تعداد نشریات | 161 |
تعداد شمارهها | 6,572 |
تعداد مقالات | 71,031 |
تعداد مشاهده مقاله | 125,501,031 |
تعداد دریافت فایل اصل مقاله | 98,764,243 |
تاثیر پیش تیمار بذر با عنصر روی بر خصوصیات جوانهزنی و مورفولوژیکی و میزان عناصر در بخشهای مختلف گیاهچه برنج رقم هاشمی | ||
تحقیقات آب و خاک ایران | ||
دوره 54، شماره 6، شهریور 1402، صفحه 895-914 اصل مقاله (1.95 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2023.356947.669473 | ||
نویسندگان | ||
شهرام محمود سلطانی* 1؛ مریم حسینی چالشتری2؛ شهرام نظری3؛ مریم شکوری4 | ||
1استادیار موسسه تحقیقات برنج کشور | ||
2دانشیار موسسه تحقیقات برنج کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت، ایران | ||
3استادیار موسسه تحقیقات برنج کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت، ایران | ||
4پژوهشگر موسسه تحقیقات برنج کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت، ایران | ||
چکیده | ||
پیش تیمار با محلول حاوی عناصر غذایی مانند روی سبب جوانهزنی سریع و سبز شدن یکنواخت و استقرار موفقیتآمیز گیاه زراعی در هر دو شرایط تنش و بدون تنش محیطی میشود. بدین منظور آزمایش حاضر به منظور بررسی تاثیر پیش تیمار بذر با عنصر روی بر تغییرات عناصر پرمصرف و کممصرف دورن بذر، خصوصیات مورفولوژیکی نشا و جذب عناصر پرمصرف و کممصرف توسط گیاهچه برنج رقم هاشمی طراحی و اجرا شد. آزمایش حاضر در قالب دو آزمایش آزمایشگاهی و یک آزمایش گلدانی در هوای آزاد در طی سال زراعی 1400 در موسسه تحقیقات برنج کشور در رشت اجرا شد. آزمایش آزمایشگاهی اول و دوم در قالب طرح کاملاً تصادفی با عامل آزمایشی پیش تیمار بذر با سولفات روی در چهار سطح شامل بدون پیش تیمار بذر با محلول 5 در هزار سولفات روی یا شاهد، پیش تیمار بذر با محلول 5 در هزار سولفات روی به مدت 6 ساعت، پیش تیمار بذر با محلول 5 در هزار سولفات روی به مدت 12 ساعت و پیش تیمار بذر با محلول 5 در هزار سولفات روی به مدت 24 ساعت در سه تکرار اجرا شد. در آزمایش گلدانی علاوه بر عامل آزمایشی دو آزمایش اول، نوع خاک در دو سطح (خاک با کمبود روی (Zn<2mgkg-1) و خاک بدون کمبود روی (Zn>2mgkg-1)) و محلول پاشی با روی کلات شده با اسیدآمینه گلایسین در دو سطح (بدون محلول پاشی و محلول پاشی با کود روی کلات شده با اسید آمینه گلایسین به میزان 1 کیلوگرم در هکتار در (حداکثر پنجهزنی، آبستی و آغاز رسیدن دانه). بیشترین میزان افزایش در سرعت جوانهزنی (290 درصد) و کاهش در زمان رسیدن به 10، 50 و 90 درصد حداکثر جوانهزنی (به ترتیب 28/2، 49/2 و 47/2 برابر) نسبت به شاهد ناشی از کاربرد پیش تیمار بذر با محلول 5 در هزار سولفات روی به مدت 12 ساعت و بیشترین مقدار افزایش در عنصر روی در بذر برنج رقم هاشمی (5/17 برابر) نسبت به شاهد نیز ناشی از کاربرد پیش تیمار بذر با محلول 5 در هزار سولفات روی به مدت 24 ساعت بود. بیشترین میزان تاثیر مثبت و افزایشی در طول ساقهچه و ریشهچه ناشی از کاربرد پیش تیمار بذر با محلول 5 در هزار سولفات روی به مدت 6 ساعت بود که نسبت به شاهد به ترتیب سبب افزایش حدود 26 و 19 درصدی این صفات شدند. هچنین بیشترین میزان تاثیر بر مقدار عنصر روی در اندام هوایی و ریشه گیاهچه برنج ناشی از کاربرد پیش تیمار بذر با محلول 5 در هزار سولفات روی به مدت 24 ساعت بود که نسبت خاک بدون کمبود روی به ترتیب 271 و 291 درصد و نسبت به خاک با کمبود روی به ترتیب 227 و 251 درصد افزایش داشتند. با توجه به نتایج این پژوهش، پیش تیمار بذر با محلول 5 در هزار سولفات روی به مدت شش ساعت می تواند بهعنوان یکی از روشهای موثر مصرف عناصر کم مصرف در کنار سایر روشهای مصرف کودهای کم مصرف برای تولید گیاهچه قوی توسط کشاورزان شالیکار مورد استفاده قرارگیرد. | ||
کلیدواژهها | ||
بذر برنج؛ رقم محلی؛ حداکثر جوانهزنی؛ عناصر کممصرف؛ عناصر پرمصرف | ||
عنوان مقاله [English] | ||
Effect of Seed Priming with Zinc on Seed Germination Characteristics, and Morphological Characters, and Mineral Content of Rice Tissues of Hashemi Rice Cultivar | ||
نویسندگان [English] | ||
Shahram MahmoudSoltani1؛ Maryam Hosseini chaleshtori2؛ Shahram Nazari3؛ Maryam Shakouri Katigari4 | ||
1Assistant Professor of rice research institute of Iran | ||
2Associate Professor of Rice Research Institute of Iran, Agricultural Research, Education and Extension Organization, Rasht, Iran | ||
31Assistant Professor of Rice Research Institute of Iran, Agricultural Research, Education and Extension Organization, Rasht, Iran | ||
4Research Assistant of Rice Research Institute of Iran, Agricultural Research, Education and Extension Organization, Rasht, Iran. | ||
چکیده [English] | ||
Nutripriming of rice seeds with micronutrient (Zn) is considered to have the potential of optimizing Zn application, faster germination, uniform seedlings’ growth, better establishment of transplanted rice seedlings. The current experiments were designed and conducted to explore the effects of rice seeds nutripriming of with micronutrient (Zn) on macro and micronutrient content of primed seeds, morphological characteristics of rice seedlings and uptake of macro and micronutrients (N, P, K, Zn) for Hashemi rice cultivar through two laboratory and open-air pot experiments during 2021 at rice research institute of Iran. The highest increase in seed germination vigor index (2.9 times) ad reduction in germination dynamics or three germination fractions (t 10, t 50, and t 90) compared to control were recorded at nutripriming with zinc sulfate (5g. L-1) for 12 hours by about 2.28, 2.49, and 2.47 times, respectively. The maximum increase in Zn content of rice seeds (17.5 times) were observed at nutripriming with zinc sulfate (5g.L-1) for 24 hours compared to the control. Also, the highest positive, significant increase in the length of coleoptile and radicle by seed nutripriming with zinc sulfate (5g.L-1) for 6 hours compared to the control by about 25.87 and 18.67%, respectively. The maximum significant and positive increase in root wet and dry weight of rice seedlings were found at about 24.36, 20.00, 38.23, and 38% compared to the control through nutripriming of seeds with zinc sulfate (5g.L-1) for 6 hours in soils with Zn deficiency and sufficiency, respectively. The highest significant and effect on Zn content of shoot and root of rice seedlings were observed about 2.71, 2.91, 2.27, and 2.51 compared to the control through nutripriming of seeds with zinc sulfate (5g.L-1) for 6 hours in soils with Zn deficiency and sufficiency, respectively. Nutripriming of rice seeds with zinc sulfate (5g.L-1) solution for 6 hours could be an alternative solution for traditional methods of macro and micronutrients application (soil and foliar) by farmers in seed nursery. | ||
کلیدواژهها [English] | ||
Rice Seeds, Local Variety, Maximum Germination, Micronutrients, Macronutrients | ||
مراجع | ||
Adhikary, S., Biswas, B., Chakraborty, D., Timsina, J., Pal, S., Chandra Tarafdar, J., & Roy, S. (2022). Seed priming with selenium and zinc nanoparticles modifies germination, growth, and yield of direct-seeded rice (Oryza sativa L.). Scientific Reports, 12(1), 7103. Akhgari, H., & Kaviani, B. (2019). Effect of priming on seed and plantlet vigor of two cultivars of rice (Oryza sativa L.). Seed Science and Technology, 8(1), 1-17. (In Persian). Akhgari, H., Esfahani, M., Mohsenabadi, G., & Aalami, A. (2017). Evaluating the effect of seed priming on growth and yield of two rice (Oryza sativa L.) cultivars in direct seeding method. Cereal Research, 7(3), 315-329. (In Persian). Akhondi, M., Safarnejad, A., & Lahouti, M. (2006). Effect of drought stress on proline accumulation and mineral nutrients change in alfalfa (Medicago sativa L.). JWSS-Isfahan University of Technology, 10(1), 165-175. (In Persian). Ali, L. G., Nulit, R., Ibrahim, M. H., & Yien, C. Y. S. (2021). Efficacy of KNO3, SiO2 and SA priming for improving emergence, seedling growth and antioxidant enzymes of rice (Oryza sativa), under drought. Scientific Reports, 11(1), 1-11. Ancy, L.U., & STANLY, N. (2022). Effect of nutripriming treatments on growth parameters of seedlings in tray nursery of rice: Effect of nutripriming on tray nursery of rice. Journal of AgriSearch, 9(1), 59-62. Ashraf, M., & Foolad, M. R. (2005). Pre‐sowing seed treatment—A shotgun approach to improve germination, plant growth, and crop yield under saline and non‐saline conditions. Advances in Agronomy, 88, 223-271. Attar, B., Uygur, V., & Sukuşu, E. (2020). Effects of priming with Copper, Zinc and Phosphorus on seed and seedling composition in Wheat and Barley. Türk Tarım ve Doğa Bilimleri Dergisi, 7(1), 104-111. Basra, S. M. A., Farooq, M., Tabassam, R., & Ahmad, N. (2005). Physiological and biochemical aspects of pre-sowing seed treatments in fine rice (Oryza sativa L.). Seed Science and Technology, 33(3), 623-628. Bates, R. G., & Vijh, A. K. (1973). Determination of pH: theory and practice. Journal of the Electrochemical Society, 120(8), 263C-263C. Bremner, J. M. (1965). Total nitrogen. Methods of soil analysis: Book part 2 chemical and microbiological properties, 9, 1149-1178. Broadley, M. R., White, P. J., Hammond, J. P., Zelko, I., & Lux, A. (2007). Zinc in plants. New Phytologist, 173(4), 677-702. Brown, P. R., Tuan, V. V., Nhan, D. K., Dung, L. C., & Ward, J. (2018). Influence of livelihoods on climate change adaptation for smallholder farmers in the Mekong Delta Vietnam. International Journal of Agricultural Sustainability, 16(3), 255-271. Cai, Y., Xu, W., Wang, M., Chen, W., Li, X., Li, Y., & Cai, Y. (2019). Mechanisms and uncertainties of Zn supply on regulating rice Cd uptake. Environmental Pollution, 253, 959-965. Campbell, C. R., & Plank, C. O. (1998). Preparation of plant tissue for laboratory analysis. Methods for Plant Analysis, 37. Chen, J., Dou, R., Yang, Z., You, T., Gao, X., & Wang, L. (2018). Phytotoxicity and bioaccumulation of zinc oxide nanoparticles in rice (Oryza sativa L.). Plant Physiology and Biochemistry, 130, 604-612. Depar, N., Rajpar, I., Memon, M. Y., & Imtiaz, M. (2011). Mineral nutrient densities in some domestic and exotic rice genotypes. Pakistan Journal of Agriculture: Agricultural Engineering Veterinary Sciences (Pakistan). Dobermann, A. and Fairhurst, T. (2000). Rice: Nutrient Disorders & Nutrient Management. Handbook Series, Potash & Phosphate Institute (PPI), Potash & Phosphate Institute of Canada (PPIC) and International Rice Research Institute, Philippine, 191. Du, B., Luo, H., He, L., Zheng, L., Liu, Y., Mo, Z., Pan, S., Tian, H., Duan, M., & Tang, X. (2019). Rice seed priming with sodium selenate: Effects on germination, seedling growth, and biochemical attributes. Scientific Reports, 9(1), 4311. Esper Neto, M., Britt, D. W., Lara, L. M., Cartwright, A., dos Santos, R. F., Inoue, T. T., & Batista, M. A. (2020). Initial development of corn seedlings after seed priming with nanoscale synthetic zinc oxide. Agronomy, 10(2), 307. Faizan, M., Faraz, A., Yusuf, M., Khan, S. T., & Hayat, S. (2018). Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica, 56, 678-686. FAO. 2018. Rice market monitor. Trade and Markets Division. Rome. Vol. XVI. Farooq, M., Basra, S. M. A., Khalid, M., Tabassum, R., & Mahmood, T. (2006). Nutrient homeostasis, metabolism of reserves, and seedling vigor as affected by seed priming in coarse rice. Botany, 84(8), 1196-1202. Farooq, M., Basra, S. M. A., Wahid, A., Khaliq, A., & Kobayashi, N. (2010). Rice seed invigoration: a review. Organic Farming, Pest Control and Remediation of Soil Pollutants: Organic farming, pest control and remediation of soil pollutants, 137-175. Farooq, M., Wahid, A., & Siddique, K. H. (2012). Micronutrient application through seed treatments: a review. Journal of Soil Science and Plant Nutrition, 12(1), 125-142. Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis 1. Methods of soil analysis: Book part 1—physical and mineralogical methods, (methodsofsoilan1). Guha, T., Mukherjee, A., & Kundu, R. (2021). Nano-scale zero valent iron (nZVI) priming enhances yield, alters mineral distribution and grain nutrient content of Oryza sativa L. cv. Gobindobhog: a field study. Journal of Plant Growth Regulation, 1-24. Harris, D. (2006). Development and testing of “On‐Farm” seed priming. Advances in Agronomy, 90, 129-178. Harris, D., Rashid, A., Miraj, G., Arif, M., & Shah, H. (2007). ‘On-farm’seed priming with zinc sulphate solution—A cost-effective way to increase the maize yields of resource-poor farmers. Field Crops Research, 102(2), 119-127. Ibrahim, E. A. (2016). Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physiology, 192, 38-46. Imran, M., Mahmood, A., Römheld, V., & Neumann, G. (2013). Nutrient seed priming improves seedling development of maize exposed to low root zone temperatures during early growth. European Journal of Agronomy, 49, 141-148. Imran, M., Neumann, G., & Römheld, V. (2004). Nutrient seed priming improves germination rate and seedling growth under submergence stress at low temperature. International Research on Food Security. Natural Resource Management and Rural Development Cuvillier Verlag Göttingen. 356-360. International Rice Research Institute (IRRI). 2020. International Rice Research Institute. Available online: http://www.irri.org. Johnson, S. E., Lauren, J. G., Welch, R. M., & Duxbury, J. M. (2005). A comparison of the effects of micronutrient seed priming and soil fertilization on the mineral nutrition of chickpea (Cicer arietinum), lentil (Lens culinaris), rice (Oryza sativa) and wheat (Triticum aestivum) in Nepal. Experimental Agriculture, 41(4), 427-448. Latifi, S.A. & Omidi, H. (2020). Effect of priming on seed germination and rice seedling characteristics of Anbar Boo cultivar, under water deficit stress. Scientific Journal of Crop Physiology, 11(3), 5-21. (In Persian). Li, Y., Liang, L., Li, W., Ashraf, U., Ma, L., Tang, X., ... & Mo, Z. (2021). ZnO nanoparticle-based seed priming modulates early growth and enhances physio-biochemical and metabolic profiles of fragrant rice against cadmium toxicity. Journal of Nanobiotechnology, 19(1), 1-19. Li, Y., Zhang, Y., Shi, D., Liu, X., Qin, J., Ge, Q., ... & Xu, J. (2013). Spatial‐temporal analysis of zinc homeostasis reveals the response mechanisms to acute zinc deficiency in Sorghum bicolor. New Phytologist, 200(4), 1102-1115. Lindsay, W. L., & Norvell, W. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42(3), 421-428. Mahmoudsoltani, S., 2020. Zn biofortification, grain protein content, and zinc and phosphorus content of rice tissues at different growth stages affected by zinc and phosphorus foliar application. Iran J Soil Water Res, 51(8), pp.2065-2083. Mahmoudsoltani, S. 2018. Zinc deficiency, causes, symptoms and solutions. Technical Bulletin. Rice research institute of Iran.31p. Mahmoudsoltani, S. and Poorsafar Tabalvandi, A. 2021. Nutripriming with micronutrients. Growth Improvement and grain biofortification. Technical bultein. Rice Research Institute of Iran. 46 Pp. Mahmoud Soltani, S., Hossieni Chaleshtori, M., Tajaddodi Talab, K., Shokri Vahed, H. and Shakoori Katigari, M., 2023. Rice growth improvement, bio-fortification, and mitigation of macronutrient requirements through foliar application of zinc and iron-glycine chelate and zinc sulfate. Journal of Plant Nutrition, 46(8), pp.1777-1786. Malakooti, M.J. & Kavoosi, M. 2004. Balanced Rice Nutrition. Sena Publication. Agricultural Minestry of Iran. 671 P. (In Persian). Moghaddasi, S., Fotovat, A., Karimzadeh, F., Khazaei, H. R., Khorassani, R., & Lakzian, A. (2017). Effects of coated and non-coated ZnO nano particles on cucumber seedlings grown in gel chamber. Archives of Agronomy and Soil Science, 63(8), 1108-1120. Nawaz, A., Farooq, M., Ahmad, R., Basra, S. M. A., & Lal, R. (2016). Seed priming improves stand establishment and productivity of no till wheat grown after direct seeded aerobic and transplanted flooded rice. European Journal of Agronomy, 76, 130-137. Nazari, S., Chaleshtori, M. H., & Allahgholipour, M. (2021). Effect of Seed Priming and Encrusting Coating on Yield and Yield Components of Two Rice Cultivars. Iranian Journal of Field Crops Research, 19(3). (In Persian). Olsen, S. R., & Dean, L. A. (1965). Phosphorus. Chemical and microbiological properties. Methods of Soil Analysis, Part, 2, 1035-1048. Ozturk, L., Yazici, M. A., Yucel, C., Torun, A., Cekic, C., Bagci, A., ... & Cakmak, I. (2006). Concentration and localization of zinc during seed development and germination in wheat. Physiologia plantarum, 128(1), 144-152. Razak, U. N. A. A., Ong, C. B., Yu, T. S., & Lau, L. K. (2014). In vitro micropropagation of Stevia rebaudiana Bertoni in Malaysia. Brazilian Archives of Biology and Technology, 57, 23-28. Roades, J. D. (1982). Soluble salts. P 167-178. Methods of soil analysis. Part, 2. Roriz, M., Carvalho, S. M., & Vasconcelos, M. W. (2014). High relative air humidity influences mineral accumulation and growth in iron deficient soybean plants. Frontiers in Plant Science, 5, 726. Sadeghizadeh, M., & Zarea, M. J. (2022). Effects of seed priming with zinc on germination, nursery seedling growth and paddy fields yield of two rice (Oryza sativa L.) cultivars. Journal of Crop Science and Biotechnology, 25(3), 313-324. Sarkar, R. K., Chakraborty, K., Chattopadhyay, K., Ray, S., Panda, D., & Ismail, A. M. (2019). Responses of rice to individual and combined stresses of flooding and salinity. In Advances in rice research for abiotic stress tolerance, 281-297. Woodhead Publishing. Sharma, A. D., Rathore, S. V. S., Srinivasan, K., & Tyagi, R. K. (2014). Comparison of various seed priming methods for seed germination, seedling vigour and fruit yield in okra (Abelmoschus esculentus L. Moench). Scientia horticulturae, 165, 75-81. Shivankar, R. S., Deore, D. B., & Zode, N. G. (2003). Effect of pre-sowing seed treatment on establishment and seed yield of sunflower. Journal of Oilseeds Research., 20, 299-300. Silveira, V. C. D., Oliveira, A. P. D., Sperotto, R. A., Espindola, L. S., Amaral, L., Dias, J. F., ... & Fett, J. P. (2007). Influence of iron on mineral status of two rice (Oryza sativa L.) cultivars. Brazilian Journal of Plant Physiology, 19, 127-139. Singh, M. V. (2007). Efficiency of seed treatment for ameliorating zinc deficiency in crops. Zinc crops, 24-26. Sivritepe, N., Sivritepe, H. O., & Eris, A. (2003). The effects of NaCl priming on salt tolerance in melon seedlings grown under saline conditions. Scientia horticulturae, 97(3-4), 229-237. Soltani, A. & Maddah, V. (2010). Simple, Applied Programs for Education and Research in Agronomy. Iran Scientific Society of Agroecology. Tehran. (In Persian). (In Persian). Thomas, G. W. (1982). Exchangeable cations. Methods of soil analysis. Agronomy Monograph, Methods of Soil Analysis, Part, 2. Tuiwong, P., Lordkaew, S., Veeradittakit, J., Jamjod, S., & Prom-u-thai, C. (2022). Seed priming and foliar application with nitrogen and zinc improve seedling growth, yield, and zinc accumulation in rice. Agriculture, 12(2), 144. Varier, A., Vari, A. K., & Dadlani, M. (2010). The subcellular basis of seed priming. Current Science, 450-456. Veena, M., & Puthur, J. T. (2022). Seed nutripriming with zinc is an apt tool to alleviate malnutrition. Environmental Geochemistry and Health, 44(8), 2355-2373. Von Grebmer, K., Bernstein, J., Hossain, N., Brown, T., Prasai, N., Yohannes, Y., ... & Foley, C. (2017). 2017 Global Hunger Index: the inequalities of hunger (Report in Website). Intl Food Policy Res Inst. Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29-38. Wissuwa, M., Ismail, A. M., & Yanagihara, S. (2006). Effects of zinc deficiency on rice growth and genetic factors contributing to tolerance. Plant Physiology, 142(2), 731-741. | ||
آمار تعداد مشاهده مقاله: 422 تعداد دریافت فایل اصل مقاله: 311 |