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ABSTRACT 

One of the most widely used interpolation methods is the models based on radial basis functions (RBFs) 

to achieve global and exact surfaces. RBFNN model has been used as an interpolation method in this 

research to deal with problems in the RBF interpolation method such as the surface fluctuations 

between sample points and high complexity. Therefore, the centers, radii, and weights of the RBFs were 

optimized using the PSO algorithm. The centers and radii of RBFs have been initialized using K-means 

clustering and the K-Nearest Neighbor method respectively. Moreover, the weights of RBFs have been 

calculated using a pseudo-inverse method. To evaluate the effectiveness of the proposed algorithm the 

interpolation process has been done on three sets of points with the irregular distribution with different 

elevation patterns. The results show that MQ and IQ functions provide better accuracy than the GA 

function in flat areas with low elevation changes as well as areas with average elevation changes. 

Furthermore, the MQ function could be more accurate than IQ and GA functions in areas with large 

elevation changes.  
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1. Introduction 

Interpolation algorithms are used to create a digital 

elevation model (DEM) in which a mathematical surface is 

created with the maximum similarity to the actual level of 

the land. An interpolation method estimates the value of a 

feature (elevation) in a point using carried-out 

measurements at the points around this point (sample 

points) (Li et al. 2004). 

There are different aspects of classification for 

interpolation methods. One of which is dividing them into 

exact and inexact methods (Li and Heap 2008). In the exact 

method, the value calculated by the interpolation method is 

equal to the actual value in sample points and the surface 

produced passes through these points. In the inexact 

method, the value calculated by the interpolation method 

has minor differences from the actual value in sample 

points, but the total error has an acceptable value. Among 

other aspects of the division of interpolation methods are 

dividing them into local and global categories (Soycan and 

Soycan 2009).  

One of the most widely used general and accurate 

methods of interpolation is using RBFs to determine a 

smooth surface by a set of discrete and irregular sample 

points (Morse et al. 2005). The surface determined by the 

RBF interpolation method has the following features 

(Bishop 1995):  

 Smoothest obtained surface among interpolation 

methods 

 With a minimum dependency on the distribution of 

sample points 
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 Containing points with a higher elevation than the 

maximum elevation and lower elevation than the 

minimum elevation of sample points 

In the RBF interpolation method, the interpolation 

function is a linear combination of symmetric RBFs. In other 

words, for each sample point, a RBF is centered on this 

point. Moreover, the value for a determined radius is 

calculated which is the same for all RBFs (González et al. 

2003). Finally, the weights of RBFs are calculated by 

solving a linear system while there is one equation for each 

sample point. Determining the inverse matrix of coefficients 

to solve this system has high computational complexity with 

respect to the equality of the number of RBFs with the 

number of sample points (Pouderoux et al. 2004). Since the 

RBF interpolation method is exact, the determined surface 

will fluctuate in areas between sample points in case of 

random error in these points (Schwenker et al. 2001). Thus, 

the approximation is used to resolve these problems by 

decreasing the number of RBFs. Moreover, by changing the 

interpolation method from exact to inexact, the problem is 

converted to an RBFNN problem. 

The center and radius of each RBF as well as the weights 

used in linear combination must be determined in the design 

of RBFNN which has a significant impact on the accuracy 

of neural network output.  Despite the RBF interpolation 

method, the centers of RBFs are not considered to be the 

same as sample points in RBFNN and there are different 

methods to calculate them. The random assignment of 

values, selecting from sample points and clustering 

algorithms can be mentioned among the most important of 

these methods (Esmaeili and Mozayani 2009).  

Another important parameter in the design of the network 

is the radius of each RBF, which its optimum value should 

be specified. Unlike the interpolation method where all 

functions have identical radii, each RBF has a unique radius 

in the neural network (Fornberg and Zuev 2007). Finally, 

the network is designed by calculation of the weights of 

RBFs using analytic methods. One of the methods of 

determining the optimal values of RBFNN parameters is the 

use of metaheuristic methods. These methods determine 

suitable values of neural network parameters by minimizing 

the overall network error (Gao et al. 2006). Concerning the 

application of metaheuristic methods in determining the 

parameters of RBFNN, extensive research has been 

undertaken in this area. 

Schwenker et al. (2001) described a variety of methods of 

training RBFNN and classified these training methods into 

three categories of one-Phase, two-phase, and three-phase 

learning method. In the two-phase method, which is one of 

the most commonly used methods, initially, the first layer 

containing the centers and radii of RBFs are trained and 

then the weights of the output layer are determined. The 

results of this research show that the efficiency and 

precision of the RBFNN model are improved in the 

application of classification by converting the two-phase 

method into a three-phase method. The centers and radii of 

RBFs and the weights of the output layer are simultaneously 

trained in the three-phase method. In this method, the 

dependency of the weights of the output layer on the centers 

and radii of RBFs has been disregarded. 

An integration of PSO and RBFNN algorithms has been 

used to predict the electrical power system load in research 

presented by Lu and Zhou (2009). The centers and radii of 

RBFs have been calculated using a subtractive clustering 

algorithm (Sarimveis et al. 2003). Moreover, the PSO 

algorithm is used to determine the weights of RBFs 

concerning its ability to solve nonlinear optimization 

problems. The lack of considering the center and radius 

parameters in the optimization process and the lack of 

calculating the weights of RBFs using analytical methods 

are among the disadvantages of this method. The weights of 

functions can be determined precisely by optimizing the 

parameters of RBFs due to the dependence of the weights on 

these parameters.  

Esmaeili and Mozayani (2009) presented research in 

which the centers and radii of the RBFs in the RBFNN model 

have been optimized using the PSO algorithm. Furthermore, 

the singular value decomposition (SVD) method has been 

used to determine the optimal values for the output layer. 

The results obtained from this research show that the 

proposed method has less RMSE than Simple-PSO and 

newrb algorithms. The lack of a reliable evaluation case 

study and implementation of only one type of RBF could be 

considered the major drawbacks of this research. 

The value of a function has been approximated by a series 

of input and known output data as in research presented by 

Awad (2010). RBFNN has been combined with a genetic 

algorithm for this purpose. In addition, the weights of RBFs 

have been calculated using the SVD method. The initial 

values of the centers and radii of functions have been 

determined, respectively, by enhanced clustering function 

approximation (ECFA) (Pomares et al. 2012) and k nearest 

neighbor (KNN)  (Larose 2005)  methods to be used in the 

genetic algorithm. The results show that the approximation 

of functions by RBFNN optimized by the genetic algorithm 

has less RMSE than other neural network methods. High 

complexity in determining the initial values of the centers is 

among the downsides of the mentioned method. 

In this research, a surface with a reasonable 

approximation of the actual level of the land has been fitted 

to a set of scattered points. The RBFNN model has been used 

instead of the RBF interpolation method for this purpose. 

Optimal values of the centers and radii of RBFs as well as 

the output layer weights must be determined to use RBFNN 

in interpolation problem-solving. Thus, the PSO algorithm 

is used to calculate optimal values of the centers and radii 

of RBFs considering characteristics such as high speed of 

convergence, the use of storage to store appropriate 

solutions, and sharing information between particles. Then, 

the output layer weights proportional to the center and 

radius of each function were determined by calculating the 

pseudo inverse matrix of coefficients in the optimization 

process. Finally, the effect of different RBFs on the accuracy 

of interpolation is evaluated based on the RMSE. 

 



Earth Observation and Geomatics Engineering 6(2) (2022) 88-96 

 

90 

 

2. Radial Basis Functions (RBFs) 

One of the most widely used methods in solving 

interpolation problems is the use of radial basis functions 

which is an exact and global method. Thus, the RBF 

interpolation method is used to determine the multivariate 

function of F while F: Rm → Rd for the sample point set of 

(XR, ZR) when equation 1 is established (Orr 1996).  

F (XR) =ZR      R=1,2,…,n                                                              (1) 

where n is the number of sample points, XR  denotes 

horizontal coordinates of sample points and ZR  is their 

elevations. The RBF of F can be written in form of a linear 

combination of RBFs similar to equation 2 (Orr 1996).  

F(X) =∑ 𝑤𝑖𝑓(‖𝑋 − 𝑋𝑖‖)
𝑛

𝑖=1
 + ∑ 𝑎𝑗𝑃𝑗

𝑞
𝑗=1 (X)                          (2) 

In equation 2, ‖. ‖is Euclidean distance and wi  and f are 

real values. In addition, the second part of equation 2 is a 

low-grade and pre-determined polynomial function. Thus, 

the coefficients of radial basis (wi)  and polynomial (aj) 

functions must be determined in a way so that equation 1 

and equation 3 are established (Orr 1996). 

∑ 𝑤𝑖𝑃𝑗(𝑋𝑅)𝑛
𝑖=1  =0      j=1, 2,…,q                                            (3) 

Moreover, the polynomial part in equation 2 can be 

removed in some cases (Schwenker et al. 2001). As a result, 

this equation is written in the form of equation 4.  

F(X) =∑ 𝑤𝑖𝑓(‖𝑋 − 𝑋𝑖‖)
𝑛

𝑖=1
                                                         (4) 

The interpolation function is determined by calculating 

the weights (wi ) and in other words, solving the linear 

system of equation 5 for all of the sample points (Orr 1996). 

𝐻𝑛×𝑛𝑊𝑛×1 = 𝐿𝑛×1                                                                        (5) 

where H, W, and L are matrices of coefficients, weights, 

and observations, respectively. These matrices are defined 

in the form of equations 6, 7, and 8. 

Hn×n=[
h11 ⋯ h1n

⋮ ⋱ ⋮
hn1 ⋯ hnn

]  , 

            hij= f(‖XRi − XRj‖)      i,j=1,2,…,n                       (6) 

and 

Wn×1=[w1 … wn]T                                                                        (7) 

and 

Ln×1=[ZR1 … ZRn]T                                                            (8) 

The elements of the observation matrix are the elevation 

of sample points. Moreover, the type of RBFs hij must be 

determined for the formation of the coefficients matrix. A 

variety of RBFs are used in the RBF interpolation method of 

which the following are among the most used: 

 Gaussian (GA) function (equation 9) 

hij= f(‖XRi − XRj‖)) = e
−‖XRi−XRj‖

2

σi2                                         (9) 

 Multi Quadratic (MQ) function (equation 10) 

hij= f(‖XRi − XRj‖)) = √
‖XRi−XRj‖

2

σi2
+ 1                                        (10) 

 Inverse Quadratic (IQ) function (equation 11) 

hij= f(‖XRi − XRj‖)) = 
1

(
‖XRi−XRj‖

2

σi2
+1)0.5

                               (11) 

The center parameter is the position of the sample points 

in the RBF interpolation method and the radius is 

considered the same for all functions. Computing the inverse 

of a square coefficient matrix has high complexity and 

requires cost and time in determining the coefficients of the 

linear system. In addition, since the RBF interpolation 

method is an exact method, the fitted surface will fluctuate 

between these points in case of existing errors between 

sample points. To resolve these drawbacks the problem can 

be converted from interpolation to the RBFNN model. 

Broomhead and Lowe (1988) proposed the RBFNN 

model by reducing the number of RBFs in the RBF 

interpolation method. This neural network model is formed 

by three input, hidden and output layers according to Figure 

1 (Park and Sandberg 1991). 

Figure 1. Structure of RBF Neural Network 

 

The input layer consists of input vectors (sample points) 

which are connected to the hidden layer by unit weights. The 

hidden layer contains the RBFs and each function has a 

unique center and radius. Furthermore, the number of these 

functions is not necessarily equal to the number of 

interpolation sample points and is determined based on its 

profound impact on the accuracy of the interpolation 

method by default (Bai and Zhang 2002). The third layer is 

the output layer which is a linear combination of neurons 

(RBFs). Thus, equation 2 is written in the RBFNN model in 

form of equation 12. 

F∗(X) =∑ wif(‖X − Ci‖)
nc

i=1
                                            (12) 

where Ci is the center of the i-th RBF, wi is the weight of this 

function and nc is the number of RBFs. According to 

equation 12, the centers of RBFs can contain values other 

than interpolation sample points. 

There are various methods for determining the 

parameters of the RBFNN model. One of the most common 

methods according to which the neural network layers are 
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individually determined is a two-phase method (Schwenker 

et al. 2001). 

3. Proposed Methodology 

3.1. Dataset 

As mentioned before, in this research, the RBFNN model 

has been used to solve the interpolation problem and 

determine the topography of the area. To evaluate the 

effectiveness of the proposed algorithm the interpolation 

process has been done on three sets of points with the 

irregular distribution. The distribution of sample and 

checkpoints in the first studied area is according to Figure 

2. Checkpoints do not participate in the interpolation 

process and are used in the calculation of interpolation 

method accuracy (Kresse and Danko 2012). 

The distribution of sample points in the second studied 

area is shown in Figure 3 and some checkpoints have been 

selected among them to evaluate the accuracy of the 

proposed method. Finally, to evaluate the proposed method 

in the third area, samples and checkpoints have been 

selected with distribution according to Figure 4. Table 1 

shows the number of sample points, the number of 

checkpoints, the area, and the maximum and minimum 

elevation for the three studied areas. 

 

Table 1 Properties of three studied areas 

Third 
Study 

Area 

Second 
Study 

Area 

First 
Study 

Area 

Information on 
Studied Area 

367 774 782 
Number of Sample 

Points 

163 87 98 
Number of Check 

Points 

33 60 60 Area (Hectare) 

1958 880 980 Minimum Elevation 

1993 1300 1140 Maximum Elevation 

 

 

 

Figure 2 Distribution of sample and check points in the 

first studied area (The circles and triangles are sample 

points and check points respectively) 

 

 

Figure 3 Distribution of sample and check points in the 

second study area (The circles and triangles are sample 

points and check points respectively) 

 

 

Figure 4 Distribution of sample and check points in the 

third studied area (The circles and triangles are sample 

points and check points respectively) 

 

 

3.2. The Design of Algorithm 

Parameters of the network must be determined to solve 

the interpolation problem by the RBFNN model. In this 

research, the optimal values of the centers and radii of RBFs 

are optimized by the PSO algorithm initially, and then, the 

weights are determined using an analytical method. Thus, 

firstly particles must be defined and initialized to be used in 

the PSO algorithm. According to Figure 5, each neural 

network is assumed to be a particle. The length of each 

particle is equal to 3nc considering nc for the number of 

RBFs. According to Figure 5, the horizontal position of the 

center (xC1, yC1)  and radius (σC1)  of the first RBF are 

placed in the particle and this continues until the placement 

of all RBFs in the particle. 

 

Figure 5 Configuration of particles of PSO algorithm in 

order to determine RBFNN parameters. 
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The parameters of the optimization algorithm must be set 

after the initialization of the particles. One of the most 

important parameters is the number of suitable particles 

which is called the initial population. The small initial 

population reduces the chance of reaching a global solution 

and a large population causes a significant increase in the 

computational cost of the algorithm (Bai and Zhang 2002). 

The K-means clustering method was used for the 

Initialization of the centers (Moertini 2002). This algorithm 

is iterative and does not necessarily produce the same 

results on the same input data. Therefore, consecutively 

running this algorithm can produce distinct initial values 

(centers) for the PSO algorithm. 

The radius of RBFs is one of the effective parameters for 

the accuracy of the RBFNN model. Selecting a very large 

radius leads to over-smoothing of the surface and a lack of 

modeling of all the elevation changes. On the other hand, 

too small a radius leads to over-adapting the surface as well 

as reducing the coefficient matrix rank (Fasshauer and 

Zhang 2007). In this study a unique radius is considered for 

each RBF based on the KNN method (equation 13) (Larose 

2005): 

σi= 
∑ √(xci−xcj)2 + (yci−ycj)2k

j=1

k
                                              (13) 

The mean distance of k RBFs neighboring the i-th 

function is equal to its radius. One of the major challenges 

of initializing the radius is the determination of k in the 

above equation. The k has been chosen randomly in each 

particle to consider the various ranges of search. 

The weights of RBFs are determined by calculating the 

pseudo-inverse matrix. The objective function is RMSE 

which is used to evaluate the accuracy of the interpolation 

method and is computed using equation 14 (Awad 2010). 

RMSE2= 
1

p
 ∑ (Zci − Zci

C )2p
i=1                                                (14) 

 where p is the number of checkpoints, Zci
C  is the 

computational elevation of the i-th checkpoint and Zci 

denotes the actual elevation of the i-th checkpoint. 

Eventually, the PSO algorithm will terminate if either the 

maximum iteration condition is satisfied, or the optimum 

value does not considerably improve over some iterations. 

4. Experimental Results 

The proposed methodology is implemented using 

MATLAB software for the introduced datasets. In this 

section the results of this implementation is reported. 

The accuracy of the model in the three different areas has 

been determined by calculating RMSE for checkpoints and 

comparing it with other interpolation methods. The 

parameters of the PSO algorithm are experimentally 

determined for three studied areas according to Table 2. 

According to the table, 30 particles have been considered 

as the initial population of the PSO algorithm in the first 

study area. Moreover, the radius of each RBF is equal to the 

mean distance of this function to a random number (from 1 

to 20) of its neighboring functions. One of the most 

important parameters in determining the accuracy of the 

RBFNN model is the number of RBFs which is experimental 

and pre-determined. Furthermore, the type of RBFs has a 

significant impact on the accuracy of the RBFNN model. The 

proposed algorithm has been implemented for three MQ, IQ, 

and GA functions in a various number of RBFs, and the 

RMSE is shown in Figure 6. 

 

Table 2 Parameters of PSO algorithm for three studied areas 

Third 

Study 
Area 

Second 

Study 
Area 

First 

Study 
Area 

Parameters of PSO 

20 30 30 Initial population 

1 1 1 Inertia weighting factor (w) 

5 5 5 
Self-recognition component 

coefficient (𝐂𝟏) 

10 10 10 
Social component 
coefficient (𝐂𝟐) 

0 0 0 Minimum speed 

50 20 50 Maximum speed 

150 150 150 Maximum iteration 

20 20 20 
Maximum neighbor for 

calculating the radius of 
basis function (k) 

 

 
Figure 6 RMSE based on the number of centers for three 

types of RBFs in the first studied area. 

 

According to Figure 6 MQ function is more accurate 

compared to IQ and GA functions in the case of 100 to 300 

functions. The accuracy of all three types of functions 

significantly is improved by increasing the number of 

functions to 500 and it is approximately the same. 

Ultimately, the number of functions becomes equal to the 

number of sample points (square coefficients matrix), and 

the accuracy of IQ and MQ functions becomes nearly the 

same but still better than the GA function. 

The effect of the number of RBFs on RMSE is shown in 

detail for the MQ function in Figure 7. Moreover, the 

accuracy of the proposed method is evaluated in the first 
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studied area and compared to the other interpolation 

methods. 
 

Figure 7 RMSE based on the number of centers for MQ 

function and in comparison with other interpolation 

methods in the first study area 

 

Figure 7 depicts that increasing the number of RBFs from 

100 to 375 can dramatically enhance the accuracy of the 

method. In addition, the accuracy of the method is better 

than IDW, Simple Kriging, and RBF interpolation methods 

when the number of RBFs is more than 300, 450, and 575 

respectively. Despite achieving the most accurate results 

(with the RMSE = 0.89 meters) in the case of the square 

coefficients matrix, the accuracy is not improved 

considerably when the number of functions is more than 

650. Thus, the convergence of the PSO algorithm in the 

number of 650 functions is shown in Figure 8.  
 

Figure 8 Convergence diagram of PSO algorithm for the 

first study area 

 

The accuracy of the proposed method is improved from 

1.22 to 0.93 meters after 150 iterations. The topography of 

the first studied area (generated by the proposed method) is 

shown in Figure 9. 

Figure 9 3D view of the topography of the first studied 

area calculated by proposed method. 

A total of 30 particles are considered as the initial 

population of the PSO algorithm in the second study area. 

In addition, the radius of each RBF is equal to the mean 

distance of this function to one up to 20 of its neighboring 

functions. It should be noted that the number of neighbors is 

selected randomly. The proposed algorithm is implemented 

for three MQ, IQ, and GA functions (Figure 10). A different 

number of RBFs is considered to find out how the accuracy 

improves by increasing the number of RBFs. 

 

Figure 10 RMSE for the number of centers for all three 

types of radial basis functions in the second study area 

 

The accuracy of all three types of functions is 

approximately the same in the number of 100 to 300 

functions according to Figure 10. By increasing the number 

of RBFs to more than 300, the MQ function is more accurate 

than the IQ and GA functions. The MQ function is the most 

accurate function when the number of functions is 

approximately equal to 600 functions (550 RBFs). 

Moreover, in the square coefficients matrix condition, the 

accuracy of MQ and GA functions reduces, while the 

accuracies of IQ functions improve. 

As shown in Figure 11, the accuracy of the proposed 

method (in the number of 550 MQ functions) is compared to 

other interpolation methods. This figure depicts how the 

RMSE changes by increasing the number of MQ functions. 

 

Figure 11 RMSE based on the number of centers for 

MQ function and in comparison, with other interpolation 

methods in the second study area. 

 

The proposed method results in better accuracy in 

comparison with IDW and local polynomial methods when 

the number of functions is raised to more than 250. 

Moreover, the accuracy of the proposed method is better 
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than the accuracy of the Simple Kriging and RBF 

interpolation methods by increasing the number of functions 

to more than 400 functions. Increasing the number of 

functions from 400 to 550 reduces the RMSE to 1.36 m 

gradually. Moreover, according to Figure 11, the accuracy 

of the algorithm decreases in the case of the square 

coefficients matrix. Thus, since the minimum RMSE occurs 

in the number of 550 functions, the convergence diagram of 

the PSO algorithm has been drawn in Figure 12 for this 

number of functions. As shown in the figure, the RMSE of 

the proposed method is reduced from 1.59 to 1.36 meters 

after 150 iterations applying the PSO algorithm. The three-

dimensional topography of the second studied area is drawn 

in Figure 13. 

 

 

Figure 12 Convergence diagram of PSO algorithm for the 

second studied area 

Figure 13 3D view of the topography of the second studied 

area calculated by proposed method. 

 

 

Figure 14 RMSE based on the number of centers for all 

three types of radial basis functions in the third study area. 

 

The number of 20 initial population has been considered in 

the PSO algorithm in the third studied area due to the low 

elevation changes of the area. Likewise, the radius of each 

RBF is equal to the mean distance of this function to a 

random number (between 1 and 20) of its neighboring 

functions. Figure 14 shows how RMSE depends on the 

number of RBFs for all three types of functions. 

Figure 14 illustrates that all three types of functions have 

approximately equal accuracy when up to 250 RBFs are 

used. Unlike the GA function, the accuracy of MQ and IQ 

functions becomes better by increasing the number of RBFs 

to more than 250. Eventually, in the square coefficients 

matrix condition, the accuracy of the IQ function remains 

constant, whereas the accuracy of MQ and GA functions 

reduces. Thus, the effect of the number of functions on the 

accuracy of the proposed method has been evaluated for IQ 

function in Figure 15. The accuracy of this method has been 

compared with other interpolation methods in this figure. 

 

 

Figure 15 RMSE based on the number of centers for IQ 

function and in comparison, with other interpolation 

methods in the third study area. 

 

As can be seen in Figure 15, the implementation of the 

method with more than 120 functions leads to a more 

accurate method than the IDW interpolation method. 

Moreover, the proposed method becomes more accurate 

than Simple Kriging and RBF interpolation methods when 

the number of RBFs is more than 140 and 220 functions 

respectively. The method reaches the maximum accuracy 

(the RMSE of 1.30 meters) in 300 functions with an 

approximately constant gradient. Moreover, the accuracy of 

the proposed method remains approximately constant by 

increasing the number of functions to more than 300 

functions. The convergence diagram of the PSO algorithm 

in the number of 300 RBFs is drawn in Figure 16. Applying 

the proposed method turns out to be effective in terms of 

accuracy since the RMSE is reduced from 1.73 to 1.30 

meters while the algorithm ran 150 times. Moreover, the 

Three-dimensional topography of the third studied area has 

been drawn in Figure 17. 

In this study, pseudo-inverse matrix calculation is 

preferred to the least squares method to determine the 

weights because it can compute the best answer in the case 

of a rank-deficient coefficients matrix. The RMSE in three 
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studied areas has been compared in Table 3 in the case of 

using a pseudo-inverse matrix and the least squares method 

to determine the weights of RBFs. 

 

 

 
Table 3 RMSE of pseudo-inverse matrix calculation in comparison with 

the least square method in all three studied areas 

The first studied 

area 

The second studied 

area 

The third studied 

area 
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100 
7.1

1 
6.64 100 6.69 6.50 50 1.95 2.09 

250 
3.1

9 
3.21 250 3.40 3.59 150 1.53 1.54 

400 
1.6

1 
1.70 400 2.02 2.19 250 1.30 1.37 

550 
1.2

6 
1.26 500 1.82 1.68 300 1.30 1.63 

650 
0.9

8 
1.07 600 1.41 1.49 350 1.28 2.21 

782 
0.8

5 
50.74 774 1.68 59.36 367 1.29 2.17 

 

Figure 16 Convergence diagram of PSO algorithm for the 

third studied area. 

Figure 17 3D view of the topography of the third studied 

area calculated by proposed method. 

 

According to the table, increasing the number of RBFs 

raises the probability of the existence of the rank-deficient 

coefficients Matrix. Rank deficiency may occur when at least 

two columns (or rows) of the coefficients matrix are parallel. 

Thus, the RMSE increases significantly in the first and 

second studied areas due to the inability of the least squares 

method to determine the weights. In the third studied area, 

the RMSE of the square coefficients matrix in the least 

squares method is greater compared to the pseudo inverse 

calculation method. The initialization of the population 

might lead to the creation of a particle with at least two 

approximately the same RBFs. Thus, the RMSE of particles 

like this particle would be unacceptable due to the inability 

of the least squares method in determining optimal weights 

of RBFs. In other words, these particles (with high RMSE) 

would be removed from the population during the 

optimization process and the decrease in the initial 

population reduces the probability of finding a globally 

optimal solution. 

Regarding the results in the areas with small and average 

elevation changes, the MQ and IQ functions are more 

accurate compared to the GA function due to the ability of 

these functions in forming a smoother surface. In other 

words, the range of elevation reduces by increasing the 

radius of MQ and IQ functions which leads to fitting a 

smoother interpolation surface, while the range of elevation 

in the GA function is always constant between 0 and 1. MQ 

function is more accurate than IQ and GA in areas with 

large elevation changes, due to the larger range of elevation 

of the MQ function in small radii (the radii equal to or 

greater than the maximum distance to the center of the 

function). Therefore, this function can model large elevation 

changes appropriately such as surfaces with Breaks in Slop, 

drain junction, and hilltop positions. 

In the case of the square coefficients matrix, it's not 

possible to achieve the minimum RMSE of the results. Thus, 

interpolation by the RBFNN model using a reduced number 

of RBFs and optimizing network parameters by the PSO 

algorithm results in better accuracy compared to the RBF 

interpolation method. Moreover, the proposed method is 

more accurate than local and global polynomial, IDW, and 

Simple Kriging interpolation methods. Although the RBFNN 

interpolation method is more complicated than other 

algorithms, it has greater efficiency in applications 

requiring high accuracy. In other words, accuracy could be 

prioritized over the efficiency of the algorithm based on the 

existing needs. 

 

5. Conclusions 

RBFNN model has been used as an interpolation method 

in this research to deal with problems in the RBF 

interpolation method such as the surface fluctuations 

between sample points and high complexity. Therefore, the 

centers, radii, and weights of the RBFs were optimized using 

the PSO algorithm. The centers and radii of RBFs have been 

initialized using K-means clustering and the KNN method 

respectively. Moreover, the weights of RBFs have been 

calculated using the pseudo-inverse method. Eventually, for 

evaluation of the accuracy of the proposed method, the 

RMSE of the three studied areas has been accessed. 
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Regarding the results, the calculation of a pseudo-

inverse matrix for coefficients is more efficient than the least 

square method in the determination of weights for RBFs. 

The probability of the existence of at least two parallel 

columns in the coefficient matrix would be raised by 

increasing the number of basic functions and consequently 

leads to a rank deficiency. Unlike the least squares method, 

the pseudo inverse method determines the best answer in the 

case of a rank-deficient matrix of coefficients. 

Moreover, the results show that MQ and IQ functions 

provide better accuracy than the GA function in flat areas 

with low elevation changes as well as areas with average 

elevation changes. This is caused by the ability of these two 

functions to create a smoother surface in large radii. 

Furthermore, the MQ function could be more accurate than 

IQ and GA functions in areas with large elevation changes 

because of a broader elevation range in small radii. Thus, 

the MQ function could be regarded as a suitable method to 

fit surfaces in areas with large elevation changes such as 

surfaces with breaks in slop. 

In a conclusion, it could be conceived from experimental 

results that the RBFNN model provides higher accuracy 

than RBF, IDW, and Simple Kriging interpolation methods. 

Therefore, despite the high complexity due to the iterative 

process of the PSO algorithm, the proposed method could 

be used in highly accurate applications. 
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