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Due to increasing concerns about global warming regarding CO2 release to 

the atmosphere, various methods are used to capture CO2, among which 

chemical absorption via amine mixture solutions is very well developed. A 

set of 179 data related to CO2 absorption in a mixture, including a physical 

absorbent (sulfolane) and a chemical absorption (AEEA) in a wide range of 

temperature, pressure and solvent concentration is used to develop two 

Artificial Neural Networks (ANN). In Multi-Layer Perceptron (MLP), the 

Levenberg-Marquardt method is used to train the network. Most important 

factors such as regression analysis value (R2) of 0.99963, Mean Squared 

Error (MSE) value of 1.22E-05 and Average Absolute Relative Deviation 

value (%AARD) of 0.2671 factors reveal that the MLP network has a high 

capability to predict CO2 loading (αCO2). Also, a Radial Basis Function 

(RBF) network was developed. RBF network with a spread value of 2.2 and 

138 neurons had an outstanding performance and achieved an MSE value 

of 2.53E-05 along with an R2 value of 0.99993, 11 seconds, and a %AARD 

value of 0.1460. According to experimental and predicted data, the neural 

networks are well trained and are able to predict CO2 loading precisely in 

an economic and optimized way. 

 

Introduction  

Global warming has become a significant concern due to the increasing release of greenhouse 

gases into the atmosphere. Since the increase of global mean temperature has a massive effect on 

the environment, it is vital to mitigate the emissions of such gases. The most significant contributor 

to global warming is CO2 [1], so it is crucial to find somehow routes to decrease CO2 outpouring. 

Researchers have investigated and tested different effective ways to separate CO2 from many 

mixtures in the last decades. There are three major categories of CO2 capture, pre-combustion, 

oxy-fuel combustion, and post-combustion [2]. The most mature and most used technologies are 
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developed under the post-combustion category, mainly of exhaust gas released from fossil fuel 

power plants [3].  

CO2 capture by chemical absorption is now a rising method using absorbents like amines, ionic 

liquids, inorganic compounds, and their blends [4]. Due to the variant molecular structure of 

Amines, there are some advantages and disadvantages for primary, secondary, tertiary, and 

hindered amines [2]. While blending them, it is a matter of finding the best and optimal ratio of 

concentrations [5]. 

The selection of a suitable compound depends on the flue gas's composition, temperature, and 

pressure. Corrosion rate, equipment size, and energy penalty during regeneration of solvents are 

the most critical obstacles of chemical absorption, which will be fixed by modifying the process 

and the solvent(s). MEA is the most common alkanolamine solvent used to absorb CO2 [2]. There 

are other types of alkanolamines, such as DEA (a secondary amine) and MDEA (a tertiary amine), 

that also have disadvantages when used as a single solvent. Researchers have suggested using 

blends of alkanolamines like Methanol+MEA, NMP+DEG, Piperazine+MDEA, etc., that have the 

favorable properties of every single solvent in a mixture of solvents. These solvents could perform 

better due to higher solubility and diffusivity [6, 7]. 

Generally, there are three generations of CO2 solvents. The first generation solvents 

investigated in CCS were related to conventional gas scrubbing processes. Amines with suitable 

selectivity to absorb CO2 belonged to alkanolamines [8]. Triethanolamine (TEA) as a tertiary 

amine is the first commercial solvent used for gas purification, and afterward MEA and DEA were 

then utilized afterward. MDEA (tertiary), DGA (primary), and DIPA (secondary) were also used 

[9]. Typically, CO2-amine reactivity related to the solvents, as mentioned earlier, has shown a 

linear behavior from a kinetic and regeneration energy point of view due to amines’ chemical 

structure. Primary and secondary amines produce carbamate ions by reacting with CO2, which 

increases the regeneration energy of solvents [10]. Due to carbamate formation, primary and 

secondary amines have a higher absorption rate than tertiary amines. Solvents that form carbamate 

have a higher reaction rate, which reduces equipment size. So there should be a trade-off between 

a suitable absorption rate and a low regeneration penalty [11]. 

Second generation solvents are functionalized solvents. These solvents are formed by adding 

chemical functional groups to conventional solvents in order to modify their structure. The 

structure modification refers to changes in the position and size of active regions and changes in 

the length and strength of ionic bonds. There is another type of amines called “sterically hindered 

amines” that own weaker CO2-amine bonds; hence lower energy is needed to break their bonds. 

2-amino-2-methyl-1-propanol (AMP) and 2-piperidineethanol (PE) are sterically hindered amines 

[12]. 

The third generation is amine mixtures method which is meant to combine appropriate features 

of each category of the aforementioned amines. Adding a solvent with weak performance like 

tertiary amine to one with strong performance like primary amine leads to forming a blend mixture 

of solvents that have more extraordinary features than each component as a single solvent. This 

process is called solvent promotion. MDEA was the first amine to be mixed with amines with 

faster kinetics to increase the absorption rate [13]. MEA, piperazine (PZ), and DEA are usually 

used to promote the performance of MDEA. For instance, the absorption rate of PZ is two times 

greater than that of MEA because PZ has two amine groups in its molecule. That is why PZ is used 

as a promoter for aqueous MEA solutions [14]. 
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In 2020 Asadi et al. added physical absorbent sulfolane to 2-((2-Aminoethyl) amino) ethanol 

(AEEA) to form an aqueous solution with different compositions. They conducted an experiment 

at temperatures of 313.15, 328.15, and 343.15 K and found that this mixture has better performance 

than MDEA+AEEA. They produced a set of 179 experimental data that is used in this paper. The 

data set is shown in Table B1 and Table B2 in Appendix B [15]. 

Response Surface Methodology (RSM) is an approach used in previous works to model and 

optimize CO2 absorption in different absorbents/adsorbents via various processes. This method is 

considered a statistical tool in order to reduce the number of experimental tests [16]. RSM 

modeling results in a polynomial equation whose coefficients describe the importance of each 

independent variable [17]. 

Another useful method is Artificial Neural Network (ANN). While existing thermodynamic 

models suffer low precision, neural networks are well suited for predicting the performance of 

non-linear and complex systems; hence, in the current study, two algorithms named Radial Basis 

Function (RBF) and Multi-Layer Perceptron (MLP) were developed by coding in MATLAB and 

applied to model and simulate CO2 loading in the sulfolane+AEEA mixture using a set of 179 

experimental data of the abovementioned work for the first time. These two artificial neural 

networks are based on learning by trial and error, imitating human learning. Some papers reviewed 

to create these networks are summarized in Table 1. The ones which used the ANN method have 

all achieved R2 and MSE values close to 1 and zero, respectively. 

Table 1. The list of reviewed articles utilizing different modeling methods (ANN, RSM, and Thermodynamic) 

Performance Approach Description Ref. 

R2 = 0.996 (ANN) R2 

= 0.987 (RSM) 
ANN, RSM 

Modeling of hold up, slip, and characteristic velocities in 

standard systems using pulsed disc-and-doughnut contactor 

column 

[18] 

MSE = 0.0023 (ANN) 

R2 = 0.991 (ANN) R2 

= 0.998 (RSM) 

ANN, RSM 
Hydrodynamic behavior of standard liquid-liquid systems in 

Oldshue–Rushton extraction column 
[19] 

R2 > 0.99 

(MLP & RBF) 
ANN 

Development of Predictive Models for Activated Carbon 

synthesis from different biomass for CO2 adsorption using 

Artificial Neural Networks 

[20] 

MSE = 0.00004 

(MLP) 

MSE = 0.00071 (RBF) 

ANN 
Deep learning analysis of Ar, Xe, Kr, and O2 adsorption on 

Activated Carbon and Zeolites using ANN approach 
[21] 

R2 = 0.944 RSM 

Experimental Modeling and Optimization of CO2 

Absorption into Piperazine Solutions Using RSM-CCD 

Methodology 

[17] 

AAD% = 15.05 
Thermodyna

mic Modeling 

High-pressure measurement and thermodynamic modeling 

of the carbon dioxide solubility in the aqueous AEEA+ 

sulfolane system at different temperatures 

[15]a 

R2 = 0.99 

(MLP & RBF) 
ANN 

Prediction of carbon dioxide solubility in ionic liquids using 

MLP and radial basis function (RBF) neural networks 
[22] 

AARD% < 10 ANN 
Artificial neural network models for the prediction of CO2 

solubility in aqueous amine solutions 
[23] 

MSE = 0.00023 ANN 

Developing a feed forward multilayer neural network model 

for prediction of CO2 solubility in blended aqueous amine 

solutions 

[24] 

R2 = 0.9977 

AARD% = 2.393 
ANN 

Modeling of CO2 loading in aqueous solutions of 

piperazine: 

Application of an enhanced artificial neural network 

algorithm 

[25] 
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- ANN 
Application of artificial neural networks for simulation of 

experimental CO2 absorption data in a packed column 
[26] 

MLP:  

MSE = 0.00001 

R2 = 0.999 

AARD% = 0.267 

RBF: 

MSE = 0.000026 R2 = 

0.999 

AARD% = 0.146 

ANN Current Study  

a Selected paper for modeling and simulation 

Theoretical 

Neural networks are designed and utilized based on the human brain’s learning algorithm. 

Simply they receive input/output vectors and find the complicated patterns by which the outputs 

are obtained by trial and error. The human neurological system includes subsystems called 

“neurons”. Neural messages are transferred through interconnections existing among these 

neurons. That is, in artificial neural networks, this pattern is developed. A set of inputs are given 

to neurons and processed there; then, the processed data are given to the output layer [18]. This 

procedure is repeated until the modeling goal is achieved. This goal can be MSE, R2, %AARD, 

etc. 

For this study, 179 experimental from Asadi et. al experimental study was used for the 

modelling and simulation (see Appendix B). 

Multi-Layer Perceptron (MLP) 

As the name suggests, an MLP network comprises one or more layers of perceptrons; so it is 

necessary to be familiar with the concept of a perceptron. The simplest type of MLP is a single-

layer network, including only one perceptron. All inputs (𝑥𝑖) and outputs (𝑦𝑖) (i:1,..,n) are 

connected to this perceptron. Since inputs and outputs may be of different orders of magnitude, it 

is preferable first to normalize the independent inputs and then unnormalize the outputs after the 

training procedure. Eq. 1 is used for normalization purposes. Every feature value of inputs gets 

multiplied by its corresponding weight value (wi) and gives (xiwi) which will be added together 

further. Finally, the output (y) is obtained by applying the transfer or activation function (f) to the 

summed value (z), where z and y are shown in Eqs. 2 and 3, respectively and b is called bias or 

threshold [27]. 

xi
norm= 

1-(-1)

xmax-xmin

×xi+
xmax×(-1)-1×xmin

xmax-xmin

 (1) 

Z = ∑ xiwi

n

i=1

 (2) 

y = f(z) (3) 

Y = 
1

1+ e-x
 (4) 
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Y = 
1-e-x

1+ e-x
  (5) 

 

The processing step within neurons is done using transfer functions such as hardlim† or 

Heaviside, tansig‡, logsig§, linear or purelin, etc. [28]. Logsig and tansig functions are 

demonstrated in Eqs. 4 and 5. linear transfer functions are commonly used in the final layer of a 

multi-layer network, whereas the logarithmic sigmoid and hyperbolic tangent sigmoid activation 

functions are typically used in the MLP network's hidden layers [29]. ANNs are highly capable of 

modeling nonlinear systems by using nonlinear transfer functions and, after that, changing and 

adjusting neural network parameters like weights (w) and biases (b) during the training process 

[25]. 

Only linear transfer functions could be applied to single perceptrons. Eq. 1 is, in fact, the dot 

product of weight and input vectors. Eq. 1 gives a line that classifies the data into two categories, 

so if the answer is larger than bias, it gives 1, and if smaller, zero. By adding to the number of 

perceptrons and layers, MLP is created to deal with nonlinear problems. The first layer is called 

the input layer, which connects to the first hidden layer. The processed data exiting the first hidden 

layer go to the second hidden layer, and so on. Outputs of the last hidden layer connect to the last 

layer, called the output layer. These numbers all flow from the input to the output through hidden 

layers. This kind of calculation procedure is called feedforward [27]. 

Since the given outputs are already known, the outputs of the network will be compared to them 

in order to find the error and deviation of the model [27]. The most common tool is MSE** which 

is presented in Eq. 5 where y
i

exp
, y

i
net and N are given and estimated outputs and number of given 

data respectively [30]. Eqs. 6 and 7 are the correlation coefficient [18] and average absolute 

relative deviation [25], respectively. 

MSE = 
1

N
∑ (y

i

exp
-y

i
net) 

2n
i=1  (5) 

R2=
∑ (y

i
net-y

i

exp
) 

2n
i=1

∑ (y
i
net-y

i
ave) 

2n
i=1

 (6) 

%AARD = 100 × 
1

N
∑

|αCO2,i
exp

 - αCO2,i
net |

α
CO2,i

exp
N
i =1  (7) 

After one iteration, the back-propagation method is used to modify weights and biases for the 

new round of calculations. We have tried three algorithms: Levenberg-Marquardt (trainlm), 

Bayesian Regularization (trainbr), and Scaled Conjugate Gradient (trainscg), among which the 

Levenberg-Marquardt algorithm was selected for the network. Fig. 1 is the schematic of the 

developed MLP. 

Radial Basis Function Network 

A radial basis function (RBF) is a term that refers to any real-valued function whose output is 

dependent exclusively on the distance of its input from some origin [31]. RBF networks, which 

                                                 
† hard-limiter 
‡ Hyperbolic tangent sigmoid 
§ Logarithmic sigmoid 
** Mean Squared Error 
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are a type of feedforward neural network, use a supervisory training method to model a data set 

[22]. 

RBF and MLP networks use different categorization methods. In MLP networks, hypersurfaces 

separate the clusters, whereas, in RBF networks, hyperspheres do the same [32]. The general 

formula for RBF network performance can be written as if the Gaussian function (Euclidean norm) 

is used as the basis function. The Gaussian function can be mathematically expressed as in Eq. 8 

[21]: 

G(‖x-ci‖×b) =exp(-
1

2σi
2

(‖x-ci‖×b)2), i=1, 2…, N (8) 

where σ, ci, x, G, b, and N are variance or spread, centre point, input, output, bias, and the number 

of the basis function which are cantered at ci, respectively. 

Sums of radial basis functions are typically used to approximate given functions. This 

approximation process can also be interpreted as a simple kind of neural network; this was the 

context in which they were originally applied to machine learning [33]. 

As in the MLP network, MSE and R2 were the main goals to achieve with respect to gaining 

the smallest possible number of neurons. A trial-and-error technique was again used to determine 

this number and change the variance. The developed RBF is depicted schematically in Fig. 2. 
 

 

Fig. 1. Schematic of the MLP Network 
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Fig. 2. Schematic of the RBF Network 

Results and Discussion 

As stated above, two different methods were used to develop a suitable neural network; MLP 

and RBF. These two networks were capable of training the given data and reaching the goal, which 

we tend to be the Mean Squared Error (MSE). That is, 179 experimental of the latest Assadi et al. 

study was used. The structure and results of the aforementioned neural networks will be discussed 

here. 

Multi-Layer Perceptron (MLP) 

Various cases were examined by trial and error, from which only some examples are outlined 

in Table 2. The selected network has 2 hidden layers with 15 and 10 neurons within each, 

respectively. 
Table 2. Examined MLP Networks 

Examined MLP Architectures  Statistics 

Run N1
* N2 N3  Training Function MSE %AARD R2 Epochs 

1 15 12 0  trainbr 6.34E-05 0.2217 0.99984 1778 

2 10 10 0  trainbr 1.57E-06 0.1996 0.99986 1058 

3 15 12 8  trainbr 7.58E-09 0.2101 0.99981 5288 

4 15 12 0  trainscg 1.53E-01 1.2035 0.88626 11 

5 15 10 0  trainscg 0.0066 5.9782 0.99365 55 

6 15 12 8  trainscg 3.22E-02 5.879 0.97931 21 

7 12 10 0  trainlm 9.59E-05 0.7780 0.99800 12 

8 15 12 0  trainlm 2.00E-05 0.8243 0.99973 28 

9 15 10 0  trainlm 1.22E-05 0.2671 0.99963 42 

10 15 12 8  trainlm 2.45E-05 0.2765 0.99975 22 
* N1, N2, and N3 are numbers of neurons in each hidden layer, respectively. 

The temperature, partial pressure of CO2, and wt.% concentration of mixture components were 

selected as inputs to the network (5 inputs) and the CO2 loading as output. %80, %5, and 15% of 

the data were taken for training, validation, and testing, respectively. As it is seen, the ninth 
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structure has had the best performance. Our goal was to reach the minimum MSE achievable with 

slight attention to the R2 factor and %AARD. 

In order to train the network, we used several back-propagation training algorithms such as 

'trainlm', 'trainbr' and 'trainscg', among which the first algorithm performed better than the others. 

According to Table 2 the Bayesian Regularization learning algorithm is the most accurate but 

highly time-consuming and takes too many iterations (epochs), hence not appropriate for our work. 

One important aspect of the training process is the determination of activation functions. For this 

matter, the first and second hidden layers are given the tangent sigmoid (tansig) function, and the 

output layer is given pure linear function (purelin). 

After finding the structure we were looking for, we extracted biases and weights calculated by 

the selected network. These values are reported in Table A1 and Table A2, respectively. For the 

MLP network, the performance and regression diagrams are shown in Fig. 3 and Fig. 4, 

respectively. According to Fig. 3, the training procedure has stopped when the lowest MSE is 

achieved. The regression factor of all three steps of modeling in the optimum structure is close to 

1, so the processed data are well-fitted. The regression factor of data selected for training, test, and 

validation, along with that of the overall data, is shown in Fig. 4. All steps of training are well-

fitted. Fig. 5 is also a 3-D demonstration of how partial pressure of CO2 and wt.% of AEEA affect 

CO2 loading at three fixed temperatures (313.15 K, 328.15 K, and 343.15 K). As it is seen, the 

CO2 loading in the mixture increases by increasing the partial pressure of CO2. Also, the 

temperature has a direct effect on CO2 loading. 

Fig. 6 shows that at a fixed temperature, the aqueous part of the mixture has more contribution 

to increasing CO2 absorption. By increasing temperature at fixed concentrations of the 

components, the CO2 loading increases as well. 

 

Fig. 3. Performance of the selected MLP network 
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Fig. 4. Regression diagrams of the selected MLP network 

In general, increasing the temperature has a reverse effect on CO2 loading. At a fixed 

temperature, with increasing the partial pressure of CO2, the CO2 loading is significantly 

increased. In case the aqueous portion of the solution is larger than the AEEA+sulfolane portion, 

larger values of αCO2 could be obtained. 
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Fig. 5. 3-D demonstration of the effect of pressure, AEEA (wt.%) and temperature on CO2 loading at a) 313.15 K, 

b) 328.15 K, and c) 343.15 K 

Radial Basis Function (RBF) 

Here again, the very same inputs and output were used. Several cases were examined through 

trial and error, of which only a few are highlighted in Table 3. First, we started from a low value 

of the number of neurons and variance (spread). The goal was to reach the minimum MSE. As 

mentioned above, by trial and error, we found out that the best structure to achieve our goal was a 

network with 138 neurons and a spread value of 2.2. other influential factors were R2, time, and 

%AARD, of which the highlighted network had the optimal performance. 
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Fig. 6. 3-D demonstration of the effect of AEEA (wt.%), Sulfolane (wt.%) and temperature on CO2 loading at a) 

313.15 K, b) 328.15 K, and c) 343.15 K 

Table 3. Examined RBF Networks 

Examined RBF Networks  Statistics 

Run Spread Neurons  MSE R2 t %AARD 

1 2 129  4.25E-05 0.99990 12.10 0.2043 

2 2 120  4.53E-05 0.99988 10.37 0.2058 

3 2 108  5.10E-05 0.99987 9.41 0.2197 

4 2 99  5.37E-05 0.99986 8.59 0.2224 

5 2 150  2.83E-05 0.99993 12.47 0.1520 

6 2 138  3.62E-05 0.99991 11.43 0.1837 

7 2.1 138  2.86E-05 0.99993 11.84 0.1611 

8 2.2 138  2.53E-05 0.99993 11.40 0.1460 

9 1.9 138  2.14E-05 0.99994 17.86 0.1517 

10 1.9 120  3.12E-05 0.99990 10.74 0.1944 

11 1.9 150  1.86E-05 0.99995 13.04 0.1302 

The regression and performance diagrams for the RBF network are shown in Fig. 6 and Fig. 7, 

respectively. 
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Fig. 7. Performance of the selected RBF network 

 
Fig. 8. Regression diagram of the selected RBF Network 
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Conclusion 

In the present work, the CO2 absorption in a mixture solvent of AEEA+sulfolane was modeled 

and simulated via Artificial Neural Network (ANN) using MATLAB. The 179 data were obtained 

from recent research of Assadi et al. Partial pressure of carbon dioxide, temperature and wt.% 

concentration of AEEA, sulfolane, and water were the five inputs to the system, and CO2 loading 

(αCO2) was the only output. Multi-Layer Perceptron (MLP) and Radial Basis Function (RBF) 

networks were developed to get the minimum MSE (1.22E-05) and maximum R2 (> 99%) factor 

possible. The MLP reached our goal by a two-layered network, each containing 15 and 10 neurons, 

respectively. The RBF network also had a phenomenal performance in achieving the minimum 

possible MSE (2.53E-05) and maximum R2 (> 99%) with 138 neurons and a variance value of 2.2. 

Both optimal networks were acquired by a trial-and-error procedure changing the number of 

hidden layers and neurons and variance in the MLP and RBF networks, respectively. Also, by 

calculating the average absolute relative deviation (%AARD), both systems are highly accurate in 

predicting the experimental data. Finally, more training datasets could be added to the existing 

models to cover a wider range of input parameters, which can be a field of focus in future studies. 
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Appendix A: Weights and Biases 
 

Table A1. Weights and biases of the first hidden layer 

Neurons T (K) PCO2
 (kPa) AEEA (%wt) sulfolane (%wt) H2O (%wt) Bias 

1 -0.0908 -1.7140 0.3275 -0.7880 -1.4701 2.3451 

2 -0.2827 1.5391 -0.4198 -0.3222 -0.7657 1.8438 

3 2.0295 2.2140 0.2948 0.5920 0.1106 -1.2899 

4 1.4008 0.0620 -1.1339 1.1947 -0.9393 -1.1974 

5 0.0520 -1.8130 0.7474 1.3564 1.1204 1.2973 

6 -0.0656 -1.1815 -1.7244 0.8154 -1.2336 0.7138 

7 -0.7713 -1.3477 -0.9190 -0.1973 -1.7795 -0.0276 

8 1.3195 1.2804 0.1624 1.0077 -0.9340 -0.1247 

9 -0.2271 -1.6079 0.8947 -0.6138 -0.6736 -0.2058 

10 -0.9896 -1.1729 -1.0868 -0.7685 -0.2819 -0.9105 

11 0.5844 -0.7953 1.0124 1.7418 -0.4990 0.8112 

12 -0.4654 0.7512 0.8760 1.5086 1.5980 -1.3007 

13 -2.4564 1.1700 -0.0222 -0.3173 -0.2956 -0.9959 

14 -0.5216 0.9676 -0.3159 1.0335 -2.1073 -1.7379 

15 -1.8784 0.1157 -0.0769 0.4221 1.5557 -2.3191 
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Table A2. Weights and biases of the second hidden layer and the output layer 

Second hidden layer First hidden layer  Output layer 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Bias  αCO2
 Bias 

1 0.9647 -1.1348 0.9468 0.1199 -0.2760 0.0299 0.2077 -0.5793 -0.0436 -0.2009 0.1157 -0.6480 0.1769 0.0767 -0.3213 -1.4776  -0.7444 0.4572 

2 0.0109 -0.4931 0.0376 0.1006 -0.3946 0.4061 0.2255 0.7102 0.6065 -0.4990 -0.1879 -0.3713 0.1694 -0.5256 -0.4086 1.2701  -0.1765   

3 -0.4363 -0.5093 0.0446 0.1616 -0.0955 -0.2788 0.6468 0.3549 -0.1069 0.1033 -0.3665 -0.5025 0.5284 0.0578 0.4766 0.9992  -0.9809   

4 -0.1426 -0.4475 -0.3028 -0.0407 -0.2899 0.5472 0.3515 -0.0231 0.7146 -0.6835 0.3463 -0.3040 -0.6149 0.6517 -0.5638 0.6899  -0.2555   

5 -0.4107 -0.0581 -0.2291 0.7296 0.3574 -0.3405 0.3792 0.0493 -0.4336 -0.2532 0.1632 0.1826 0.9603 -0.3606 0.5391 0.1302  0.4195   

6 0.1203 -0.4409 0.5759 -0.5074 -0.7215 -0.7264 -0.3670 -0.5768 -0.1098 -0.6354 -0.7121 0.5756 0.1722 -0.4809 0.3374 0.0223  0.1656   

7 -0.2920 -0.2903 0.0290 0.8894 0.5536 0.5317 -0.5968 0.3692 -0.0887 -0.3326 0.0164 0.9083 0.1875 0.0169 -0.3115 -0.3010  0.3120   

8 -0.1653 0.3483 0.0869 0.4724 -0.0078 0.0350 0.7519 -0.5307 0.6166 0.4921 -0.7220 -0.3314 0.4390 0.7332 -0.2728 0.8028  0.1515   

9 0.5837 -0.7060 -0.3582 0.4262 0.3123 0.2137 -0.5605 -0.3502 0.2343 0.1489 0.3279 0.2617 0.0946 0.2987 -0.2537 1.3632  -0.4640   

10 -0.6501 0.8807 0.3480 -0.5961 -0.1191 0.6567 0.1309 -0.0076 0.1860 0.0711 -0.3895 -0.0266 0.6783 -0.5109 -0.3642 -1.6322  0.7219   

 

  





  

  

  

 

APPENDIX B: The Selected Data 

Table B1. The experimental data used for constructing the ANNs at 313.15 K (Asadi et al., 2020) 

PCO2
 (kPa)  αCO2  PCO2

 (kPa)  αCO2  

T=313.15 K, AEEA+sulfolane+H2O (30-20-50) wt.% T=313.15 K, AEEA+sulfolane+H2O (30-10-60) wt.% 

109  0.9576  136  0.9989  

495  1.052  565  1.087  

983  1.1237  947  1.1412  

1784  1.2027  1473  1.1937  

2369  1.2525  1842  1.2326  

2913  1.2999  2405  1.2768  

3377  1.3547  2945  1.3235  

3902  1.3669  3691  1.3437  

4445  1.3986  4208  1.3683  

4996  1.4235  4809  1.3965  

    5321  1.4182  

60) wt.%-20-O (202T=313.15 K, AEEA+sulfolane+H T=313.15 K, AEEA+sulfolane+H2O (20-10-70) wt.% 

230  1.1128  270  1.1579  

474  1.1723  594  1.2377  

920  1.2672  965  1.3028  

1386  1.3407  1342  1.3685  

1854  1.4066  1934  1.4384  

2338  1.4483  2456  1.4958  

2996  1.5089  3025  1.5429  

3660  1.5593  3681  1.5745  

4634  1.6154  4451  1.589  

5197  1.6725  5185  1.6289  

T=313.15 K, AEEA+sulfolane+H2O (10-20-70) wt.% T=313.15 K, AEEA+sulfolane+H2O (10-10-80) wt.% 

215  1.1561  283  1.2094  

693  1.3449  637  1.3585  

1453  1.5307  1098  1.4836  

1792  1.5909  1570  1.593  

2604  1.6987  2044  1.6637  

3394  1.7873  2780  1.7425  

4012  1.8615  3423  1.7976  

4527  1.9352  3904  1.8266  

    4289  1.8727  

    4597  1.9191  

Table B2. The experimental data used for constructing the ANNs at 328.15 K (Asadi et al., 2020) 

PCO2
 (kPa)  αCO2  PCO2

 (kPa)  αCO2  

T=328.15 K, AEEA+sulfolane+H2O (30-20-50) wt.% T=328.15 K, AEEA+sulfolane+H2O (30-10-60) wt.% 

123  0.9314  137  0.975  

570  1.0256  608  1.0612  

989  1.0787  1134  1.1208  

1626  1.1443  1705  1.1732  

2117  1.1849  2624  1.2426  

2848  1.2522  3228  1.2843  

3525  1.3048  3822  1.296  

4261  1.3288  4464  1.3215  

4928  1.3698  4896  1.3476  

5189  1.3925  5448  1.385  

        

60) wt.%-20-O (202T=328.15 K, AEEA+sulfolane+H T=328.15 K, AEEA+sulfolane+H2O (20-10-70) wt.% 

237  1.0595  191  1.0716  

608  1.144  606  1.1707  

986  1.2083  1019  1.2414  

1456  1.2716  1518  1.3006  

2062  1.3452  2056  1.3614  

2680  1.42065  2559  1.4265  

3242  1.4798  3298  1.4711  

4177  1.5164  3983  1.4934  

4770  1.5528  4635  1.5303  
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5286  1.6065  5168  1.5713  

T=328.15 K, AEEA+sulfolane+H2O (10-20-70) wt.% T=328.15 K, AEEA+sulfolane+H2O (10-10-80) wt.% 

226  1.107  501  1.242  

548  1.2373  744  1.3111  

796  1.3056  1195  1.4235  

1094  1.3809  1574  1.5159  

1638  1.5095  2095  1.6044  

2117  1.5879  2859  1.6895  

2557  1.6418  3704  1.7541  

3058  1.6881  3997  1.7811  

3548  1.7399  4475  1.8464  

4244  1.8293  4718  1.8895  

Table B3. The experimental data used for constructing the ANNs at 343.15 K (Asadi et al., 2020) 

PCO2
 

(kPa) 
 αCO2  

PCO2
 

(kPa) 
 αCO2  

T=343.15 K, AEEA+sulfolane+H2O (30-20-

50) wt.% 

T=343.15 K, AEEA+sulfolane+H2O (30-10-

60) wt.% 

84  0.8446  184  0.9168  

411  0.9377  512  0.9951  

1034  1.0245  1087  1.0665  

1551  1.0794  1625  1.1159  

2286  1.1497  2562  1.1801  

2901  1.2276  2997  1.2207  

3611  1.2643  3708  1.2574  

4251  1.3001  4452  1.2945  

4794  1.3329  5130  1.3273  

5086  1.3615  5425  1.3502  

        

-20-O (202T=343.15 K, AEEA+sulfolane+H

60) wt.% 

T=343.15 K, AEEA+sulfolane+H2O (20-10-

70) wt.% 

197  0.9782  174  1.0113  

420  1.049  398  1.08  

924  1.1451  564  1.1124  

1404  1.2026  823  1.1547  

2016  1.2658  1418  1.229  

2437  1.3015  1965  1.2815  

3129  1.3573  2571  1.3311  

4097  1.4345  3071  1.3685  

4735  1.4655  3849  1.4184  

5253  1.5049  4838  1.4505  

    5428  1.4895  

T=343.15 K, AEEA+sulfolane+H2O (10-20-

70) wt.% 

T=343.15 K, AEEA+sulfolane+H2O (10-10-

80) wt.% 

205  1.0361  232  1.0728  

673  1.2049  526  1.1861  

1423  1.3807  941  1.2956  

1752  1.4309  1529  1.4207  

2594  1.532  2127  1.4982  

3244  1.6373  2650  1.5466  

4168  1.7615  3097  1.5938  

4631  1.8152  3896  1.694  

    4306  1.7456  

    4589  1.7796  

 


