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ABSTRACT 

The recent scientific studies in the context of earthquake precursors reveal some processes connected to 

seismic activity including thermal anomaly before earthquakes which is a great help for making a better 

decision making regarding this disastrous phenomenon and reducing its casualty to a minimum. This 

paper presents a method for grouping the objective input data for different thermal anomaly detection 

methods using the land surface temperature (LST) mean in multiple distances from the corresponding 

fault during the 40 days (i.e. 30 days before and 10 days after the impending earthquake) of investigation. 

Six strong earthquakes with Ms > 6 that have occurred in Iran have been investigated in this study. We 

used two different approaches for detecting thermal anomalies: the mean-standard deviation method and 

the interquartile method. Results show that the proposed input data produces fewer false alarms in each 

of the thermal anomaly detection methods compared to the ordinary input data making this method much 

more accurate and stable regarding the easy accessibility of thermal data and their less complicated 

algorithms for processing. In the final step, the detected anomalies are used for estimating earthquake 

intensity using Artificial Neural Network (ANN). The results show that the estimated intensities of most 

earthquakes are very close to the actual intensities. Since the locations of the active faults are known a 

priori, using fault distance-based approach may be regarded as a superior method in predicting the 

impending earthquakes for vulnerable faults. In spite of the previous investigations that the studies were 

only possible aftermath, the fault distance-based approach can be used as a tool for future unknown 

earthquakes prediction. However, it is recommended to use thermal anomaly detection as an initial 

process to be jointly used with other precursors to reduce the number of investigations that require more 

complicated algorithms and data processing. 
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1. Introduction 

Earthquake is one of the most difficult phenomena to 

predict and hence one of the most destructive natural 

calamities, capable of causing lots of instant loss of lives and 

property (Console, Pantosti, & D'Addezio, 2002). 

Earthquake is the result of surging tectonic stress and its 

release caused by tectonic movement in fault zones (Geller, 

Jackson, Kagan, & Mulargia, 1997). There have been a 

number of studies regarding the existing precursors for this 

natural disaster. These studies indicate some of the 

precursors such as water temperature, water level change, 

flow rate, magnetic field, electric field, soil/air temperature, 

relative humidity, ionospheres fluctuations, surface 

deformations, and land surface temperature (LST) 

anomalies (Cicerone, Ebel, & Britton, 2009; Hayakawa, 

Molchanov, Kodama, Tanaka, & Igarashi, 2000; Wyss, 

1997; Yao, 2007). 

Although each of these precursors has an important and 

individual role in estimating the earthquake parameters, the 

thermal anomaly precursor is one of the most useful ones due 

to its physical relevance to the nature of the earthquake. 

There are mainly five hypotheses describing the physical 

basis behind thermal anomaly related to seismic activities: 

1) Earth degassing mechanism, 2) Groundwater anomaly, 3) 
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Frictional heating, 4) Seismo-ionosphere coupling, and 5) p-

hole activation mechanism (Cicerone et al., 2009; Freund, 

2011; Z. Qiang et al., 1999; Roeloffs, 1988). Each of these 

concepts will either directly increase the land surface 

temperature or they will increase the near-surface air 

temperature which would eventually cause a change in 

surface temperature depending on their effect (A. K. Saraf, 

Rawat, Choudhury, Dasgupta, & Das, 2009; Surkov, 

Pokhotelov, Parrot, & Hayakawa, 2006; Valerio Tramutoli, 

Di Bello, Pergola, & Piscitelli, 2001; Verma & Bansal, 

2012). 

The idea that thermal anomalies may be related to seismic 

activity was first put into application in the early eighties. In 

1990, researchers detected thermal anomalies prior to an 

earthquake (Tronin, 1996). These researchers were among 

the first people who suggested using thermal infrared 

anomalies for a better understanding of the earthquake 

phenomena. Tramutoli (1998) used Robust AVHRR 

Approach (RAT) method for detecting thermal anomalies 

before the earthquakes using AVHRR data (Valerio 

Tramutoli, 1998). This method allowed Tramutoli to detect 

the thermal anomalies with better accuracy by separating the 

natural anomalies like the seasonal changes from the 

anomalies that were related to seismic activities (Valerio 

Tramutoli et al., 2001). Later this method was adjusted for 

the rest of the remote sensing data and it is now known as 

Robust Satellite Approach or RST (V Tramutoli, Cuomo, 

Filizzola, Pergola, & Pietrapertosa, 2005). 

Originally, in order to describe the relationship between 

land surface temperature and seismic activities, AVHRR 

(Advanced Very High-Resolution Radiometer onboard 

NOAA satellite) data were used (Z.-j. Qiang, Xu, & Dian, 

1997). Many studies such as Saraf (2009) and Choudhury 

(2006) several strong earthquakes using AVHRR data 

(Choudhury, Dasgupta, Saraf, & Panda, 2006; A. K. Saraf 

et al., 2009). In a few cases, they used the Defense 

Meteorological Satellite Program (DMSP) in certain 

situations like areas with snow or cloud cover in order to 

obtain higher accuracy (A. Saraf & Choudhury, 2005). 

Although they did not explore the statistical parameters of 

the anomaly and relied only on visual interpretation, their 

studies widened spatial coverage required to take an 

important step for future studies. Rawat in 2011, investigated 

Ms 5.9 Vrancea (Romania) earthquake on October 27th, 

2004, and showed LST rise of 5–10 °C within a week of the 

earthquake (Rawat, Saraf, Das, Sharma, & Shujat, 2011). 

In recent years, MODIS (Moderate Resolution Imaging 

Spectroradiometer) LST product has proven to be very useful 

as a direct input for several study cases and various anomaly 

detection methods. In 2004 Ouzounov and Freund were 

among the first researchers who used MODIS products as 

their input data for their studies (Ouzounov & Freund, 

2004). They also investigated TIR anomalies and mid-IR 

emissions prior to an earthquake. Another study conducted 

one of the most destructive earthquakes that happened in 

Gujarat (India) on January 26th, 2001. The results showed 

an anomaly of 3–4 °C about 5 days before the earthquake 

(Ouzounov & Freund, 2004). 

As mentioned, an earthquake occurs as a result of 

releasing the built-up stress along the fault. Therefore, active 

faults are one of the most important factors contributing to 

the earthquake process. Although many studies have focused 

on the subject of earthquakes, only a few have investigated 

the changes along the fault zones regarding their 

temperature. In 2010, Wang and Manga investigated the 

groundwater change in a fault zone that would later cause a 

change in land surface temperature in multiple earthquakes 

(Wang & Manga, 2021). Later in 2019, Li and Shi 

investigated anomalies in Earth degassing mechanism and 

groundwater in 2008 for Wenchuan Ms 8.0, 2013, Lushan 

Ms 7.0 and Kangding Ms 6.3, 2014 earthquakes near 

Xianshuihe fault zone (Li, Shi, Wang, & Liu, 2019). Although 

these studies were not directly about the thermal anomalies, 

the results showed releasing CO2 and changes in the 

composition of groundwater that would later cause a change 

in land surface temperature. In 2020, Khalili et al. used 

yearly LST, air, and soil temperature of 5 years to investigate 

the thermal anomalies related to the Saravan earthquake 

(April 16th, 2013, Ms = 7.8). The results showed the thermal 

anomaly pattern before the Saravan earthquake. In the 

Kriging surfaces of the air temperature and the difference 

between the LST and air temperature, considerable changes 

were observed a few days before the earthquake and lasted 

a few days after it (Khalili, Abdollahi Eskandar, & Alavi 

Panah, 2020). 

Recently, many studies use machine learning algorithms 

especially those involving Artificial Neural Network (ANN). 

ANN is a mathematical model and was adapted from human 

reactions and simulation of thinking processes to solve 

complicated problems. Using ANN, one can solve these 

problems without entering into complex theories and topics 

(Adeli, 1999). In 2014, Akhoondzadeh investigated Saravan 

earthquake in Iran that occurred on April 16th, 2013 using 

ANN with the help of Particle Swarm Optimization (PSO) to 

increase the efficiency of thermal anomaly detection 

(Akhoondzadeh, 2014). In 2020, Nekoee and Shah-Hosseini 

used two different methods of dynamic NARX (Nonlinear 

Auto Regressive with eXternal input) neural network 

algorithm namely Levenberg-Marquardt and Scaled 

conjugated gradient to investigate 3 earthquakes in Iran. 

NARX neural network was able to find anomalies of 5 to 7 

degrees from 5 to 13 days prior to earthquake (Nekoee & 

Shah-Hosseini, 2020).  

This paper presents a method of grouping input data to be 
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used in two different anomaly detection methods. Most of the 

studies on thermal anomalies are only possible after the 

earthquake happens since they require the location of the 

epicenter. The presented fault distance-based approach can 

be regarded as a better method for predicting the 

earthquake, as it uses a-priori known active faults. The 

conventional data selection methods use only LST and time, 

while the distance-based grouping of data proposed in this 

study would also take into the consideration one of the very 

influential parts of the earthquake effect which is the relevant 

fault and the regions around it. This study also intends to 

show the accuracy of using the combination of this 

assembled data and thermal anomaly detection results for 

estimating each earthquake’s intensity using ANN. 

2. STUDY AREAS AND DATASETS 

2.1. Case Studies 

    Table 1. The earthquakes’ locations, intensities and 

dates of six strong earthquakes (Ms>6) of Azgalah, 

Goharan, Saravan, Shonbeh, Brujerd, and Sari investigated 

in this study. 

 

Table 1. The earthquakes’ locations, intensities and 
dates. 

Earthquake Epicenter Intensity Date 

Azgalah 34.81 N   

45.83 E 

7.3 November 12, 

2017 

Goharan 26.52 N   

57.76 E 

6.2 May 11, 2013 

Saravan 27.11 N  

62.05 E 

7.8 April 16, 2013 

Shonbeh 28.48 N   

51.58 E 

6.3 April 9, 2013 

Brujerd 34.57 N   

48.79 E 

6.1 March 31, 2006 

Sari 36.27 N   

51.57 E 

6.3 May 28, 2004 

2.2. Datasets 

In this study, MODIS sensor daily land surface 

temperature product (MOD11A1) during forty days (thirty 

days before and ten days after the earthquakes) for each 

earthquake has been used. The MODIS daily LST and 

emissivity data are retrieved at 1km pixel size by the 

generalized split-window algorithm, which uses bands 31 

and 32. 

In addition, the relevant active fault was identified and its 

shape file was extracted depending on how close it was to the 

location of each earthquake’s epicenter. 

3. METHODOLOGY 

 As mentioned, this paper presents a method of grouping 

input data for different thermal anomaly detection methods. 

It uses the land surface temperature mean in multiple 

distances of 1 to 20 km from the corresponding fault during 

the forty days starting from 30 days before and 10 days after 

a given earthquake event. To generate the input data and use 

it in the anomaly detection algorithm, the following steps 

have been performed: pre-processing, fault distant map 

generation, and land surface temperature diagram 

generation. The data are then used in anomaly detection 

methods and Artificial Neural Network (ANN). 

2.1. Pre-processing 

The first step is to remove the natural and observational 

noise signals, which are due to changes in seasons, view 

angles, and air density from the TIR data. By doing so, the 

remaining data would be mainly unmixed TIR anomaly data 

associated with increased seismic activity. In order to 

achieve this, a linear function was fitted to the LST of the 

previous year where there was no strong seismic activity and 

then was subtracted from the present year of LST in which 

the earthquake had occurred. 

3.2. Fault distant map 

      In order to use the fault in our process, it is necessary 

to have an understanding of the corresponding fault and its 

surrounding areas in different distances. A fault distant map 

is a map that its pixels represent values depending on how 

far they are from the fault. The closer the pixel is to the fault, 

the lower its value and it will increase as we get further from 

it. Figure 1 shows the example of Azgalah fault distant map. 

 

 

Figure 1: Fault distant map for Azgalah study 

case 

3.3. Land surface temperature diagram 

 In this study, a method of using the temperature mean in 

different buffer zones with various radiuses (i.e. 1-20 km) 

around the corresponding active fault during the period of 

investigation has been presented. The data is presented by a 

3D diagram, made by the LSTs mean in different radiuses 

around the corresponding active fault in each day. This 

means that each pixel in this data which can be represented 

as a picture or 3D diagram shows the LST mean in a certain 

radius buffer zone for a specific day. It should be noted that 

the width of each buffer is only 1 km and R is the buffer 

radius (distance) from the related fault. Later, these 

temperatures mean of each buffer is used as input data to test 

various anomaly detection methods such as the interquartile 

method and the standard deviation method. 
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Instead of using conventional 2D-data, the anomaly 

detection methods will act more appropriately by using the 

3D-data which includes LST mean values in different 

buffers, time lapses (days) to the earthquake events, and the 

distances from the fault. 

3.4. Anomaly detection methods 

Two anomaly detection methods have been used. The first 

one is simply the use of mean and standard deviation (1) of 

LST values (Akhoondzadeh, 2011) in each buffer zone.  

x k     (1) 

Where µ is the mean value, σ is the standard deviation value 

of the LSTs and k is a coefficient around 1.6 but may slightly 

change for each case study. For each x (i.e. LST), if the result 

of (1) is true, it will be regarded as an anomaly.  

The second anomaly detection method uses a similar 

approach but instead of using mean and standard deviation, 

it uses median and interquartile range (2) (Saradjian and 

Akhoondzadeh, 2011) which is known as the Interquartile 

method. 

x M k IQR    (2) 

Where M is the median value, IQR is the interquartile range 

and k is a coefficient around 1.3 but may slightly change for 

each case study. Like the first method, if each x (i.e. LST) is 

greater than equation 2, then the behavior of the LST will be 

regarded as anomalous. 

3.4. Artificial Neural Network (ANN) 

ANN has shown to be one of the most reliable methods for 

solving complicated problems. Many studies have described 

its theoretical background (Cheng and Li, 2008; Chung, 

Lee, and Pearn, 2005; Ergu, Kou, Shi, and Shi, 2014; 

Sahoo, Dhar, and Kar, 2016). ANN is a mathematical 

network model trained by using a specific set of data. This 

trained network can later be used to transform other sets of 

data into output (Nedic, Despotovic, Cvetanovic, 

Despotovic, and Babic, 2014). Most ANNs consist of three 

different layers: the input layer, which is a layer for initiating 

data, the hidden layer, which could have multiple layers 

depending on the nature and complexity of the problem, and 

the output layer (Pradhan and Lee, 2009). Inside each layer 

lays a number of neurons and nodes. Depending on how the 

network is trained, ANNs are divided into two categories: 

feedforward-propagation and back-propagation. Back-

propagation ANNs are usually used in studies due to their 

better performance in various fields. One of the most 

common back-propagation ANNs is the multi-layer 

perceptron (MLP) network (Pradhan and Lee, 2010). Input 

data in MLP network will be connected to the hidden layer 

using a number of weights and biases in each neuron through 

an activation function. The activation (transformation) 

function is chosen depending on the performance.  By using 

a set of training data these weights and biases will be 

determined and later be optimized through a number of 

iterations (Nedic et al., 2014).  

In this study, we used a 7-layer MLP network with mean 

square error value as a validation criterion for network 

performance. The input features consisted of the main 

anomaly pixel corresponding to the earthquake, plus 3 pixels 

around it for the day before the earthquake using 1 km buffer 

around it, and also 5 pixels around the mentioned 3 pixels, 

making it 9 features altogether. Figure 2 shows the 

architecture of the MLP network. 

 

 

 

 

 

 

 

 

Figure 2: Architecture of the MLP network used in this 
study. It consists of 9 input features, 7 hidden layers, and 

the output layer. 

Since each earthquake under investigation happened in a 

different region and time of the year, the base temperature is 

different in each case. The different temperature between the 

detected anomaly pixel and its surrounding pixels in various 

buffers and days are the input data for training this network 

so that the different temperatures in each region do not cause 

a problem. Also, all the temperature data used for training 

belongs to 30 days before the earthquake. In other words, 

the temperatures related to the 10 days after the earthquake 

in each case study are not used for training ANN. 

4. RESULTS AND DISCUSSION 

4.1. Land surface temperature diagram 

As mentioned, for each earthquake, the LSTs for each 

buffer zone were categorized and by using the LST mean of 

each buffer, its 3D-diagram was created (Figure 3) and 

used as input data in thermal anomaly detection methods. 

Each pixel in these diagrams represents the LST mean (in 

Kelvin) in a certain radius buffer zone for a specific day. 

The red lines in Figure 3 show the day of the earthquake for 

each case. 

 Due to using the proposed method for grouping the LST 

data, some of the anomalies can be seen even visually around 

the time of the earthquake. Although relying only on visual 

aspects isn’t accurate enough, it can be used for better 

presenting and understanding the situation. 
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Figure 3: Land surface temperature diagram for a) Azgalah, b) Goharan, c) Saravan, d) Shonbeh,  

e) Brujerd, f) Sari case studies where in each case, the earthquake day is 31th day. 

 4.2. Detected thermal anomalies 

In Figure 4 and Figure 5, the output of each anomaly 

detection method for each earthquake is shown. Results of 

each earthquake investigation show that the thermal 

anomaly is detectable in both of the anomaly detection 

methods mostly on the closest day to the earthquake 

regarding the closest buffer zone to the fault. These anomaly 

detection methods were used in other studies by using 

conventional selection of data as input. Although they have 

detected some anomalies, their accuracy was always in 

question due to many false alarm anomalies detected along 

with the actual anomaly. 

Results show that in Azgalah, Goharan, Saravan, Brujerd, 

and Sari case studies, the anomalies detected by both 

methods are either on the day of the earthquake, the day 

before, the day after, or all of the days mentioned. This 

difference is due to the temporal proximity between the time 

of the imaging and the earthquake and the earthquake’s 

intensity. In Shonbeh case study, although a thermal 

anomaly was detected on the day of the earthquake, another 

slightly stronger anomaly was detected 8 days after that. 

It should be noted that the anomalies detected in far 

distance buffers from the corresponding fault are different 

for each earthquake (mostly in Saravan and Sari case 

studies) and do not have similar patterns. Moreover, since 

these pixels are far away from the corresponding fault and 

epicenter, it cannot be said for certain that they are related 

to the earthquake. Therefore, these pixels were not 

considered as earthquake-related anomalies and only 

anomalies in close distance buffers were used as earthquake-

related anomalies in ANN algorithms. 

The difficulty of this method is in far distances. For 

example, in buffers as far as 20 km radius from the fault, two 

pixels inside the buffer can be up to 80 km apart from each 

other, depending on the length of the fault itself. As a result, 

buffers with large radiuses could have pixels with various 

land covers and different temperatures. While limiting the 

buffer radius could shorten radiuses from the fault, it would 

make the area and diagram under investigation become too 

small, causing the method to be less effective. 

Changing the coefficient value (k) for each anomaly 

detection process affects the result. The higher the value of 

coefficient k is, the higher the threshold for anomaly 

detection is set. This reduces the anomalies that can be 

detected while lowering the number of false alarm 

anomalies. On the other hand, increasing the coefficient 

value could result in omitting even the main anomaly that is 

related to the earthquake. Therefore, it is necessary to find 

an optimal value to increase the efficiency of each method. 

In this study, the coefficient value for the standard method is 

around 1.6 and for the interquartile method is around 1.3. 
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Figure 4: Simple anomaly detection method results for a) Azgalah, b) Goharan, c) Saravan, d) Shonbeh,  

e) Brujerd, f) Sari case studies where in each case, the earthquake day is 31th day. 

4.3. The impact of difference in anomaly detection methods 

The results show that both anomaly detection methods do 

find the thermal anomaly caused by seismic activities in each 

investigated earthquake. However, the interquartile anomaly 

detection method has a slightly more specified outcome and 

fewer false alarm anomalies.  

Figure 4 shows the results for a standard anomaly 

detection method. It indicates the anomalies detected around 

the time of the earthquake in the nearest buffer from the 

corresponding fault. In Azgalah, Saravan, and Brujerd 

cases, few anomalies are detected before the earthquake 

while in Goharan and Shonbeh cases few anomalies are 

detected after the earthquake. In Sari case, the earthquake 

related anomalies are detected on the day of the earthquake. 

However, the anomaly is not detected in the nearest buffer 

but in the 2-8 km buffer zones. In Azgalah, Saravan, and 

Brujerd cases, some of the anomalies were detected around 

6 days before the earthquake. Although these anomalies are 

not as strong as the anomalies detected near the time of the 

earthquake, they seem to be related to some seismic activities 

rather than being a false alarm. 

Results for the interquartile anomaly detection method can 

be seen in Figure 5. Many anomalies detected by this method 

are related to the earthquake and found near the time of the 

earthquake in the closest buffer to the corresponding fault 

with the exception of Shonbah earthquake. As mentioned 

before, in Shonbah case study, another thermal anomaly was 

detected beside the main. 
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Figure 5: Interquartile anomaly detection method results for a) Azgalah, b) Goharan, c) Saravan, d) Shonbeh, 

e) Brujerd, f) Sari case studies where in each case, the earthquake day is 31th day 

   Anomaly, almost 8 days after the earthquake, which was 

even stronger than the anomaly related to the earthquake. 

Nevertheless, these results show that the interquartile 

anomaly detection method has more specified results and a 

better outcome for training ANN, compared to the standard 

anomaly detection method. 

4.3. Artificial Neural Network (ANN) results 

Since interquartile method created more precise inputs for 

training the ANN, the anomalies detected by this method 

were used. Table 2 shows the results of each earthquake’s 

estimated intensity and its accuracy compared to its actual 

intensity. The results indicate that the best accuracy belongs 

to Azgalah and the one with the least accuracy belongs to 

Sari case study. ANN results also show high correlation 

coefficients between thermal anomaly data and the 

earthquakes intensity.  

It should be mentioned that a strong earthquake has 

greater anomaly at the earthquake point on the day of the 

earthquake and also in the nearest buffer to the fault. 

 

Table 2. Estimated intensity for each earthquake using 

ANN 

Earthquake Estimated 

Intensity 

Error Actual 

Intensity 

Azgalah 7.301 0.001 7.3 

Goharan 6.302 0.102 6.2 

Saravan 7.719 0.081 7.8 

Shonbeh 6.290 0.010 6.3 

Brujerd 6.280 0.020 6.1 

Sari 6.245 0.145 6.3 

 

 Figure 6 shows the performance of the generated 

networks for each earthquake case based on mean square 

error (MSE).  
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Figure 6 ANN performance base on mean squared error for a) Azgalah, b) Goharan, c) Saravan, d) Shonbeh, 
e) Brujerd, f) Sari case studies 

Regarding the limited number of investigated earthquakes, 

ANN presented a significant result by managing to sustain 

good accuracy using various thermal data for each 

earthquake. This figure shows at which epoch, network has 

its lowest MSE, or its variation is so insignificant that it is 

considered to be invariant in the next epochs. Figure 7 shows 

the correlation coefficient (R) between each network and the 

actual target value in each case study. As it can be seen the 

estimated intensities and the actual intensities for training 

and test data are very close for each case study. This fact 

allowed the generated network to have the value of 

correlation coefficient (R) above 0.98 between each network 

and its actual target value in each case study. 
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Figure 7 ANN’s correlation coefficient (R) for a) Azgalah, b) Goharan,  

c) Saravan, d) Shonbeh, e) Brujerd, and f) Sari case studies. 

  5. CONCLUSION 

     Thermal anomaly is indeed a significant precursor for 

strong earthquakes. The proposed method which includes 

analyzing the anomalies with respect to the buffer zones in 

different distances relevant to faults, increases the accuracy 

dramatically. Two thermal anomaly detection methods were 

used for investigating each earthquake in this study. 

Although the outcome of each method is slightly different 

from another for each earthquake, the interquartile method 

has better results compared to the standard method. 

Nevertheless, they are both more accurate when anomaly 

detection algorithms use the proposed grouped input data 

instead of the ordinary selection of data. 

ANN results show that thermal anomaly data highly 

corresponds with earthquake intensity. Thus, the network 

was constructed properly, making the estimated results close 

to actual intensities. It is recommended to use more data 

related to more earthquakes and different locations for 

training ANN to improve the network accuracy.  

However, it should be pointed out that thermal anomaly on 

its own is not quite sufficient for estimating earthquake 

parameters and activities. It is highly recommended to use it 

as an initial and primary precursor for limiting the search 

area and then use other precursors, which require more 

complicated data and methods. Thermal anomaly precursors 

can also be used in combination with other simple precursors 

to get efficient and comprehensive results. 

Many previous studies that investigated thermal 

anomalies, explored areas only around the epicenter. 

Methods used in such studies required the exact location of 

epicenter therefore they are only possible after happening of 

the earthquake. Since the location of the active faults is 

known a priori or can be identified by further investigations, 

using the fault distance-based approach can be a superior 

method in predicting the impending earthquakes for 

vulnerable faults. In spite of the previous investigations that 

the studies were only possible aftermath, the fault distance-

based approach can be used as a tool for impending 

unknown earthquake prediction. 
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