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ABSTRACT KEYWORDS
One of the most widely used interpolation methods isitfaels based on radial basis functigR8Fs) RBF

to achieve global and exact surfacBBFNN model has been used as an interpolation method ir Neural Network
research to deal with problems in the RBF interpolation method such as the surface flucti Interpolation

between sampleoints and high complexity. Therefore, the centers, radii, and weights of the RBF PSO

optimized using the PSO algorithm. The centers and radii of RBFs have been initialized-nsag K-means

clustering and the NearestNeighbormethod respectivelforeover the weights of RBFs have be Clustering

calculated using pseudeinverse methodlo evaluate the effectiveness of the proposed algorithn Pseudo Inverse Matrix
interpolation process has been done on three sets of points with the irregular distribithidifferent

elevation pattms. The results show that MQ and 1Q functions provide better accuracy than th

function in flat areas with low elevation changes as well as areas with average elevation ct

Furthermore, the MQ function could be more accurate than IQ and GA fasdticareas with large

elevation changes.

has minor differences from the actual value in sample
points, but the total error has an acceptable value. Among
Interpolation algorithms are used to create a digital other aspects of the division of interpolation methods are
elevation model (DEM) in which a mathematical surface igividing them into local and global categori€Soycan and
created with the maximum similarity to the actual level ofSoycar2 0 P 9
the land. An interpolation method estimmathe value of a One of the most widely used general and accurate
feature (elevation) in a point using -carrielit ~methods of interpolation is usinBBFs to determine a
measurements at the points around this point (samplemooth arface by a set of discrete and irregular sample
points)(Lietal.2 0 0 4 points (Morse et al.2 0 P Bhe surface determined by the
There are different aspects of classification forRBF interpolation method has the following features
interpolation methods. One of which is dividing them into(Bishopl 9 5

1. Introduction

exact and inexact metho¢ls and Heap2 0 D & the exact 1 Smoothest obtained surface among interpolation
method, the value calculated by the interpolation method is methods

equal to the actual value in sample points and the surface 1 With a minimum dependency on the distribution of
produced passes through these points. In the inexact sample points

method, the value calculated by the iptdation method
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1 Containing pointswith a higher elevation than the dependency of the weights of the output layer on the centers
maximum elevation and lower elevation than theand radii ofRBFs has been disregarded.
minimum elevation of sample points An integraion of PSO and RBFNN algorithms has been
In the RBF interpolation method, the interpolation used to predict the electrical power system load in research
function is a linear combination of symmetRBFs. In other  presented byu and ZhouZ 0 D Bhe centers and radii of
words, for each sample poird, RBF is centered on this RBFs have been calculated using a subtractive ehirsg
point. Moreover the value for a determined radius is algorithm (Sarimveis et al.2 0 D Moreover, the PSO
calculated which is the same for &BFs (Gonzalez et al. algorithm is used to determine the weights RBFs
2 0 I Finally, the weights oRBFs are calculated by concerning its ability to solve nonlinear optimization
solving alinear system while there is one equation for eachproblems.The lack of considering the center and radius
sample point. Determining the inverse matrix of coefficientparameters in the optimization process and the lack of
to solve this system has high computational complexity witbalculating the weights dRBFs using analytical methods
respect to the equality of the number RBFs with the are among the disadvantages of this method. The weights of
number of sample poinf®ouderoux et al2 0 P 8ince the functions can be determined precisely dptimizing the
RBF interpolation method is exact, the determined surfacparameters oRBFs due to the dependence of the weights on
will fluctuate in areas between sample points in case othese parameters.
random error in these poin{Schwenker et a2 0 D Thus, Esmaeili and Mozayani2(0 D @esented research in
the approximation is used to resolve these problems byhich the centers and radii of tiRBFs in the RBFNN model
decreasing the numbef RBFs. Moreover by changing the have been optimized using the PSO algorithm. Furthermore,
interpolation method from exact to inexact, the problem ighe singular value decomposition (SVD) method has been
converted to an RBFNN problem. used to determine the optimal values for the output layer
The center and radius of eaBBFas well as the weights The results obtained from this research show that the
used in linear combination must be determined in the desigproposed method has less RM8tan SimplePSO and
of RBFNN whichhas a significant impact on the accuracy newrb algorithms The lack of a reliable evaluation case
of neural network output. Despite the RBF interpolationstudy and implementation of only one typ&Bf could be
method, thecentersof RBFs are not considered to be the considered the major drawbacks of thisearch.
same as sample points in RBFNN and there are different The value of a function has been approximated by a series
methods to calculate them. The random assignment aff input and known output data as in research presented by
values, selecting from sample points and clusteringAwad @ 0 L ®BFNN ha been combined with a genetic
algorithms can be mentioned among the most important aflgorithm for this purpose. In addition, the weight$@Fs
these metbds(Esmaeili and Mozayard 0 D 9 have been calculated using the SVD method. The initial
Another important parameter in the design of the networkalues of the centers and radii of functions have been
is the radius of eacRBF,which its optimum vale should determined, respectively, by enhanced clustering ifumct
be specified. Unlike the interpolation method where allapproximation (ECFAjPomares et a2 0 LaAd k nearest
functions have identical radii, eaé®BFhas a unique radius neighbor KNN) (Larose2 0 D &ethods to be used in the
in the neural networkFornberg and Zue? 0 D Finally,  genetic algorithm. The results show that the approximation
the network is designed by calculation of the weights off functions by RBFNN optimized by the genetic algorithm
RBFs using analytic methods. One of the methods dfas less RMSE than other neural network methods. High
determining the optimal values of RBFNN parameters is theomplexity m determining the initial values of the centers is
use of metaheuristic methods. Thesethods determine among the downsides of the mentioned method.
suitable values of neural network parameters by minimizing In this research, a surface with a reasonable
the overall network errofGao et al.2 0 D Goncerning the approximation of the actual level of the land has been fitted
application of metaheuristic methods in determénithe to a set of scattered points. The RBFNN model has bsed
parameters of RBFNN, extensive research has beenstead of the RBF interpolation method for this purpose.
undertaken in this area. Optimal values of the centers and radiiRBFs as well as
Schwenker et al2(0 pPdéscribed a variety of methods of the output layer weights must be determined to use RBFNN
training RBFNN and classéd these training methods into in interpolation problensolving. Thus, the PSO algorithm
three categories of or@hase, twephase, and threphase is used to caldate optimal values of the centers and radii
learning method. In the twphasemethodwhich is one of of RBFs considering characteristics such as high speed of
the most commonly used methods, initially, the first layeconvergence, the use of storage to store appropriate
containing the centers and radii ®BFs are traned and  solutions, and sharing information between particles. Then,
then the weights of the output layer are determined. Ththe output layer weights proportional the center and
results of this research show that the efficiency andadius of each function were determined by calculating the
precision of the RBFNN model are improved in thepseudo inverse matrix of coefficients in the optimization
application of classification by converting the tpbase process. Finally, the effect of differdRBFs on the accuracy
method into a threphase methd. The centers and radii of of interpolation is evaluated based on the RMSE.
RBFs and the weights of the output layer are simultaneously
trained in the thregohase method. In this method, the
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2. RadialBasis Functiors (RBFs) T Multi Quadratic (MQ) function (equatiod P
2

One of the most widely used methods in solving =f( 8 8 )= = 1 @ap
interpolation problems is the use of radial basis functions
which is an exact and global method. Thus, the RBF
interpolation method is used to determine the multivariate, 1
function of F wie & © 2 for the sample point set of E = f( 8 8 N=——=2— @y

8 i when equatiod is establisheqOrr 1 9 9 6 —— 108

F(®)=Zr R=1, 2n, @ The center parameter is tip®sition of the sample points
where n is the number of sample poiris, denotes in the RBF interpolation method and the radius is
horizontal coordinates of Sanfq)lpoints and is their considered the same for all functions. Computing the inverse
elevations. Th&®BF of F can be written in form of a linear Of @ square coefficient matrix has high complexity and
combination oRBFs similar to equatio (Orr 1 9 9 6 requires cost and time in determining the coefficientsef th
linear system. In addition, since the RBF interpolation
method is an exact method, the fitted surface will fluctuate
In equation2, A8&s Euclidean distance and and f are  between these points in case of existing errors between
real values. In addition, the second part of equa@ide a  Sample points. To resolve these drawbacks the problem can
low-grade and predetermined polynomial function. Thus, P& converted from intpolation to the RBFNN model.

1 Inverse Quadratic (IQ) function (equatidn}

FX)=  [00& @& +B &0 (X) @

the coefficients of radial basis<( and polynomial A Broomhead and Lowe 1(9 8 Broposed the RBFNN
functions must be determined in a way so that equdtion model by reducing the number &BFs in the RBF
and equatior8 are establishegOrr 1 9 9 6 interpolation method. This neural network model is formed
. ] by three input, hidden and output layers according to Figure
B 00w =0 j=12 .q, (® 1 (Park and Sandbergy 9 ¥ 1
Moreover the polynomial part in equatio can be

removed in some cas&hwenker et a2 0 ) As a result, Xr1—>
this equation is written in the form of equatién

FX)= 0Qmy wA @)

The interpolation function is determined by calculating XRi —>
the weights ¥ ) and in other words, solving the linear
system of equatidifor all of the sample poinf®©rr1 9 8 6

O w4, 0 ;4 (5) XEn—>

where H, W, and L are matrices of coefficients, weights,
and observations, respectively. These matrices are defined

in the form of equation§, 7, and8. . . . :
. au s, The input layer consists of input vectors (sample points)

E£ which are connected to the hidden layer by unit weights. The

& hidden layer contains thRBFs and each function has a

E unique center and radius. Furthermore, the number of these
8 ) ij=1, 2n, () functions is not necessarily equal to the number of

interpolation sample points and is determined based on its

and profound impact on the accuracy of the interpolation

methodby default(Bai and Zhan@ 0 D Phe third layer is

the output layer which is a linear combinationrefurons

and (RBFs). Thus, equatiofl is written in the RBFNN model in

form of equatiori 2

The elements of the observation matrix are the elevatioﬁ ()= B R @z

of sample points. Moreover, the typeRBFs h; must be  where# is the center of theth RBF, x is the weight of this

determined for the formation ofdhcoefficients matrix. A function and nc is the number &BFs. According to

variety ofRBFs are used in the RBF interpolation method ofequationl 2the centers oRBFs can contain values other

Figure 1. Structure olRBF Neural Network
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which the following are among tmeost used thaninterpolation sample points.
1 Gaussian (GA) function (eqzuati@) There are various methods for determining the
parameters of the RBFNN model. One of the most common
E=f(8 8 )N=A""7 (99  methods according to which the neural network layers are
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Proposed Methodology

.. Dataset

As mentioned before, in this research, the RBFNN mod¢*| c
has been used to solve the interpolation problem ani
determine the topography of theear To evaluate the %
effectiveness of the proposed algorithm the interpolatior §{ KA
process has been done on three sets of points with tt~
irregular distribution. The distribution of sample and

checkpoints in the first studied area is according to Figure
2. Ched&points do not participate in the interpolation

process and are used in the calculation of interpolation

ethod accuracyKresse and Danka 0 1 2

The distribution of sample points in the second studied
area is shown in Figur8 and some checkpoints have been
selected among them to evaluate the accuracy of the

proposed method. Finally, to evaluate fhheposed method & as}; O R
in the third area, samples and checkpoints have been ’ e e el WLl RS
selected with distribution according to Figude Table 1 DoeL e e T TS e
shows the number of sample points, the number of S
checkpoints, the area, and the maximum and minimum § Ul tee e e TR s
elevation for the three stueti areas. R . ‘3:“"3:; : e
Tablel Properties of three studied areas . R ::;: A ,:;‘: St e e
Information on First Second Third g N :; A ‘* =770 - . o e
Studied Area Study Study Study : PR SR i S
Area Area Area R
Numbscr)iﬁi sSarmole 782 774 367 = S
Number of Check
Points 98 87 163 Figure 4 Distribution of sample and check points in tt
Area (Hectare) 60 6 0 33 third studie_d area (The circle_s and triang_les are sam|
points and check points respectively)
MinimumElevation 980 880 1958
Maximum Elevationn 1140 1300 1993
3 .. Bhe Design of Algorithm
Parameters of the network must be determined to solve
250400 s e amome 260200 280400 the interpolation problem by the RBFNN model. In this
P -» 5. o o R ;;g:s research, the optimal values of the centers and radigfs
w??‘gﬁ %Dozﬁ PN Gl 5 2 ; . nd::,; ,,°D§f are optimized by the PSO algorithm initially, atieen, the
2 N : o g%e:g:“::: ‘*’” . g"ao:fn;@;;;“ a}; S weights are determined using an analytical method. Thus,
Bl s %fno; o oj;;:ﬁ‘ o ::‘;o o ST a0 I e | firstly particles must be defin_ed and ir_1itialized to be used in
0 am:":::’o:?{“':ii" Srele 5@53""02: Segen et the PSO algorithm. According to Figufe each neural
AN I B AR M AT . network is assumed to be a particle. The length of each
R Y R IV E JRne RS R A P particle is eqal to 3nc considering nc for the number of
R O A T PR RN L L D RBFs. According to Figures, the horizontal position of the
(it dna oo W e Te e e T center @,AJ), and radius £ ; of the first RBF are
Interpolation Pints | 0 ¢ ¢ % S ’: o AT placed in the particle and this continues until the placement
Tosmperoms [ ° 00 o B S A P of all RBFs in the particle.
259400 259600 259800 260000 260200 260400

Figure 2 Distribution of sample and check points in tt
first studied area (The circles and triangles are samg
points and check points respectively)
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Figure 3 Distribution of sample and check poittsthe
second stuglarea (The circles and triangles are samp
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Figure 5 Configuration of particles of PSO algorithm in

order todetermineRBFNNparameters.
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The parameters of the optimization algorithm must be semportant parameters in determining the accuracy of the
after the initialization of the particles. One of the mostRBFNN model is the numberRBFs whid is experimental
important parameters is the number of suitaphaticles  and predetermined. Furthermore, the type RBFs has a
which is called the initial population. The small initial significantimpact on the accuracy of the RBFNN model. The
population reduces the chance of reaching a global solutioproposed algorithm has been implemented for three MQ, 1Q,
and a large population causes a significant increase in th@and GA functions in a various humber RBFs, and the
computational cost of the algorith(Bai and Zhan@ O D 2 RMSE is shan in Figure6.

The Kmeans clustering method was used for the

Initialization of the center@Moertini2 0 D Phis algorithm Table2 Parameters of PSO algorithm for three studied areas
is iterative and does_not necessarily produce the sanf First Second | Third
resul_ts on.the same input data. Ther.efor(.a,._consecuuve B of PEE Study Study Study
running this algorithm carproduce distinct initial values Area Area Area
(centers) for the PSO algorithm. — -

The radius oRBFs is one of the effective parameters for Initial population 30 30 20
the accuracy of the RBFNN model. Selecting a very large nertia weighting factor (w) 1 1 1
radius leads to ovesmoothing of the surface and a lack of — .
modeling of allthe elevation changes. On the other hand| Selfrécognition componen| g 5 5

. . coefficient @)
too small a radius leads to ovadapting the surface as well
as reducing the coefficient matrix rar(kasshauer and Social component 10 10 10
Zhang2 0 | I this study a unige radius is considered for coefficient &)
eachRBFbased on the KNN method (equatibrg(Larose Minimum speed 0 0 0
2 OBD ° 5 5 Maximum speed 50 20 50
A= ! @3 Maximum iteration 150 150 150

The mean distance of RBFs neighboring the -th Maximum neighbor for
function is equal to its radius. One of the major challengesg calculating the radius of 20 20 20
of initializing the radius is the determination of k in the basis function (k)
above equation. The k has been chosen randomly in each
particle to consider the various ranges of search.

The weights oRBFs are determinedybcalculating the o
pseudeinverse matrix. The objective function is RMSE _ , —— MO
which is used to evaluate the accuracy of the interpolatior £ —10
method and is computed using equatiodAwad2 0 L O E 5 e ca
2- 3268 [ o 2 @y .%:
where p is the number of checkpoints, is the g 2
computational elevation of theth checkpoint and § 1 Te————
denotes the actual elevation of thethi checkpoint. & o

100 200 300 400 500 600 650 782

Eventually, the PSO algorithm will terminate if either the
maximum iteration condition is satisfied, or the optimum
value does not considerably improve over some iterations.

Number of Radial Basis Functions

Figure 6 RMSE based on the number of centers for three
4. Experimental Results types oRBFs in the first studiedrea.

The proposed methodology is implemented using

MATLAB software for the introduced datasets. In this According to Figure6 MQ .functllon IS more accurate
: L o compared to IQ and GA functions in the casé @t03 0 O
section the results of this implementation is reported.

The accuracy of the model in the three different areas hafsuncnons. The accuracy of all three types of fims

been determined by calculating RMSE for checkpoints anﬁﬁiﬁﬁﬁ?t% 'E_S) (;m&?:]%vei(: ik;y ;ncrrii?r:?gteﬁhe tﬁ:mst;en:e()f
comparing it with other interdation methods. The P Y :

parameters of the PSO algorithm are experimentaIIyUlt'mately’ the number of functions becomes equal to the

determined for three studied areas according to T&ble number of sample points (Sq“f".re coefficients malrix), and
i . ; the accuracy of 1Q and MQ futiens becomes nearly the
According to the tableg @articles have been considered same but still better than the GA function
as the initial population of the PSO algorithm in the first The effect of the number BBES on RM.SE is shown in
study area Moreover the radius of eacRBFis equal to the

; . . detail for the MQ function in Figur&. Moreover, the
mean distance of this function to a random number (ftom . . .
. . : . accuracy of the proposed method is evaluated in the first
to 2 D of its neighboring functions. One of the most
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studied area and compad to the other interpolation A total of 3 Oparticles are considered as the initial
methods. population of the PSO algorithm in the second gtaicta.
In addition, the radis of eachRBF is equal to the mean
3 pre—— distance of this function to one up20Mf its neighboring
E s =S | functions. It should be noted that the number of neighbors is
I s N\ DI w1 selected randomly. Theoposedalgorithmis implemented
£ 4 for three MQ, 1Q, and GA functions (Figut D A different
% e 3L 1N number ofRBFs is considered to find out how the accuracy
sl T e improves by increasing the number BBFs.
= 0

S & LS eSS s e
Number of Radial Basis Functions

Figure 7 RMSE based on the number of centers for MQ g e
function and in comparison with other interpolation —1e
methods in the first stycarea ——GA

Figure 7 depicts that increasing the numbeiRBFs from \“‘*—*k—\_ .

Root Mean Square Error (m)
D = N W R o

1 01 3 7 &n dramaically enhance the accuracy of the —_—
method. In addition, the accuracy of the method is bette

than IDW, Simple Kriging, and RBF interpolation methods = ° 200 200 100 <00 00 s
when the number d®BFs is more thar8 0,@ 5, @nd5 7 5 e

respectively. Despite achieving the most accura®ults  Figure 1 (RMSEfor the number of centers for all three

(with the RMSE =0 . 8n8ters) in the case of the square types of radial basis functions in the second garéa
coefficients matrix, the accuracy is not improved

considerably when the number of functions is more than The accuracy of all ree types of functions is
6 5.hus, the convergence of the PSO algorithm in thgpsroximately the same in the number 0 @ 3 0 0

number o6 5 fanctions is showm Figure8. functions according to Figur& OBy increasing the number
. of RBFs to more thai® 0, the MQ function is more accurate
Ee—— than the IQ and GA functions. The MQ function is the most
’ —— b accurate function when the number of functions is
‘ M\M ‘ approximately equal to6 O Cfunctions b 5 ORBFS).
3 WMM/WMWWW Moreovey in the square coefficients matrix condition, the

accuracy of MQ and GA functions reduces, while the
accuradesof IQ functions improve.
As shown in Figurel 1the accuracy of the proposed
N T T PP S S method (in the number 6f 5 NIQ functions) is compared to
Number of Iterations other interpolation methodsThis figure depicts how the
Figure 8 Convergence diagram of PSO algorithm for the RMSE changes by increasing the number of MQ functions.
first study area

frvtte,

Root Mean Square Error (m)

8
The accuracy of the proposed method is improved fron _ 7, -~ lRBI"—PS‘O -

1. ®D . nders afted 5 ierations. The topography of £ 6 \ BNt
the first studied area (generated by the propasethod) is E 5 ““\ 227 Sotraensetion]]
shown in Figureo. g 4

CRE SSHEHEE Y

v

5 2.01 2 3

R -

2

S & P P S & @ &
Number of Radial Basis Functions
Figure1 RMSE based on the nuertof centers for
MQ function and in comparison, with other interpolation

Elevation ¢ methods in the second sjuarea.
.High:ll-ﬂ .
Heow : 976 The proposed method results in better accuracy in

Figure 9 3D view of the topography of the first studied comparison with IDW and local polynomial methods when
area calculated by proposedethod. the number of functions is raised to moreart 2 5.0
Moreover the accuracy of the proposed method is better

do



Earth Observation and Geomatics Engineer(g) (2 @ P8 & 6

than the accuracy of the Simple Kriging and RBFThe number 02 Onitial population has been considered in
interpolation methods by increasing the number of functionthe PSO algorithm in the third studied area due to the low
to more than4 O @Qunctions. Increasing the number of elevation changes of the area. Likewise, the radius di eac
functions from4 0 ® 5 5 fedwes the RMSE td . 3n6 RBF is equal to the mean distance of this function to a
gradually. Moreover, according to Figute 1the accuracy random number (betweeh and 2 P of its neighboring

of the algorithm decreases in the case of the squar&unctions. Figurel 4shows how RMSE depends on the

coefficients matrix. Thus, since the minimum RMSE occunmsumber olRBFs for all three types of functions.

in the number 0% 5 fQnctions, the convergence diagram of

the P® algorithm has been drawn in Figude Zor this

Figure 1 4llustrates that all three types &inctions have
approximately equal accuracy when up2c5 BBFs are

number of functions. As shown in the figure, the RMSE afsed. Unlike the GA function, the accuracy of MQ and 1Q

the proposed method is reduced fram %9 . Béters
after1 5 iterations applying the PSO algorithrihe three
dimensional topography of the sedmstudied area is drawn
in Figurel 3

5

—— Mean RMSE

=

w

.

Root Mean Square Error (m)
~

=

R IR T S I T A T RN

Number of Iterations

Figure1 Zonvergence diagram of PSO algorithm for the
second studied area

Elevation
.Higll : 1303

.Low : 875

functions becomes better by increasing the numbRB&E

to more than2 5. EEventually, in the square coefficients
matrix condition,the accuracy of the 1Q function remains
constant, whereas the accuracy of MQ and GA functions
reduces. Thus, the effect of the number of functions on the
accuracy of the proposed method has been evaluated for 1IQ
function in Figurel 5The accuracy of thimethod has been
compared with other interpolation methods in this figure.

2.5
—0— RBFPSO

E\ — — —» LPolynomial
E 2 -- - DW
£ 1.86- 2= --|">w - - —» SimpleKriging
E 166-_-| |- L.::"-“:-1 _ _ - RBFInterpolation
A 158245-p==fmmtenim—e=s
5 1.39===-r==[~~T~~~7-"r~"°—-T~°
z 1
=
=
=3
= 0.5
=
=l
=
[

0

PEEIITIPIESTS NP

Number of Radial Basis Functions

DN D™ DA
R R

Figure 1 RMSE based on the number of centers for 1Q
function and in comparison, with other interpolation
methods in the third stydrea.

As can be seen in Figutke 5the implenentation of the
method with more tharl 2 €unctions leads to a more
accurate method than the IDW interpolation method.
Moreover the proposed method becomes more accurate

Figure 1 3D view of the topography of the second studiegthan Simple Kriging and RBF interpolation methods when

area calculated by proposed method

2.5

;
—o—NMIQ
2 ——IQ

——GA

1.5

I

1

0.5

Root Mean Square Error (m)

0

50 100 150 200 250 300 350 367

Number of Radial Basis Functions
Figure 1 RMSE based on the numbercehters for all
three types of radial basis functions in the third stacka.

the number oRBFs is more tan 1 4 &d 2 2 fainctions
respectively. The method reaches the maximum accuracy
(the RMSE ofl . 3meters) in3 0 @unctions with an
approximately constant gradient. Moreover, the accuracy of
the proposed method remains approximately constant by
increasing tle number of functions to more tha& 0 0
functions. The convergence diagram of the PSO algorithm
in the number 08 0 RBFs is drawn in Figurel 6Applying
the proposed method turns out to be effective in terms of
accuracy since the RMSE is reduced fram 7031 . 3 0
meters while the algorithm rah 5 mes. Moreover the
Threedimensional topography of the third studied area has
been drawn in Figurd 7

In this study, pseudmverse matrix calculation is
preferred to the least squares method to determine the
weights because it can compute the best answer in the case
of a rankdeficient coefficients matrix. The RMSE in three
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studied areas has been compared in Téabie the case of

Thus, the RMSEnctreases significantly in the first and

using a pseuddinverse matrix and the least squares methodsecond studied areas due to the inability of the least squares
to determine the weidgh of RBFs.

Table3 RMSE of pseudmverse matrix calculation in comparison with

the leastsquaremethod in all three studied areas
The first studied The second studied The third studied
area area area
89 &0 8| 59 88l 8
J 5 © ®© I = c © 3 = c ©
n Cbg o= n mg o > n CDQ>-’ Pol=]
ag 13 gE| g fE 13
7.
10 1 6.6/1006.6/ 6.5 50|1.92.(
25 39' 3.2 25(03.4 3.5/ 1501.91.185
40 11' 1.7 4002.0 2.1 25041.31. 3
55 16' 1.250(¢1.8 1.6/ 3001.31.¢6
65 08- 1.060(¢1.4 1.4 3501.242.2
78105' 50.|7741.6/59.(3671.22.1
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Figure1 &onvergenceliagram of PSO algorithm for the
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By ow: 1950

Figure1 BD viewof the topography of the third studied

Number of Iterations

third studiedarea.

_—

area calculated by proposedethod.

According to the table, increasing the numbeR&Fs
raises the probability of the existence of the rdekicient

method to determine the weights. In the third studied area,
the RMSE of the square coefficients matrix in the least
squares method is greater comparedtte pseudo inverse
calculation method. The initialization of the population
might lead to the creation of a particle with at least two
approximately the sanf®BFs. Thus, the RMSE pérticles

like this particle would be unacceptable due to the inability
of the least squares method in determining optimal weights
of RBFs. In other words, these particles (with high RMSE)
would be removed from the population during the
optimization process and the decrease in the initial
population reduces the probability oinding a globally
optimal solution.

Regarding the results in the areas with small and average
elevation changes, the MQ and IQ functions are more
accurate compared to the GA function due to the ability of
these functions in forming a smoother surface.other
words, the range of elevation reduces by increasing the
radius of MQ and IQ functions which leads to fitting a
smoother interpolation surface, while the range of elevation
in the GA function is always constant betw8emd 1. MQ
function is more aagrate than IQ and GA in areas with
large elevation changes, due to the larger range of elevation
of the MQ function in small radii (the radii equal to or
greater than the maximum distance to the center of the
function). Therefore, this function can modeble elevation
changes appropriately such as surfaces with Breaks in Slop,
drain junction, and hilltop positions.

In the case of the square coefficients matrix, it's not
possible to achieve the minimum RMSE of the results. Thus,
interpolation by the RBFNKhodel using a reduced number
of RBFs and optimizing network parameters by the PSO
algorithm results in better accuracy compared to the RBF
interpolation methodMoreover the proposed method is
more accurate than local and global polynomial, IDW, and
Simpk Kriging interpolation methods. Although the RBFNN
interpolation method is more complicated than other
algorithms, it has greater efficiency in applications
requiring high accuracy. In other words, accuracy could be
prioritized over the efficiency of tlagorithm based on the
existing needs.

5. Conclusions

RBFNN model has been used as an interpolation method
in this research to deal with problems in the RBF
interpolation method such as the surface fluctuations
between sample points and high complexiher€fore, the
centers, radii, and weights of tRBFs were optimized using
the PSO algorithm. The centers and radiRi#Fs have been
initialized using kmeans clustering and the KNN method
respectively.Moreover the weights ofRBFs have been
calculated sing the pseudmverse method. Eventually, for
evaluation of the accuracy of the proposed method, the

coefficients Matrix. Rank deficiency may occur when at leadRMSE of the three studied areas has been accessed.
two columns (or rows) of the coefficients matrix are parallel.
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