تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,115,171 |
تعداد دریافت فایل اصل مقاله | 97,219,167 |
Effective Dose Regimen of Streptozotocin for Inducing Diabetes in a Rat Model | ||
Iranian Journal of Veterinary Medicine | ||
مقاله 5، دوره 18، شماره 3، مهر 2024، صفحه 377-386 اصل مقاله (652.35 K) | ||
نوع مقاله: Original Articles | ||
شناسه دیجیتال (DOI): 10.32598/ijvm.18.3.1005389 | ||
نویسندگان | ||
Olushola Emmanuel Adeleye* 1؛ Temtope Ajala1؛ Oluwatodimu Adewole Adekoya2؛ Adenike Iyabo Adeleye3 | ||
1Department of Veterinary Physiology and Biochemistry, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, Nigeria. | ||
2Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, Nigeria. | ||
3Veterinary Teaching Hospital, Federal University of Agriculture, Abeokuta, Nigeria. | ||
چکیده | ||
Background: Diabetes mellitus (DM) is a metabolic disorder characterized by an elevated blood sugar level due to problems with insulin synthesis, effect, or both. Various clinical signs follow DM: Hyperglycemia, polydipsia, polyuria, and polyphagia. Worldwide prevalence is high and predicted to be 592 million by 2035. Animal models are used in the study of diabetes due to ethical issues. Although the streptozotocin (STZ) model is frequently used, it is unreliable due to unexplained acute toxicity and effective dose variability. Objectives: This research was conducted to determine the effective dose regimen of STZ for inducing diabetes in Wister rats. Methods: A total of 28 male Wistar rats (160-190 g) were randomly divided into 4 groups (each 7 rats) and monitored for 21 days after diabetes induction with STZ: Control (CTR), diabetics (DIA)1 (60 mg/kg STZ), DIA2 (60 mg/kg STZ twice at 0 and 24 hours), and DIA3 (60 mg/kg STZ thrice at 0, 24 and 48 hours). Plasma glucose was determined with a glucometer. Body weights, feed intake, and fecal output were weighed with a digital balance, while water intake and urine output were measured with a measuring cylinder. Analyses of data obtained were performed using a one-way ANOVA and Tukey’s test at a significance level of P≤0.05. Results: There was a significant (P<0.05) decrease in body weight of the diabetic groups (-15.53%±1.2%, -26.8%±1.2%, -28.5%±1.9%) compared to the CTR (10.5%±2.5%). There was a significant (P<0.05) increase in fasting blood glucose concentrations (135.2±9.0, 273.2±6.5, 257.0±5.3 mg/dL) in the people with diabetes compared to the CTR (79.3±1.1 mg/dL). Water intake (56.9±0.9, 72.1±1.7, 77.8±5.5 mL), feed intake (19.4±0.6, 23.3±1.9, 42.1±2.1 g), voided urine (6.34±0.1, 8.39±0.88, 9.8±0.50 mL) and voided feces (10.4±0.26, 11.7±0.43, 8.5±0.17 g) in the diabetic groups increased significantly (P<0.05) compared to the CTR (26.5±0.8 mL, 13.4±0.3 g, 1.84±0.08 mL, and 6.5±0.33 g, respectively). Conclusion: The dose regimen of 60 mg/kg STZ administered intraperitoneally twice (24 hours apart) sustained diabetes for 21 days. We recommend adopting this dose regimen in STZ-induced diabetic studies in male Wistar rats. | ||
کلیدواژهها | ||
Dose regimen؛ Diabetes؛ Streptozotocin؛ Wistar rats | ||
عنوان مقاله [English] | ||
رژیم دوز موثر STZ برای دیابت ناشی از STZ در مدل موش صحرایی | ||
نویسندگان [English] | ||
اولوشولا آدلیه1؛ تمی توپه آجالا1؛ اولوواتودیمو ادووله آدکویا2؛ آدنیک لیابو آدلیه3 | ||
1گروه فیزیولوژی دامپزشکی و بیوشیمی، دانشگاه فدرال کشاورزی، آبئوکوتا، نیجریه | ||
2گروه فارماکولوژی دامپزشکی و سم شناسی، دانشگاه فدرال کشاورزی، آبئوکوتا، نیجریه | ||
3بیمارستان آموزشی دامپزشکی، دانشگاه فدرال کشاورزی، آبئوکوتا، ایالت اوگون، نیجریه. | ||
کلیدواژهها [English] | ||
رژیم دوز, دیابت, استرپتوزوتوسین, موش صحرایی ویستار | ||
اصل مقاله | ||
Introduction
Feed intake
Adeleye, O. E., Aboajah, N. A., Adeleye, A. I., Sogebi, E. A. O., Mshelbwala, F. M., & Adetomiwa, A. S., et al. (2019). Annona muricata Linn. ethanolic leaf extract ameliorates reproductive complications in streptozotocin-induced diabetic Wistar rats. Journal of Natural Sciences Engineering and Technology, 18 (1), 166-175. [Link] Adeleye, O. E., Aladeyelu, O. T., Adebiyi, A. A., Adeleye, I. A., Adetomiwa, A. S., & Apantaku, J. T., et al. (2020a). Ameliorative effects of Psidium guajava ethanolic leaf extract on streptozotocin-induced diabetic reproductive dysfunctions in male Wistar rats. Alexandria Journal of Veterinary Science, 66 (1), 1-9. [DOI:10.5455/ajvs.101286] Adeleye, O., Emmanuel, O. K. O. H., Adeleye, A., Mshelbwala, F. M., Adetomiwa, A., & Apantaku, J., et al. (2020). Ameliorative effects of Allium cepa Linn. scaly leaves extract on reproductive dysfunctions in streptozotocin-induced diabetic Wistar rats. Journal of Istanbul Veterinary Sciences, 4(3), 136-144. [DOI:10.30704/httpwww-jivs-net.811491] Akbarzadeh, A., Norouzian, D., Mehrabi, M. R., Jamshidi, S.h, Farhangi, A., & Verdi, A. A., et al. (2007). Induction of diabetes by streptozocin in rats. Indian Journal of Clinical Biochemistry, 22(2), 60-64. [DOI:10.1007/BF02913315] [PMID] Alina, S., Marcel, P., Alina, M., Ciprian, F., Adriana, V., & Doina, G., et al. (2015). Wistar rats with long-term streptozotocin-induced type 1 diabetes mellitus replicate the most relevant clinical, biochemical, and hematologic features of human diabetes. Revista Română de Medicină de Laborator, 23(3), 263-274. [DOI:10.1515/rrlm-2015-0028] American Diabetes Association. (2014). Standards of medical care in diabetes - 2014. Diabetes Care, 37(Supplement 1), S14-S80. [PMID] Baig, M. A., & Panchal, S. S. (2019). Streptozotocin-induced diabetes mellitus in neonatal rats: an insight into its applications to induce diabetic complications. Current Diabetes Review, 16(1), 26-39. [DOI:10.2174/1573399815666190411115829] [PMID] Basu, R., Schwenk, W. F., & Rizza, R. A. (2004). Both fasting glucose production and disappearance are abnormal in people with “mild” and “severe” type 2 diabetes. American Journal of Physiology. Endocrinology and Metabolism, 287(1), E55–E62.[DOI:10.1152/ajpendo.00549.2003] [PMID] Blonde, L., Umpierrez, G. E., Reddy, S. S., McGill, J. B., Berga, S. L., & Bush, M., et al. (2022). American Association of Clinical Endocrinology Clinical Practice Guideline: Developing a Diabetes Mellitus Comprehensive Care Plan-2022 Update. Endocrine Practice, 28(10), 923-1049. [DOI:10.1016/j.eprac.2022.08.002] [PMID] Brown, E., Wilding, J. P. H., Barber, T. M., Alam, U., & Cuthbertson, D. J. (2019). Weight loss variability with SGLT2 inhibitors and GLP-1 receptor agonists in type 2 diabetes mellitus and obesity: Mechanistic possibilities. Obesity Reviews, 20(6), 816-828. [DOI:10.1111/obr.12841] [PMID] Byrne, F. M., Cheetham, S., Vickers, S., & Chapman, V. (2015). Characterisation of pain responses in the high fat diet/streptozotocin model of diabetes and the analgesic effects of antidiabetic treatments. Journal of Diabetes Research, 2015, 752481.[DOI:10.1155/2015/752481] [PMID] Chao, P. C., Li, Y., Chang, C. H., Shieh, J. P., Cheng, J. T., & Cheng, K. C. (2018). Investigation of insulin resistance in the popularly used four rat models of type-2 diabetes. Biomedicine &Pharmacotherapy, 101, 155-161. [DOI:10.1016/j.biopha.2018.02.084] [PMID] Cheraghi, J., Zargooshi, M., Kridhchi, P., &Nasri, S. (2021). Effects of parsley (petroselinum crispum) hydroalcoholic extract on spermatogenesis and pituitary- gonadal axis in streptozotocin-induced diabetic male rat. Iranian Journal of Veterinary Medicine, 15(4), 411-422. [Link] Cho, N. H., Shaw, J. E., Karuranga, S., Huang, Y., da Rocha Fernandes, J. D., & Ohlrogge, A. W., et al. (2018). IDF diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Research and Clinical Practice, 138, 271-281. [DOI:10.1016/j.diabres.2018.02.023] [PMID] da Rocha Fernandes, J., Ogurtsova, K., Linnenkamp, U., Guariguata, L., Seuring, T., & Zhang, P., et al. (2016). IDF diabetes Atlas estimates of 2014 global health expenditures on diabetes. Diabetes Research and Clinical Practice. 117, 48-54. [DOI:10.1016/j.diabres.2016.04.016] [PMID] Deeds, M. C., Anderson, J. M., Armstrong, A. S., Gastineau, D. A., Hiddinga, H. J., & Jahangir, A., et al. (2011). Single dose streptozotocin-induced diabetes: considerations for study design in islet transplantation models. Laboratory Animals, 45(3), 131-140. [DOI:10.1258/la.2010.010090] [PMID] Deshmukh, C. D., & Jain A. (2015). Diabetes mellitus: A review. International Journal of Pure and Applied Biosciences, 3(3), 224-230. [Link] Eitah, H. E., Maklad, Y. A., Abdelkader, N. F., Gamal El Din, A. A., Badawi, M. A., & Kenawy, S. A. (2019). Modulating impacts of quercetin/sitagliptin combination on streptozotocin-induced diabetes mellitus in rats. Toxicology and Applied Pharmacology, 365, 30-40. [DOI:10.1016/j.taap.2018.12.011] [PMID] Forouhi, N. G., & Wareham, N. J. (2014). Epidemiology of diabetes. Medicine (Abingdon, England: UK ed.), 42(12), 698–702. [PMID] Furman, B. L. (2021). Streptozotocin-Induced Diabetic Models in Mice and Rats. Current Protocols, 1(4), e78. [PMID] Genuth, S., Alberti, K. G., Bennett, P., Buse, J., Defronzo, R., & Kahn, R., et al. (2003). Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care, 26(11), 3160–3167.[DOI:10.2337/diacare.26.11.3160] [PMID] Gundala, N. K. V., Naidu, V. G. M., & Das, U. N. (2018). Amelioration of streptozotocin-induced type 2 diabetes mellitus in Wistar rats by arachidonic acid. Biochemistry and Biophysical Research Communications, 496(1), 105–113. [DOI:10.1016/j.bbrc.2018.01.007] [PMID] Holt, R., Cockram, C., Flyvbjerg, A., & Goldstein, B. (2010). Textbook of Diabetes. Blackwell Publishing. [Link] Irannejad, A., Khatamsaaz, S., & Mokhtari, M. J. (2022). Effect of hydro-alcoholic extract of rosemary on lipid profile and liver enzymes in male wistar rats fed with high-fat diet. Iranian Journal of Veterinary Medicine. [Unpublished]. [Link] Kasuga, M. (2006). Insulin resistance and pancreatic β cell failure. The Journal of Clinical Investigation, 116(7), 1756-1760. [DOI:10.1172/JCI29189] [PMID] Kintoko, K., Qingwei, W., Xing, L., Ni Zheng, X., & Renbin, H. (2014). Diabetogenic activity of streptozotocin on Kunming strain mice as animal model of diabetes mellitus. Journal of Pharmaceutical and Biological Science, 9(1), 48-53. [DOI:10.9790/3008-09134853] Kumar, P., & Clark, M. (2002). Textbook of clinical medicine. London: Edition, Saunders. [Link] Lenzen, S. (2008). The mechanism of alloxan and streptozotocin diabetes. Diabetologia, 51(2), 216-226. [DOI:10.1007/s00125-007-0886-7] [PMID] López-Soldado, I., & Herrera, E. (2003). Different diabetogenic’ response to moderate doses of streptozotocin in pregnant rats, and its long-term consequences in the offspring. Experimental Diabesity Research, 4(2), 107–118. [DOI:10.1155/EDR.2003.107] [PMID] Mahmoud, A. A., Zuhair, B. A., Alzaben, K. A., Abu-Halaweh, S. A., Mohamed, K. A., & Jaafar, A., et al. (2009). Induction of diabetes mellitus in rats using intraperitoneal streptozotocin: A comparison between 2 strains of rats. European Journal of Scientific Research, 32(3), 398-402. [Link] Meigs, J. B., Nathan, D. M., D'Agostino, R. B., Sr, Wilson, P. W., & Framingham Offspring Study. (2002). Fasting and post challenge glycemia and cardiovascular disease risk: The Framingham offspring study. Diabetes Care, 25(10), 1845-1850. [DOI:10.2337/diacare.25.10.1845] [PMID] Moghtadaei Khorasgani, E., & Khani, A. (2021). Investigating the effect of hydroalcoholic extract of eryngos on plasma concentration of blood glucose, blood cells and pancreatic tissue in diabetic rats. Iranian Journal of Veterinary Medicine, 15(4), 440-451. [DOI:10.22059/IJVM.2021.311523.1005134] Mukhtar, Y., Galalain, A., and Yunusa, U. (2020). A modern overview on diabetes mellitus: A chronic endocrine disorder. European Journal of Biology, 5(2), 1-14. [DOI:10.47672/ejb.409] Nagappa, A. N., Thakurdesai, P. A., Venkat Rao, N., & Singh, J. (2003). Antidiabetic activity of Terminalia catappa Linn fruits. Journal of Ethnopharmacology, 88(1), 45–50. [DOI:10.1016/S0378-8741(03)00208-3] [PMID] Nelson, R. W., & Reusch, C. E. (2014). Animal models of diseases: Classification and etiology of diabetes in dogs and cats. Journal of Endocrinology, 222(3), T1-T9. [DOI:10.1530/JOE-14-0202] [PMID] Olokoba A. B., Obateru, O. A, Olokoba, L. B. (2012). Type 2 diabetes mellitus: A review of current treatment trend. Oman Medical Journal, 27(4), 269-273. [DOI:10.5001/omj.2012.68] [PMID] Rand, J. S. (2020). Diabetes mellitus in dogs and cats. In: D. S. Bruyette, N. Bexfield, J. D. Chretin, L. Kidd, S. Kube, & C. Langston (Eds.), Clinical small animal internal medicine (pp. 93-102). New Jersey: John Wiley & Sons, Inc. [Link] Robert, A. R. (2010). Pathogenesis of fasting and postprandial hyperglycemia in type 2 diabetes: Implications for therapy. Diabetes, 59(11), 2697-2707. [DOI:10.2337/db10-1032] [PMID] Rosqvist, F., Kullberg, J., Ståhlman, M., Cedernaes, J., Heurling, K., & Johansson, H. E., et al. (2019) Overeating saturated fat promotes fatty liver and ceramides compared with polyunsaturated fat: A randomized trial. Journal of Clinical Endocrinology and Metabolism, 104(12), 6207-6219. [DOI:10.1210/jc.2019-00160] [PMID] Rudge, M. V., Piculo, F., Marini, G., Damasceno, D. C., Calderon, I. M., & Barbosa, A. P. (2013). [Translational research in gestational diabetes mellitus and mild gestational hyperglycemia: current knowledge and our experience 9 Portuguese)]. Arquivos Brasileiros de Endocrinologia e Metabologia, 57(7), 497-508. [DOI:10.1590/S0004-27302013000700001] [PMID] Scheen, A. J. (2003). Pathophysiology of type 2 diabetes. Acta Clinica Belgica, 58(6), 335-341. [DOI:10.1179/acb.2003.58.6.001] [PMID] Schwab, U., Lauritzen, L., Tholstrup, T., Haldorssoni, T., Riserus, U., & Uusitupa, M., et al. (2014). Effect of the amount and type of dietary fat on cardiometabolic risk factors and risk of developing type 2 diabetes, cardiovascular diseases, and cancer: A systematic review. Food & Nutrition Research, 58, 10.3402/fnr.v58.25145. [DOI:10.3402/fnr.v58.25145] [PMID] Sembulingam, K., & Sembulingam, P. (2012). Essentials of medical physiology. New Delhi: Jaypee Brothers Medical Publishers Pvt. Limited. [Link] Shahsavari, M., Norouzi, P., Kalalianmoghaddam, H., & Teimouri, M. (2023). Effects of Kudzu Root on Oxidative Stress and Inflammation in Streptozotocin-Induced Diabetic Rats. Iranian Journal of Veterinary Medicine, 17(4), 401-408. [Link] Svane, M. S., Jørgensen, N. B., Bojsen-Møller, K. N., Dirksen, C., Nielsen, S., & Kristiansen, V. B., et al. (2016). Peptide YY and glucagon-like peptide-1 contribute to decreased food intake after Roux-en-Y gastric bypass surgery. International Journal of Obesity (Lond), 40(11), 1699-1706. [DOI:10.1038/ijo.2016.121] [PMID] Szkudelski, T. (2001). The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiology Research, 50(6), 536-546. [Link] Thomas, C. C., & Philipson, L. H. (2015). Update on diabetes classification. The Medical Clinics of North America, 99(1), 1–16.[DOI:10.1016/j.mcna.2014.08.015] [PMID] Wang-Fischer, Y., & Garyantes, T. (2018). Improving the reliability and utility of streptozotocin-induced rat diabetic model. Journal of Diabetes Research, 2018, 8054073. [DOI:10.1155/2018/8054073] [PMID] Wang, J., Jiang, J., Zhao, C., Shan, H., Shao, Z., & Wang, C., et al. (2022). The protective effect of theaflavins on the kidney of mice with type II diabetes mellitus. Nutrients, 15(1), 201. [PMID] Wei, M., Ong, L., Smith, M. T., Ross, F. B., Schmid, K., & Hoey, A. J., et al. (2003). The streptozotocin-diabetic rat as a model of the chronic complications of human diabetes. Heart, Lung and Circulation, 12(1), 44-50. [DOI:10.1046/j.1444-2892.2003.00160.x] [PMID] | ||
آمار تعداد مشاهده مقاله: 278 تعداد دریافت فایل اصل مقاله: 510 |