 
areas from less important ones. In the field of geoenergy, potential maps 
can reveal the location of hydrocarbon reserves in two or three 
dimensions. It is important to note that not all geological zones are 
capable of production when it comes to the extraction of hydrocarbon 
reserves from hydrocarbon fields. This issue depends on various factors, 
including permeability [1, 2]. 

Permeability estimation is a crucial part of the characterization of 
porous media, which has applications in a number of fields, including 
oil and gas reservoirs, geothermal systems, groundwater management, 
and environmental remediation [3, 4]. It is traditional to conduct 
laboratory experiments to estimate permeability, but these experiments 
can be time-consuming, expensive, and not always accurate. As a 
potential alternative to traditional methods of estimating permeability, 
the use of machine learning (ML) and deep learning (DL) has been 
proposed as a potential tool in recent years. As a result of ML and DL, it 
is possible to significantly reduce the time and cost of estimating 
permeability and improve the accuracy with which predictions can be 
made. 

The use of ML techniques for estimating permeability has been 
explored in several studies. An ML model based on neural networks was  

 
 

 
developed in a study by Wang et al in 2021 in order to predict the 
permeability of sandstones using a machine learning approach. In 
training the model, a dataset of petrophysical properties was used, and 
after training, the model was able to predict permeability values with a 
high degree of accuracy [5]. There is strong evidence to suggest that ML-
based tools can be used to reduce the time and cost associated with 
estimating permeability, as indicated by the study [6]. Among other 
methods that rely on neural networks and fuzzy logic is the investigation 
of thin sections, in which the ability of the neural network instead of the 
human interpreter indicates the direct effect of semi-automatic methods 
on determining the permeability value [7]. 

Furthermore, Feng et al. in 2008 proposed a machine learning model 
based on support vector regression (SVR) that can be utilized to predict 
the permeability of sandstones [8]. A model was trained using a dataset 
of petrophysical properties and proved to be highly accurate when it 
came to predicting permeability values based on the data. There was a 
demonstration in the study that the use of machine learning techniques 
can be used to accurately estimate permeability in geological formations 
[9]. Using an ML model based on decision trees, Ahmadi and Chen 
developed a model in 2019 to predict the fractured rock's permeability. 
They used a decision tree framework to create the ML model. Based on 
a dataset of micro seismic data, the model was trained and was able to 
predict permeability values with a high level of accuracy. There was 
considerable evidence in the study that ML techniques can be used to 
estimate permeability in complex geological formations in an accurate 
manner [10]. 
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In addition to DL techniques, permeability estimation has also been 
explored using DL techniques. According to Singh et al. in 2019, there 
was a study that proposed a method for estimating the permeability of 
soils utilizing DL. This method involved training a deep belief network 
(DBN) based on the well logs and seismic data. In comparison to 
traditional ML methods, the deep neural network was able to predict 
permeability values with high accuracy. DL methods demonstrated to 
be capable of accurately estimating the permeability of geological 
formations by the study, demonstrating the potential of DL techniques 
[11]. 

Furthermore, AL Qahtani et al. in 2018 developed a DL model by 
integrating a convolutional neural network (CNN) into their DL model 
in order to predict permeability in shale formations using a DL model 
based on a convolutional neural network (CNN). In an experiment 
based on a dataset of digital rock images, the model was trained on a 
dataset of permeability values and it was able to simulate permeability 
values with high accuracy. In the study, DL techniques have 
demonstrated to be capable of accurately estimating permeability in 
complex geological formations using a variety of approaches [12]. 

In a follow-up study, a DL model based on a CNN was also proposed 
by Wang et al. in 2021 for predicting permeability in shale formations. 
They used a dataset of digital rock images to train the model, which 
achieved high accuracy in predicting permeability values. In this study, 
DL techniques were shown to be useful in accurately estimating 
permeability in geological formations, demonstrating their potential for 
practical applications [13]. 

This study aims to identify hydrocarbon-producing zones by 
estimating permeability using a deep learning algorithm. The algorithm 
was trained on well log data to predict permeability values at different 
depths. The resulting permeability estimates were then used to create a 
hydrocarbon production potential map. The deep learning algorithm 
employed in this study is a powerful tool for predicting permeability 
values. It is capable of learning complex relationships between input 
data and output values, making it well-suited for predicting permeability 
from well log data. To create the hydrocarbon production potential map, 
we used the permeability estimates to identify zones with high 
hydrocarbon production potential. These zones were then mapped in 
the depth of the well, providing a visual representation of the 
hydrocarbon potential at different depths. 

2. Material 

2.1. The principles of permeability calculation in the laboratory on 
the core 

Permeability is defined as the ability of a material to allow fluids or 
gases to pass through it. It is usually expressed in units of Darcy (D). 
Darcy's law states that the flow rate (Q) of a fluid through a porous 
medium is proportional to the pressure difference (ΔP) between the two 
ends of the medium and the permeability (k) of the medium. The 
equation can be expressed as below, where A is the cross-sectional area 
of the medium, and L is its length (Figure 1) [14, 15]. 

 

𝑄 = 𝑘𝐴 (
∆𝑝

𝐿
)                                                                                             (1) 

 

There are several methods for measuring permeability in the 
laboratory, including the constant-head method, the falling-head 
method, and the pulse decay method. The choice of method depends on 
the type of material being tested, the level of precision required, and the 
available equipment. For example, the constant-head method is used for 
testing highly permeable materials, such as sands and gravels. In this 
method, a constant pressure difference is maintained across the sample, 
and the flow rate is measured over time. The permeability is then 
calculated using Darcy's law. The equation for permeability in the 
constant-head method is: 

 

𝑘 =  
𝑄𝐿

𝐴∆𝑃
                                                                                                        (2) 

 

Where Q is the flow rate, L is the length of the sample, A is the cross-
sectional area of the sample, and ΔP is the pressure difference [16]. 

 
Figure 1. The Darcy law schematic. 

 

2.2. Deep learning Algorithm mathematics and architecture 

The recurrent neural network (RNN) is a type of deep learning 
algorithm that has gained popularity over the years for its use in a wide 
range of applications, such as natural language processing, speech 
processing, and time-series analysis. It is widely known that the Long 
Short-Term Memory (LSTM) algorithm is a type of RNN, which is 
widely used for modelling sequential data due to its ability to capture 
long-term dependencies between data points [17, 18]. As a result, LSTM 
models can be computationally expensive to train when used on a large 
dataset, which limits their scalability. The CUDNNLSTM algorithm is a 
parallelized version of the LSTM algorithm that has been designed to 
run efficiently on graphics processing units (GPUs) and is designed to 
run quickly. The Long Short-Term Memory (LSTM) algorithm was first 
introduced in 1997 by Sepp Hochreiter and Jürgen Schmidhuber. The 
LSTM algorithm was developed as a solution to the vanishing gradient 
problem, which is a common issue with traditional recurrent neural 
networks (RNNs) that hinders their ability to learn long-term 
dependencies in sequential data [19]. 

The original LSTM architecture had three types of gates: input, forget, 
and output. These gates allowed the network to selectively retain or 
discard information at each time step, depending on its relevance to the 
current task. The LSTM algorithm quickly gained popularity for its 
ability to learn long-term dependencies in sequential data and was 
widely used in various fields, including speech recognition, handwriting 
recognition, and natural language processing. 

Over the years, researchers proposed several improvements and 
variations to the original LSTM architecture. One of the most significant 
improvements was the Gated Recurrent Unit (GRU) proposed by 
Kyunghyun and et al in 2014 [20].The GRU architecture had two gates: 
update and reset, which simplified the LSTM architecture and achieved 
comparable performance on various tasks. In recent years, there has 
been a growing interest in using deep learning algorithms for various 
applications, including natural language processing, computer vision, 
and speech recognition. 

The vanilla RNN architecture (figure 2) was used in the initial 
implementation of CUDNN; however, vanilla RNNs have been known 
to have difficulty with long-term dependencies. The Long Short-Term 
Memory (LSTM) architecture, developed by Google researchers, 
addresses many of these issues by selectively updating hidden states 
with gated cells [21]. 

The development of the CUDNNLSTM algorithm is closely tied to 
the rise of deep learning and the increasing demand for efficient 
implementations of recurrent neural networks (RNNs) on graphics 
processing units (GPUs). A set of optimized primitives for deep learning 
on GPUs was made available in 2014 by NVIDIA as part of their CUDA 
Deep Neural Network library (CUDNN) [22]. In addition to optimizing 
the convolution and pooling layers, RNNs were also implemented as 
primitives. Speech recognition and machine translation are popular 
tasks for the LSTM architecture, but its computational requirements 
make GPU implementation difficult. As a result, NVIDIA released an 
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updated version of CUDNN in 2016 that included an optimized LSTM 
implementation, known as CUDNNLSTM. By optimizing data layouts, 
kernel fusions, and dynamic parallelism, CUDNNLSTM takes full 
advantage of the parallelism offered by GPUs to minimize computation 
times. By using GPUs instead of earlier implementations, deep LSTM 
models could be trained and deployed with significantly improved 
performance. 

 

 
Figure 2. The Vanilla RNN architecture. 

 
CUDNNLSTM uses the Long Short-Term Memory (LSTM) network 

as a basis for its architecture, a type of RNN that is able to recognize 
long-term dependencies in sequential data by utilizing memory cells and 
gates. CUDNNLSTM networks consist of several layers of LSTM cells 
that are interconnected to each other and to inputs and outputs. 

There are several components in each LSTM cell (figure 3): 
1. Input gate: Determines which information from the current input 

should be stored in the cell state. 
2. Forget gate: Determines which information from the previous cell 

state should be forgotten. 
3. Cell state: The memory of the LSTM cell that stores information 

from previous time steps and current input. 
4. Output gate: Determines which information from the current cell 

state should be output. 
CUDNNLSTM algorithm in greater detail. Figure 3 shows the state 

of the gates, but Figure 4 reveals the performance of the CUDNNLSTM 
algorithm and the state of the gates in more detail. 

The input to the LSTM layer at time step t is a vector  𝑋𝑡 ∈ 𝑅𝐷, where 
D is the dimensionality of the input. The LSTM layer maintains an 
internal state  ℎ𝑡 ∈ 𝑅𝐻, where H is the dimensionality of the hidden 
state, and a cell state 𝐶𝑡 ∈ 𝑅𝐻, which stores the long-term memory (table 
1). The internal state and the cell state are updated at each time step 
based on the input and the previous states. 

The input gate 𝑖𝑡 takes the input 𝑋𝑡 and the previous hidden state ℎ𝑡−1 
and produces a vector of values between 0 and 1 that determines how 
much of the input should be added to the cell state. The forget gate 𝑓𝑡 
takes the input 𝑋𝑡 and the previous hidden state ℎ𝑡−1 , produces a vector 
of values between 0 and 1 that determines how much of the cell state 
should be forgotten. The output gate 𝑂𝑡 takes the input 𝑋𝑡 and the 
current hidden state ℎ𝑡 , produces a vector of values between 0 and 1 
that determines how much of the cell state should be output. The cell 
gate 𝐶𝑡 takes the input 𝑋𝑡, the previous hidden state ℎ𝑡−1, and the 
previous cell state 𝐶𝑡−1 , produces a vector of values between -1 and 1 
that determines the new cell state. 

The updated cell state 𝐶𝑡 and hidden state ℎ𝑡 at time step t are 
calculated as follows: 
1. In forger gate: 

 

𝑓𝑡 =  𝜎 . (𝑊𝑓 . 𝑋𝑡 + 𝑈𝑓. ℎ𝑡−1 + 𝑏𝑓)                                                              (3) 
 

2. In input gate: 
 

𝑖𝑡 =  𝜎. (𝑊𝑖 . 𝑋𝑡 + 𝑈𝑖 . ℎ𝑡−1 + 𝑏𝑖)                                                            (4) 

 
Figure 3. A schematic of the state of the gates in one cell of 

LSTM/CUDNNLSTM 

 
Table 1. Abbreviations used in expressing equations used in algorithm gates 

 
3. In cell or LSTM gate 
 

𝐶𝑡 , = tanh(𝑊𝑐 . 𝑋𝑡 + 𝑈𝑐 . ℎ𝑡−1 + 𝑏𝑐)                                                          (5) 
 

4. Update cell state 
 

𝐶𝑡 =  𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 × 𝐶𝑡 ,                                                                       (6) 
 

5. In output gate 
 

𝑂𝑡 =  𝜎. (𝑊𝑜. 𝑋𝑡 + 𝑈𝑜. ℎ𝑡−1 + 𝑏𝑜)                                                          (7) 
 

6. Update hidden state 
 

ℎ𝑡 = 𝑂𝑡 × tanh(𝐶𝑡)                                                                                  (8) 
 

where 𝜎 is the sigmoid function, tanh is the hyperbolic tangent 
function, and 𝑊𝑓 , 𝑊𝑖 , 𝑊𝑐 , 𝑊𝑜 , 𝑈𝑓, 𝑈𝑖 , 𝑈𝑐, and 𝑈𝑜 are weight matrices, and 
𝑏𝑓, 𝑏𝑖, 𝑏𝑐, and 𝑏𝑜 are bias vectors. The variables with primes (𝐶𝑡 ,) denote 
the intermediate cell state before applying the forget and input gates. 

In summary, the CUDNNLSTM algorithm is a type of recurrent 
neural network (RNN) optimized for use on NVIDIA GPUs. It is 
designed to efficiently process sequential data, such as time series or 
natural language text, by learning patterns and relationships between 
the input data and the output predictions. The CUDNNLSTM 
algorithm is based on the Long Short-Term Memory (LSTM) 
architecture, which is a type of RNN capable of capturing long-term 
dependencies in the input data. The CUDNNLSTM algorithm uses a set 
of learnable parameters, including weights and biases, to transform the 
input data into a hidden state representation. This hidden state is then 
used to make predictions about the output data. The algorithm is 
optimized for use on NVIDIA GPUs by leveraging the parallel 
processing capabilities of these devices. This allows for faster training 
and inference times, making it well-suited for use in large-scale machine 
learning applications. Overall, the CUDNNLSTM algorithm is a 
powerful tool for processing sequential data and has been used in a wide 
range of applications, including speech recognition, natural language 
processing, and image captioning. 

2.3. Feed of CUDNNLSTM 

A complex interrelationship exists between the physical properties 
governing permeability in porous media, such as rocks and soils. 
Density, porosity, and wave speed are the three primary properties that 
affect permeability. It is possible to predict and optimize permeability 

Decision maker (N-1) 𝐶𝑡−1 

Result (N-1) ℎ𝑡−1 

Result (N) ℎ𝑡 

Decision maker (N) 𝐶𝑡 

Result (N) ℎ𝑡 

Input data 𝑋𝑡 
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under different conditions based on the mathematical relationships 
among these properties [23, 24]. 

Density can be expressed mathematically as the mass per unit volume 
of a porous medium: 

 

𝜌 = (1 − 𝜑) × 𝜌𝑠 + 𝜑𝜌𝑓                                                                                    (9) 
 

There are three density factors in this equation: ρ is the density of the 
medium, 𝜌𝑠 is the density of the solid phase, 𝜌𝑓 is the density of the fluid 
phase, and 𝜑 is the porosity of the medium. According to the equation 
above, porosity is the percentage of void space within a medium and is 
related to density. As porosity increases, the available space for fluid flow 
also increases. 

In a porous medium, wave speed is related to density and porosity 
through the bulk modulus by excremental equation, which is a measure 
of the medium's resistance to compression. 

 

𝑉 = (
𝐾

𝜌
)0.5                                                                                             (10) 

 

In this equation, v is the speed of waves through the medium, K is the 
bulk modulus, and ρ is the density of the medium. 

On the basis of porosity and other physical properties of the medium, 
empirical equations can be used to estimate permeability, such as the 
Kozeny-Carman equation. Porous media can be theoretically measured 
and validated using experimental techniques, such as CT scanning and  
 

permeameters. To understand and predict a porous medium's 
permeability, it is essential to understand the interrelationships between 
density, porosity, and the speed of waves passing through it. Based on 
the measured physical properties of the medium, empirical equations 
can be used to estimate permeability. Mathematical relationships 
between these properties have been extensively studied. As mentioned, 
the relationship between sonic, density, and neutron logs and 
permeability has been established through various empirical 
relationships. However, in this study, we sought to develop a more 
robust approach for estimating permeability using these logs. To achieve 
this, we first normalized the data by converting all logs into a range 
between -1 and 1. This was necessary due to variations in log changes 
that made them incomparable on the same scale. After normalizing the 
logs, we compared their new values against the core permeability data. 
After fitting a line to the data, we found that the sonic, density, and 
neutron logs exhibited the highest correlation with permeability data. 
Based on these findings, we used these three logs as inputs to an 
algorithm for estimating permeability. By this approach, we were able to 
develop a more accurate and reliable method for predicting 
permeability in subsurface reservoirs. After fitting a line to all the logs 
in the full set (Figure 5), the density, neutron, and sonic logs had 
correlation coefficients of 0.90, 0.83, and 0.73, respectively. These three 
coefficients had the highest values among all the other correlation 
coefficients. 

 

 
Figure 5. Correlation coefficient of neutron, sonic, and density logs with core permeability data. (All data are normalized between -1 and 1). 
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Figure 6. The Full-Set of data which sonic, density and neutron logs were used. 

 

3. Algorithm design for permeability estimation 

This algorithm (CUDNNLSTM) is designed to estimate time series 
data with high dispersion using several key steps (table 2). Here is a 
detailed explanation of the algorithm and its optimizer: 

1. Data Pre- preprocessing: To ensure the accuracy of the logs, we  

 
 
 
took great care in the pre-processing stage. We carefully examined the 
data and removed any invalid or unreliable information. For instance, 
we removed the data of washout, log tails, and spike’s locations since 
they can distort the readings and lead to inaccurate results. After  
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Table 2. Algorithm Code. 

1. Define the look-back window size n. 
2. Load the time series data x_t. 
3. Normalize the data to obtain x̂_t using a min-max scaler. 
4. Split the data into training and testing datasets. Create the training dataset (X_train, Y_train) and the testing dataset (X_test, Y_test) by sliding a window of 

size n over the normalized data x̂_t. 
5. Define the CuDNNLSTM model with LSTM units and a dense layer with a single output. 
6. Train the model by minimizing the mean squared error (MSE) between the predicted and actual output using the Adam optimizer: 

• Initialize the model weights 

• For each epoch i in the range 1, ..., N: 

• Shuffle the training dataset 

• For each mini-batch of size m in the training dataset: 

• Compute the gradients of the loss with respect to the model parameters using backpropagation through time (BPTT) 

• Update the model parameters using the Adam optimizer 

• Evaluate the model on the training and testing datasets by computing the MSE. 

• Fine-tune the model if necessary, by adding more layers, changing the number of units, or modifying the learning rate and other hyperparameters 

• . Make predictions on new data x'_t. 

• Normalize the new data to obtain x̂'_t. 

• Create the new dataset (X_new, Y_new) by sliding a window of size n over the normalized new data x̂'_t. 

• Predict the output ȳ_new using the trained model and the input X_new. Evaluate the predictions on the new data by computing the MSE. 
 
 

removing the data with these conditions, we filled the resulting gaps 
using the average method to ensure that there were no missing values 
in the data. We also de-spike the sonic log values to eliminate any 
sudden, extreme changes that could have been caused by noise or other 
factors. Moreover, we applied environmental corrections to all three logs 
to account for any variations in the well's conditions. This step was 
crucial to ensure that the logs accurately reflected the subsurface 
properties of the well. We took into consideration factors such as 
temperature, pressure, and salinity, among others, to make the necessary 
adjustments. Overall, our pre-processing efforts were aimed at 
producing high-quality logs that could be used for further analysis and 
interpretation. We also corrected the depth of other logs using gamma 
log data. The reason for using the gamma log is that we had laboratory 
log gamma data from core data, which allowed us to compare the core 
data with the log data. 

2. Data preprocessing: The input data (sonic, density, and neutron 
loges) are first normalized between -1 and 1 using the MinMaxScaler 
function from the sklearn preprocessing module. To ensure that the 
algorithm can properly process the input data, this step ensures that the 
data is within a consistent range.  

3. Splitting the data: The normalized data is then split into training 
and testing datasets using a specified ratio. The model is then tested on 
unseen data to determine how accurate it is. 

4. Creating training and testing datasets: A function is then created to 
generate training and testing datasets with a specified look-back 
window. The algorithm will use this window to determine how many 
previous time steps it will consider when making its predictions. A 
crucial step in the algorithm's learning process is identifying patterns 
and relationships between inputs and outputs. The core data is used as 
training data and the other part serve as test data in a ratio of 8:10. 

5. Building the CUDNNLSTM model: The CUDNNLSTM model is 
then created with an input shape of (look_back, 3) and an output shape 
of (1). This model is a type of recurrent neural network that is optimized 
for GPU processing. This makes it an ideal choice for processing large 
amounts of time series data with high dispersion. 

6. Compiling the model: The model is compiled with mean squared 
error loss and the Adam optimizer. The mean squared error loss 
function is used to evaluate the performance of the model's predictions. 
The Adam optimizer is a popular optimizer used in deep learning 
algorithms that uses adaptive learning rates to improve training 
efficiency. 

 
7. Training the model: During training, the model uses the training 
dataset to update the weights in the neural network. The performance 
of the model is evaluated on both the training and testing datasets using 
mean squared error and root mean squared error metrics. These metrics 
are used to evaluate the accuracy of the model's predictions. 

8. Optimizing with the Adam optimizer: The Adam optimizer uses a 
combination of momentum and gradient descent techniques to update 
the weights in the neural network during training. It computes 
individual adaptive learning rates for each weight based on the historical 
gradients for that weight. This helps the optimizer to converge to a 
better solution faster than other traditional optimization algorithms. 

9. Fine-tuning the model: After training the model, the performance 
is evaluated on the testing dataset. If the performance is not satisfactory, 
the model can be fine-tuned by adjusting the hyperparameters, such as 
the number of neurons in the CUDNNLSTM layer or the learning rate 
of the optimizer. 

10. Making predictions: Once the model is trained and fine-tuned, 
it can be used to make predictions on new data. The input data is 
preprocessed and fed into the model to obtain the predicted output. 

11. Evaluating the predictions: The accuracy of the predictions can be 
evaluated using metrics, such as mean squared error or root mean 
squared error. These metrics help determine how well the model is able 
to estimate time series data with high dispersion. 

The CUDNNLSTM algorithm and its optimizer are carefully 
designed to ensure accurate and efficient estimation of time series data 
with high dispersion. Using adaptive learning rates, the optimizer 
improves the training efficiency of the model. As a result, the 
CUDNNLSTM is the perfect choice for applications that require 
extensive time series data analysis. 

4. Result 

As shown in Figure 5, we can see the parts of the formation where the 
drilling core data is available. In our research, we separated 80% of the 
data and put it in a training pool, and we used the remaining 20% as a 
validation pool. Finally, after observing the excellent results of the total 
permeability along the formation, we expanded and estimated it using 
the CUDNNLSTM algorithm. 

As the signals received from the sonic, density, and neutron logs are 
highly dispersed, we adjusted the algorithm that we described 
previously to be trained for 1000 epoch. However, when the validation 
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loss value reached 0.0158 and after that, the amount of validation loss 
increased rapidly, and the algorithm automatically paused the training 
process because the training process had been completed. As a result, it 
was able to reach an accuracy of 98.42% within 500 epoch of the 
algorithm (Figure 6). 

 

 
Figure 7. Amount of validation loss in each epoch. 

 
Using the test data from the drilling cores, we estimated the 

permeability after training the algorithm in order to evaluate its success 
in estimating permeability. To measure the difference between two data, 
the mean squared error (MSE) criterion was used, and its value was 
equal to 1.203. (Figures 7 & 8). 

 

 
Figure 8. The result of permeability estimation by the CUDNNLSTM algorithm 
against Core values. 

 
This time, we applied the algorithm to the entire set of wells (figure 

9) in order to estimate their permeabilities after seeing the excellent and 
satisfactory results in Figures 7 and 8. 

 
Figure 9. The error rate between the estimated data and the core data. 

 
 

 
Figure 10: The result of permeability estimation by the CUDNNLSTM algorithm. 
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5. Conclusion 

A powerful deep learning algorithm, CUDNNLSTM, has 
demonstrated excellent performance in a variety of applications. To 
predict the next numerical value in a series, we applied the 
CUDNNLSTM algorithm to a dataset of numerical values. According to 
our results, the CUDNNLSTM algorithm achieved 98.4% accuracy and 
0.158 validation loss. Consequently, the algorithm accurately predicted 
the next number in a series of numbers. Due to its ability to learn 
complex patterns and relationships in the dataset, the CUDNNLSTM 
algorithm achieves high accuracy. By processing large amounts of data 
quickly and efficiently, the algorithm can identify key features and 
patterns that are crucial to accurate predictions. 

In addition, the algorithm's low validation loss value indicates that it 
is not overfitting to the training data. Predictive modelling, where the 
goal is to predict future values accurately based on historical data, is 
especially vulnerable to overfitting, which can lead to poor performance 
when dealing with new and unseen data. As a result of our study, the 
CUDNNLSTM algorithm was demonstrated to be extremely effective 
in predicting the next value in a series of numbers. There is potential for 
further improvements in predictive modelling tasks based on these 
results for the field of deep learning. 
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