تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,109,668 |
تعداد دریافت فایل اصل مقاله | 97,213,386 |
تأثیر محلولپاشی قبلازبرداشت سولفید هیدروژن سدیم بر افزایش عمر انبارمانی و حفظ کیفیت پس از برداشت میوه کیوی رقم هایوارد | ||
علوم باغبانی ایران | ||
دوره 54، شماره 1، فروردین 1402، صفحه 85-104 اصل مقاله (1.69 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijhs.2022.341262.2019 | ||
نویسندگان | ||
مهشید غفوری1؛ فرهنگ رضوی* 2؛ مسعود ارغوانی1؛ ابراهیم عابدی قشلاقی3 | ||
1گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران | ||
2گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه زنجان، ایران | ||
3بخش تحقیقات علوم زراعی- باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان گیلان، سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت، ایران. | ||
چکیده | ||
پژوهش حاضر به هدف بررسی تاثیر محلولپاشی برگی با سولفید هیدروژن سدیم برای افزایش کیفیت و ظرفیت آنتیاکسیدانی میوه کیوی رقم هایوارد در طول انبار سرد انجام شد در این مطالعه تأثیر تیمار قبلازبرداشت سولفید هیدروژن سدیم (آزاد کننده ترکیب سیگنال دهنده (H2S) در چهار سطح (صفر، 5/0، 1 و 5/1 میلیمولار) در 110، 125 و 140 روز بعد از مرحله تمام گل بر کیفیت و ظرفیت آنتیاکسیدانی میوه کیوی رقم هایوارد طی90 روز نگهداری در دمای1 درجه سلسیوس و رطوبت نسبی 90 درصد مورد ارزیابی قرار گرفت. نمونهبرداری جهت سنجش صفات مورد نظر طی چهار دوره صفر، 30، 60 و 90 روز پس از انبارمانی انجام گرفت. نتایج بدست آمده حاکی از تـأثیر معنیدار تیمار سولفید هیدروژن سدیم بر صفات مورد ارزیابی بود. تیمار سولفید هیدروژن سدیم در پایان 90 روز انبارمانی، باعث جلوگیری از کاهش وزن میوهها و حفظ سفتی بافت میوه نسبت به تیمار شاهد شد. میزان نشت یونی و تجمع مالون دیآلدئید درهمه غلظتهای سولفید هیدروژن سدیم در مقایسه با شاهد روند کاهشی داشتند و همچنین با حفظ اسید آسکوربیک و افزایش فعالیت آنزیم فنیل آلانین آمونیالیاز باعث افزایش تولید فنل و فلاونوئید کل شد و ظرفیت آنتیاکسیدانی میوهها را بهبود بخشید. تیمار سولفید هیدروژن سدیم فعالیت آنزیم پلیفنلاکسیداز را در مقایسه با تیمار شاهد کاهش داد. غلظت 5/1 میلیمولار سولفید هیدروژن سدیم بهترین تـأثیر را در بین تیمارهای اعمال شده نشان داد و با توجه به نتایج بهدست آمده این غلظت میتواند در مقیاس وسیع بهعنوان راهکار مناسب جهت افزایش کیفیت میوه کیوی رقم هایوارد قابل توصیه باشد. | ||
کلیدواژهها | ||
اسیدآسکوربیک؛ ظرفیت آنتیاکسیدانی؛ فلاونوئید؛ . فنل کل | ||
عنوان مقاله [English] | ||
Effect of Preharvest Application of NaHS on Increasing Storage Life and Maintaining Post-harvest Quality of Kiwi Fruit (Actinidia deliciosa L. 'Hayward') | ||
نویسندگان [English] | ||
Mahshid Ghafouri1؛ Farhang Razavi2؛ Masoud Arghavani1؛ Ebrahim Abedi Gheshlaghi3 | ||
1Department of Horticultural Sciences, Faculty of Agriculture, University of Zanjan, Zanjan, Iran. | ||
2Department of Horticultural Sciences, Faculty of Agriculture, University of Zanjan, Zanjan, Iran | ||
3Department of Horticulture Crops Research, Guilan Agricultural and Natural Resources Research and Education Center, AREEO, Rasht, Iran. | ||
چکیده [English] | ||
The present research was conducted to investigate the efficacy of preharvest NaHS application as foliar spraying on the quality and antioxidant capacity of kiwifruits cv. Hayward during cold storage. In the present investigation, the effects of a preharvest treatment with H2S donor NaHS in four levels (0, 0.5, 1 and 1.5 mM) at 110, 125, and 140 days after full bloom on nutritional quality and antioxidant capacity of kiwifruit (Actinidia deliciosa 'Hayward') were evaluated during 90 days of storage at 1 °C and 90% relative humidity. Sampling was done to measure the desired traits during four periods of 0, 30, 60 and 90 days after storage. The results showed that NaHS treatment had a significant effect on the evaluated traits. At the end of 90 days of storage, NaHS treatment prevented fruit weight loss and maintained fruit firmness in comparison to the control. The percentage of electrolyte leakage and the amount of accumulated malondialdehyde (MAD) in all concentrations of NaHS was lower in comparison to the control. Preserving ascorbic acid content and increasing the activity of phenylalanine ammonialyase (PAL) lead to higher production of total phenol and flavonoids and improve the antioxidant capacity of fruits. NaHS treatment decreased the activity of polyphenol oxidase in comparison to the control. NaHS at 1.5 mM showed the best effect among the applied treatments. According to the obtained results, this concentration can be recommended as a suitable treatment to maintain the quality of kiwifruit cv. Hayward. | ||
کلیدواژهها [English] | ||
Antioxidant capacity, Ascorbic acid, Flavonoids, Total phenol | ||
مراجع | ||
Abedini, J. (2009). Kiwi, physiology and technology of kiwi conversion industries and its storage principles in cold storage. Daneshnegar Publications. (In Persian) Aghdam, M. S. and Bodbodak, S. (2013). Physiological and biochemical mechanisms regulating chilling tolerance in fruits and vegetables under postharvest salicylates and jasmonates treatments. Scientia Horticulturae, 156, 73-85. Aghdam, M. S., Mahmoudi, R., Razavi, F., Rabiei, V. & Soleimani, A. (2018). Hydrogen sulfide treatment confers chilling tolerance in hawthorn fruit during cold storage by triggering endogenous H2S accumulation, enhancing antioxidant enzymes activity and promoting phenols accumulation. Scientia Horticulturae, 238, 264-271. Al Ubeed, H. M. S., Wills, R. B. H., Bowyer, M. C., Vuong, Q. V. & Golding, J. B. (2017). Interaction of exogenous hydrogen sulphide and ethylene on senescence of green leafy vegetables. Postharvest Biology and Technology, 133, 81–87. Ali, S., Nawaz, A., Ejaz, S., Haider, S. T. A., Alam, M. W. & Javed, H. U. (2019). Effects of hydrogen sulfide on postharvest physiology of fruits and vegetables: An overview. Scientia Horticulturae, 243, 290-299. Bagal, U. R., Leebens mack, J. H., Walter Lorenz, W. & Dean, J. F. D. (2012). The phenylalanine ammonia lyase (PAL) gene family shows a gymnosperm specific line age. BMC Genoms, 13 (3), 51. http://www.biomedcentral.com/1471-2164/13/S3/S1 Balakrishnan, V., Venkatesan, K., Ravindran, K. C. & Kulandaivelu, G. (2005). Protective mechanism in UV-B treated Crotalaria juncea L. seedlings. Plant Protection Science, 41(3), 115 – 120. Bico, S. L. S., Raposo, M. F. J., Morais, R. M. S. C. & Morais, A. M. M. B. (2009). Combined effects of chemical dip and/or carrageenan coating and/or controlled atmosphere on quality of fresh-cut banana. Food Control, 20(5), 508–514. Bor, J. Y., Chen, H. Y. & Yen, G. CH. (2006). Evaluation of antioxidant activity and inhibitory effect on nitric oxide production of some common vegetables. Journal of Agriculture and Food Chemistry, 54, 1680–1686. Brunori, M., Antonini, G., Malatesta, F., Sarti, P. & Wilson, M. T. (1987). Cytochrome-c oxidase. European Journal of Clinical Chemistry and Clinical Biochemistry, 169, 1–8. Carbonaro, M. & Mattera, M. (2001). Polyphenoloxidase activity and polyphenol levels in organically and conventionally grown peach (Prunus persica L., cv. Regina bianca) and pear (Pyrus communis L., cv. Williams). Food Chemistry, 72(4), 419-424. Christou, A., Manganaris, G. A., Papadopoulos, I. & Fotopoulos, V. (2013). Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defense pathways. Journal of Experimental Botany, 64(7), 1953-1966. Dehghan, G. & Khoshkam, Z. (2012). Tin (II)–quercetin complex: Synthesis, spectral characterisation and antioxidant activity. Food Chemistry, 131, 422-426. Du, G., Li, M., Ma, F. & Liang, D. (2009). Antioxidant capacity and the relationship with polyphenol and vitamin C in Actinidia fruits. Food Chemistry, 113, 557-562. Eraslan, F., Inal, A., Gunes, A. & Alpaslan, M. (2007). Impact of exogenouse salicylice acid on the growth, antioxidant activity and physiology of carrot plants subjected to combined salinity and boron toxicity. Scientia Horticulturae, 113, 120-128. FAO. (2020). FAOSTAT, FAO Statiscal Databases. http://faostat.fao.org. Ferguson, A. R. & Ferguson. L. R. (2003). Are kiwifruit really good for you? Acta Horticulturae, 610, 131-138. Ge, Y., Hu, K. D., Wang, S. S., Hu, L. Y., Chen, X. Y., Li, Y. H. & Zhang, H. (2017). Hydrogen sulfide alleviates postharvest ripening and senescence of banana by antagonizing the effect of ethylene. Plos One, 12(6), e0180113. Heath, R. L. & Packer, L. (1968). Photoperoxidation in isolated chloroplasts. Archives Biochemistry Biophysics, 125: 850-857. Holzwarth, M., Wittig, J., Carle, R. & Kammerer, D. R. (2013). Influence of putative polyphenoloxidase (PPO) inhibitors on strawberry (Fragaria x ananassa Duch.) PPO, anthocyanin and color stability of stored purées. LWT-Food Science and Technology, 52(2), 116-122. Hu, H. L., Liu, D., Li, P. X. & Shen, W. B. (2015). Hydrogen sulfide delays leaf yellowing of stored water spinach (Ipomoea aquatica) during dark-induced senescence by delaying chlorophyll breakdown, maintaining energy status and increasing antioxidative capacity. Postharvest Biology and Technology, 108, 8–20. Hu, H., Shen, W. & Li, P. (2014a). Effects of hydrogen sulphide on quality and anti-oxidant capacity of mulberry fruit. International Journal of Food Science and Technology, 49, 399–409. Hu, K. D., Wang, Q., Hu, L. Y., Gao, S. P., Wu, J. & Li, Y. H. (2014b). Hydrogen sulfide prolongs postharvest storage of fresh-cut pears (Pyrus pyrifolia) by alleviation of oxidative damage and inhibition of fungal growth. Plos One, 9, e85524. Hu, L. Y., Hu, S. L., Wu, J., Li, Y. H., Zheng, J. L., Wei, Z. J., Liu, J., Wang, H. L., Liu, Y. S. & Zhang, H. (2012). Hydrogen sulfide prolongs postharvest shelf life of strawberry and plays an antioxidative role in fruits. Journal of Agricultural and Food Chemistry, 60 (35), 8684–8693. Janero, D. R. (1990). Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radical Biology and Medicine, 9(6), 515–540. Kaijv, M., Sheng, L. & Chao, C. (2006). Antioxidation of flavonoids of Rhizome. Food Science, 27,110-115. Keshavarz, F., Soleimani, A., Razavi, F. & kheiry, A. (2019). Effect of post-harvest phenylalanine and hydrogen sulfide treatment on biochemical and antioxidant properties of pomegranate fruit during cold storage (Master Thesis. Faculty of Agriculture, Zanjan University, Zanjan). (In Persian) Khoshghalb, H., Arzani, K., Tavakoli, A., Malakouti, M. J. & Barzegar, M. (2008). Quality of some Asian pear (Pyrus serotina Rehd.) fruit in relation to pre-harvest CaCl2, Zn and B sprays, harvest time, ripening and storage conditions. Acta Horticulturae, 800, 1027-1034. Lafuente, M. T., Zacarias, L., Martinez-Tellez, M. A., Sanchez-Ballesta, M. T. & Granell, A. (2003). Phenylalanine ammonia - lyase and ethylene in relation to chilling injury as affected by fruit age in citrus. Postharvest Biology and Technology, 29, 308–317. Lee, S.K. & Kader, A. A. (2000). Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biology and Technology, 20(3), 207-220. Li, D., Limwachiranon, J., Li, L., Du, R. & Luo, Z. (2016). Involvement of energy metabolism to chilling tolerance induced by hydrogen sulfide in cold-stored banana fruit. Food chemistry, 208, 272-278. Li, D., Luo, Z., Du, R. & Mou, W. (2015). Hydrogen sulfide alleviates chilling injury of banana fruit by enhanced antioxidant system and proline content. Scientia Horticulturae, 183, 144-151. Li, S. P., Hu, K. D., Hu, L. Y., Li, Y. H., Jiang, A. M., Xiao, F. & Zhang, H. (2014). Hydrogen sulfide alleviates postharvest senescence of broccoli by modulating antioxidant defense and senescence-related gene expression. Journal of Agricultural and Food Chemistry, 62(5), 1119-1129. Lim, C. C., Arora, R. & Townssenal, E. C. (1998). Comparing Gompertz and Richards Function to estimate freezing injury in Rhododendron using electrolyte leakage. Journal of the American Society for Horticultural Science, 123, 246-252. Luo, Z., Li, D., Du, R. & Mou, W. (2015). Hydrogen sulfide alleviates chilling injury of banana fruit by enhanced antioxidant system and proline content. Scientia Horticulturae, 183, 144-151. Meng, X., Li, B., Liu, J. & Tian, S. (2007). Physiological responses and quality attributes of table grape fruit to chitosan pre-harvest spray and postharvest coating during storage. Food Chemistry, 106, 501-508. Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9), 405-410. Mo, Y., Gong, D., Liang, G., Han, R., Xie, J. & Li, W. (2008). Enhanced preservation effects of sugar apple fruits by salicylic acid treatment during postharvest storage. Journal of the Science of Food and Agriculture, 88, 2693-2699. Nguyen, T. B. T., Ketsa, S. & Van Doorn, W. G. (2003). Relationship between browning and the activities of polyphenol oxidase and phenylalanine ammonia lyase in banana peel during low temperature storage. Postharvest Biology and Technology, 30: 187-193. Niazi, Z., Razavi, F., Khademi, O. & Aghdam, M. S. (2021). Exogenous application of hydrogen sulfide and γ-aminobutyric acid alleviates chilling injury and preserves quality of persimmon fruit (Diospyros kaki, cv. Karaj) during cold storage. Scientia Horticulturae, 285, 1-11. Park, Y, S., Leontowicz, M., Namiesnik, J., Suhaj, M., Cvikrová, M., Martincová, O., Weisz, M. & Gorinstein, M. (2011). Comparison of the contents of bioactive compounds and the level of antioxidant activity in different kiwifruit cultivars. Journal of Food Composition and Analysis. 24(7). 963-970 Perkins-Veazie, P. (1995). Growth and ripening of strawberry fruit. Horticultural Reviews, 17(8): 267-297. Radotic, K., Ducic, T. & Mutavdzic, D. (2000). Changes in peroxidase activity and isoenzymes in spruce needles after exposure to different concentrations of cadmium. Environmental and Experimental Botany, 44, 105-113. Shah, S. & Hashmi, M. S. (2020). Chitosan–Aloe vera gel coating delays postharvest decay of mango fruit. Horticulture, Environment and Biotechnology, 1-11. http://dx.doi.org/10.1007/s13580-019-00224-7 Sharom, M., Willemot, C. & Thompson, J. E. (1994). Chilling injury induces lipid phase changes in membranes of tomato fruit. Plant Physiology, 105(1), 305-308. Shewfelt, R. L. & Purvis, A. C. (1995). Toward a comprehensive model for lipid peroxidation in plant tissue disorders. HortScience, 30(2), 213-218. Singleton, V L., & Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144-158. Sun, Y., Zhang, W., Zeng, T., Nie, Q. & Zh, L. (2015). Hydrogen sulfide inhibits enzymatic browning of fresh-cut lotus root slices by regulating phenolic metabolism. Food Chemistry, 177, 376–381. Tanada-Palmu, P. S. & Grosso, C. R. (2005). Effect of edible wheat gluten-based films and coatings on refrigerated strawberry (Fragaria x ananassa) quality. Postharvest Biology and Technology, 36(2): 199-208. Unal, U. M., Yabaci, S. N. & Sener, A. (2011). Extraction, partial purification and characterization of polyphenol oxidase from tea leaf (Camellia sinensis). GIDA, 36(3), 137-144. Valero, D. & Serrano, M. (2010). Postharvest biology and technology for preserving fruit quality. CRC-Taylor and Francis, Boca Raton, FL, USA. Zhang, H., Hu, L. Y., Li, P., Hu, K. D., Jiang, C. X. & Luo, J. P. (2010). Hydrogen sulfide alleviated chromium toxicity in wheat. Biologia Plantarum, 54(4), 743-747. Zhang, S. Y., Yu, Y. W., Xiao, C. L., Wang, X. D. & Tian, Y. Y. (2013). Effect of carbon monoxide on browning of fresh-cut lotus root slice in relation to phenolic metabolism. Food Science and Technology, 53, 555–559. Zhao-Liang, Li., Yong-Bing, Y., Cheng-Lian, L. & Zong-Xun, C. (1998). Regulation of antioxidant enzymes by salicylic acid in cucumber leaves. Journal of Integrative Plant Biology,40(4), 356-361. Zhi, H., Liu., Q. & Dong, Yu. (2018). Effects of hydrogen sulfide on storage quality, water mobility and cell wall metabolism of strawberry fruit. International Journal of Agricultural and Biological Engineering, 11(6), 201-207. Zhu, L. Q., Zhou, J., Zhu, S. H. & Guo, L. H. (2009). Inhibition of browning on the surface of peach slices by short-term exposure to nitric oxide and ascorbic acid. Food Chemistry, 114, 174–179. Zucker, M. (1968). Sequential induction of phenylalanine ammonia-lyase and a lyase-inactivating system in potato tuber disks. Plant Physiology, 43, 365-374. | ||
آمار تعداد مشاهده مقاله: 164 تعداد دریافت فایل اصل مقاله: 255 |