تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,098,097 |
تعداد دریافت فایل اصل مقاله | 97,205,736 |
Mineral potential mapping of porphyry copper deposit by translating the mineral system using soil geochemistry data at Kahang, Iran | ||
International Journal of Mining and Geo-Engineering | ||
مقاله 6، دوره 57، شماره 4، اسفند 2023، صفحه 397-404 اصل مقاله (1.23 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/ijmge.2023.355656.595039 | ||
نویسندگان | ||
Saeid Hajsadeghi؛ Mirsaleh Mirmohammadi* ؛ Omid Asghari | ||
School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran. | ||
چکیده | ||
Identification of geochemical anomalies is a critical task in mineral exploration targeting. Decades of research and technology have resulted in new algorithms and techniques for recognizing anomaly detection methods at various scales and sample media. However, algorithms cannot always reveal the true nature of geological processes. The mineral system concept may contribute to a better understanding of the geological processes required to form and preserve ore deposits at all spatial and temporal scales. The mineral systems concept investigates the geochemical processes occurring within mineral subsystems in soil samples from the porphyry prospect area. The Cu/(Al + Ca) index was used to compare Cu, Mo, and (Pb* Zn)/(Cu*Mo) to highlight the region of interest for mineral potential mapping and pioneer borehole drilling based on fluid-rock interaction and secondary processes (e.g., alteration, weathering, and leaching). Exploratory boreholes validate a better performing Cu/(Al + Ca) index for detecting and refining soil geochemical anomalies. | ||
کلیدواژهها | ||
Soil geochemistry؛ Porphyry copper deposit؛ Mineral system concept؛ Kahang porphyry copper deposit | ||
مراجع | ||
[1] Wyborn LAI, Heinrich CA, Jaques AL (1994) Australian Proterozoic Mineral Systems: Essential Ingredients and Mappable Criteria. The AusIMM Annual Conference: 109–115.
[2] Knox-Robinson CM, Wyborn LAI (1997) Towards a holistic exploration strategy: using geographic information systems as a tool to enhance exploration. Aust J Earth Sci 44:453–463.
[3] Hagemann SG, Lisitsin VA, Huston DL (2016) Mineral system analysis: Quo vadis. Ore Geol Rev 76:504–522.
[4] Hronsky JMA (2004) The science of exploration targeting. SEG:129-133.
[5] Hronsky JMA, Groves DI (2008) Science of targeting: definition, strategies, targeting and performance measurement. Aust J Earth Sci 55:3–12.
[6] Kreuzer OP, Etheridge MA, Guj P, McMahon ME, Holden DJ (2008) Linking mineral deposit models to quantitative risk analysis and decision-making in exploration. Econ Geol 103:829–850.
[7] McCuaig TC, Beresford S, Hronsky J (2010) Translating the mineral systems approach into an effective exploration targeting system. Ore Geol Rev 38:128–138
[8] Yousefi M, Kreuzer OP, Nykänen V, Hronsky JM (2019) Exploration information systems–A proposal for the future use of GIS in mineral exploration targeting. Ore Geol Rev 111:103005.
[9] Skirrow RG, Murr J, Schofield A, Huston DL, van der Wielen S, Czarnota K, Coghlan R, Highet LM, Connolly D, Doublier M, Duan J (2019) Mapping iron oxide Cu-Au (IOCG) mineral potential in Australia using a knowledge-driven mineral systems-based approach. Ore Geol Rev 113:103011.
[10] Agnew PD, Muhling J, Goldfarb RJ (2004) Applications of geochemistry in targeting with emphasis on large stream and lake sediment data compilations. Predictive Mineral Discovery Under Cover: 232.
[11] Cohen DR, Kelley DL, Anand R, Coker WB (2010) Major advances in exploration geochemistry, 1998–2007. Geochem Explor Environ Anal 10(1):3–16.
[12] Reimann C (2005) Geochemical mapping: technique or art? Geochem-Explor Env A 5:359–370
[13] McKinley JM, Hron K, Grunsky EC, Reimann C, de Caritat P, Filzmoser P, van den Boogaart KG, Tolosana-Delgado R (2016) The single component geochemical map: fact or fiction? J Geochem Explor 162:16–28.
[14] Grunsky EC, de Caritat P (2020) State-of-the-art analysis of geochemical data for mineral exploration. Geochem Explor Env A 20(2):217-232.
[15] Brauhart CW (2019) The role of geochemistry in understanding mineral systems. ASEG Extended Abstracts 2019 (1): 1–5.
[16] Chen Y, An A, (2016) Application of ant colony algorithm to geochemical anomaly detection. J Geochem Explor 164:75–85.
[17] Zhao J, Chen S, Zuo R (2016) Identifying geochemical anomalies associated with Au–Cu mineralization using multifractal and artificial neural network models in the Ningqiang district, Shaanxi, China. J Geochem Explor 164: 54-64.
[18] Chen Y, Wu W (2019) Separation of geochemical anomalies from the sample data of unknown distribution population using Gaussian mixture model. Comput and Geosci 125:9-18.
[19] Zhang S, Xiao K, Carranza EJM, Yang F, Zhao Z (2019) Integration of auto-encoder network with density-based spatial clustering for geochemical anomaly detection for mineral exploration. Comput and Geosci 130:43-56.
[20] Ghezelbash R, Maghsoudi A, Carranza EJM (2020) Optimization of geochemical anomaly detection using a novel genetic K-means clustering (GKMC) algorithm. Comput and Geosci 134:104335.
[21] Li H, Li X, Yuan F, Jowitt SM, Zhang M, Zhou J, Zhou T, Li X, Ge C, Wu B (2020) Convolutional neural network and transfer learning based mineral prospectivity modeling for geochemical exploration of Au mineralization within the Guandian–Zhangbaling area, Anhui Province, China. Appl. Geochemistry 122:104747.
[22] Li B, Liu B, Wang G, Chen L, Guo K (2021) Using geostatistics and maximum entropy model to identify geochemical anomalies: A case study in Mila Mountain region, southern Tibet. Appl. Geochemistry 124:104843.
[23] Luo Z, Xiong Y, Zuo R (2020) Recognition of geochemical anomalies using a deep variational autoencoder network. Appl Geochemistry 122:104710.
[24] Wang J, Zhou Y, Xiao F (2020) Identification of multi-element geochemical anomalies using unsupervised machine learning algorithms: A case study from Ag–Pb–Zn deposits in north-western Zhejiang, China. Appl Geochemistry 120:104679.
[25] Xiong Y, Zuo R (2020) Recognizing multivariate geochemical anomalies for mineral exploration by combining deep learning and one-class support vector machine. Comput and Geosci 140:104484.
[26] Wheeler S, Henry T, Murray J, McDermott F, Morrison L (2021) Utilising CoDA methods for the spatio-temporal geochemical characterisation of groundwater; a case study from Lisheen Mine, south central Ireland. Appl Geochemistry 127:104912.
[27] Grigorian SV (1992) Mining Geochemistry. Nedra Publishing House, Moscow.
[28] Ziaii M, Abedi A, Ziaei M (2009) Geochemical and mineralogical pattern recognition and modeling with a Bayesian approach to hydrothermal gold deposits. Appl Geochemistry 24:1142–1146.
[29] Ziaii M, Carranza EJM, Ziaei M (2011) Application of geochemical zonality coefficients in mineral prospectivity mapping. Comput and Geosci 37(12):1935-1945.
[30] Talesh Hosseini S, Asghari O, Ghavami Riabi SR (2018) Spatial modelling of zonality elements based on compositional nature of geochemical data using geostatistical approach: a case study of Baghqloom area, Iran. Journal of Mining and Environment 9(1):153-167.
[31] Govett GJS (1983) Handbook of Exploration Geochemistry. Elsevier.
[32] Brauhart CW, Grunsky EC, Hagemann SG (2017) Magmato-hydrothermal space: a new metric for geochemical characterisation of metallic ore deposits. Ore Geol Rev 86:867–895.
[33] Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343.
[34] MacLean W, Barrett T (1993) Lithogeochemical techniques using immobile elements. J Geochem Explor 48:109–133.
[35] Rollinson HR (1993) Using Geochemical Data: Evaluation, Presentation, Interpretation. Routledge, Longman, Harlow.
[36] Brand NW (1999) Element ratios in nickel sulphide exploration: vectoring towards ore environments. Geochem Expl 67:145–165.
[37] Chandrajith R, Dissanayake C, Tobschall H (2001) Application of multi-element relationships in stream sediments to mineral exploration: a case study of Walawe Ganga Basin, Sri Lanka. Appl Geochem 16:339–350.
[38] El-Makky AM, Sediek KN (2012) Stream sediments geochemical exploration in the northwestern part of Wadi Allaqi Area, South Eastern Desert, Egypt. Nat Resour Res 21:95–115.
[39] Gong Q, Deng J, Wang C, Wang Z, Zhou L (2013) Element behaviors due to rock weathering and its implication to geochemical anomaly recognition: a case study on Linglong biotite granite in Jiaodong peninsula, China. J Geochem Explor 128:14–24.
[40] Yaylalı-Abanuz G (2013) Determination of anomalies associated with Sb mineralization in soil geochemistry: a case study in Turhal (northern Turkey). J Geochem Explor 132:63–74.
[41] Wang C, Carranza EJM, Zhang S, Zhang J, Liu X, Zhang D, Sun X, Duan C (2013) Characterization of primary geochemical haloes for gold exploration at the Huanxiangwa gold deposit, China. J Geochem Explor 124:40–58.
[42] Liu C, Hu S, Ma S, Tang L (2014) Primary geochemical patterns of Donggua Mountain laminar skarn copper deposit in Anhui, China. J Geochem Explor 139:152–159.
[43] Hosseini-Dinani H, Aftabi A, Esmaeili A, Rabbani M (2015) Composite soil-geo-chemical halos delineating carbonate-hosted zinc-lead-barium mineralization in the Irankuh district, Isfahan, west-central Iran. J Geochem Explor 156:114–130.
[44] Chen Z, Chen J, Tian S, Xu B (2017) Application of fractal content-gradient method for delineating geochemical anomalies associated with copper occurrences in the Yangla ore field, China. Geosci Front 8:189–197.
[45] Carranza EJM (2017) Geochemical Mineral Exploration: should we use enrichment factors or log-ratios? Nat Resour Res 26:411–428.
[46] Gresens RL (1967) Composition-volume relationships of metasomatism. Chem Geol 2:47–65.
[47] Grant JA (1986) The isocon diagram; a simple solution to Gresens' equation for meta-somatic alteration. Econ. Geol. 81, 1976–1982.
[48] Grant JA (2005) Isocon analysis: a brief review of the method and applications. Phys. Chem Earth 30:997–1004.
[49] Gaillard N, Williams-Jones AE, Clark JR, Salvi S, Perrouty S, Linnen RL, Olivo GR (2020) The use of lithogeochemistry in delineating hydrothermal fluid pathways and vectoring towards gold mineralization in the Malartic district, Québec. Ore Geol Rev 120:103351.
[50] Bierlein FP, Fuller T, Stüwe K, Arne DC, Keays RR (1998) Wallrock alteration associated with turbidite-hosted gold deposits: examples from the Palaeozoic Lachlan Fold Belt in central Victoria, Australia. Ore Geol Rev 13:345–380.
[51] Eilu P, Mikucki JE, Dugdale LA (2001) Alteration zoning and primary geochemical dispersion at the Bronzewing lode-gold deposit, Western Australia. Miner Deposita 36:13–31.
[52] Whitbread MA, Moore CL (2004) Two lithogeochemical approaches to the identification of alteration patterns at the Elura Zn–Pb–Ag deposit, Cobar, New South Wales, Australia: use of Pearce Element Ratio analysis and Isocon analysis. Geochem-Explor Env A 4:129–141.
[53] Warren I, Simmons SF, Mauk JL (2007) Whole-Rock Geochemical Techniques for Evaluating Hydrothermal Alteration, Mass Changes, and Compositional Gradients Associated with Epithermal Au-Ag Mineralization. Econ Geol 102:923–948.
[54] Prendergast K (2007) Application of lithogeochemistry to gold exploration in the St Ives goldfield, Western Australia. Geochem-Explor Env A 7:99–108.
[55] Ahmed AD, Hood SB, Gazley MF, Cooke DR, Orovan EA (2019) Interpreting element addition and depletion at the Ann Mason porphyry-Cu deposit, Nevada, using mapped mass balance patterns. J Geochem Explor 196:81-94.
[56] Tabatabaei SH, Asadi Haroni H (2006) Geochemical characteristics of Gor Gor Cu–Mo porphyry system. Iranian Symposium on Geosciences: 60.
[57] Afshooni SZ, Mirnejad H, Esmaeily D, Haroni HA (2013) Mineral chemistry of hydrothermal biotite from the Kahang porphyry copper deposit (NE Isfahan), Central Province of Iran. Ore Geol Rev 54:214-232.
[58] Azadi M, Mirmohammadi M, Hezarkhani A (2015) Aspects of magmatic–hydrothermal evolution of Kahang porphyry copper deposit, Central Iran. Arab J Geosci 8(7):4873-4893.
[59] Hajsadeghi S, Mirmohammadi M, Asghari O (2021) Evidence of gas plume model in porphyry copper deposits based on anatomy, fluid inclusions and HO isotopes: Insight from Kahang deposit, Iran. Ore Geol Rev 104517.
[60] Harati H (2011) Geology, alteration, mineralogy, and geochemical investigation of the intrusive bodies in the Kahang porphyry copper deposit, northeast of Isfahan. Dessertation. Islamic Azad University, Tehran Branch.
[61] Afzal P, Harati H, Alghalandis YF, Yasrebi AB (2013) Application of spectrum–area fractal model to identify of geochemical anomalies based on soil data in Kahang porphyry-type Cu deposit, Iran. Chem Erde 73(4):533-543.
[62] Barak S, Imamalipour A, Abedi M, Bahroudi A, Khalifani FM (2021) Comprehensive modeling of mineral potential mapping by integration of multiset geosciences data. Chem Erde: 125824.
[63] Thompson M, Howarth RJ (1976) Duplicate analysis in practice – Part 1. Theoretical approach and estimation of analytical reproducibility. The Analyst 101:690–698.
[64] Thompson M, Howarth RJ (1978) A new approach to the estimation of analytical precision. J Geochem Explor 9:23–30.
[65] Henley RW, King PL, Wykes JL, Renggli CJ, Brink FJ, Clark DA, Troitzsch U (2015) Porphyry copper deposit formation by sub-volcanic sulphur dioxide flux and chemisorption. Nat Geosci 8(3):210-215.
[66] Afshooni SZ (2013) Study of alteration zones on the intrusive and volcanic rocks of the Kahang exploration area (NE Isfahan) with especial reference to Cu-Mo mineralization, Dissertation, University of Tehran.
[67] Henley RW, Seward TM (2018) Gas–solid reactions in arc volcanoes: Ancient and modern. Rev. Mineral Geochem 84(1):309-349.
[68] Dickson FW, Blount CW, Tunell G (1963) Use of hydrothermal solution equipment to determine the solubility of anhydrite in water from 100 degrees C to 275 degrees C and from 1 bar to 1000 bars pressure. Am J Sci 261(1):61-78.
[69] Mao, Z.L., Peng, S.L., Lai, J.Q., Shao, Y.J. and Yang, B., 2004. Fractal study of geochemical prospecting data in south area of Fenghuanshan copper deposit, Tongling Anhui. Journal of Earth Sciences and Environment. 26(4), 11-14.
[70] Hassanpour S, Afzal P (2013) Application of concentration–number (C–N) multifractal modeling for geochemical anomaly separation in Haftcheshmeh porphyry system, NW Iran. Arab J Geosci 6(3):957-970.
[71] Kurdi M, Soltani-Mohammadi S, Eslamkish T, Larina N (2017) Evaluating the performance of concentration-number (CN) fractal model for separation of soil horizon regarding vertical distribution and 3D models. JTethys 5(4):337-349.
[72] Hajsadeghi S, Asghari O, Mirmohammadi M, Afzal P, Meshkani SA (2020) Uncertainty-volume fractal model for delineating copper mineralization controllers using geostatistical simulation in Nohkouhi volcanogenic massive sulfide deposit, Central Iran. Bull Min Res Exp 161(161):1-11.
[73] Darvishi S, Farhadinejad T, Aliabadi M, Asgari A (2021) Separation of Au, Ag, As, Cd, Cu, Hg, Mo and Sb geochemical anomalies using the concentration-number (CN) fractal and classical statistical models in Nahavand 1: 100,000 sheet, Iran. Arab J Geosci 14(5):1-14.
[74] Ziaii M (1996) Lithogeochemical Exploration Methods for Porphyry Copper Deposit in Sungun, NW Iran. M.Sc. Thesis, Moscow State University.
[75] Solovov AP (1987) Geochemical Prospecting for Mineral Deposits. Mir, Moscow.
[76] Solovov AP (1990) Handbook on Geochemical Prospecting for Useful Minerals. Nedra Publishing House, Moscow.
[77] Hosseini SA, Abedi M (2015) Data envelopment analysis: a knowledge-driven method for mineral prospectivity mapping. Comput and Geosci 82:111-119. | ||
آمار تعداد مشاهده مقاله: 328 تعداد دریافت فایل اصل مقاله: 345 |