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ABSTRACT 

 Flight altitude and image overlap are critical factors affecting the accuracy of 3D reconstruction in UAV 

photogrammetry. Understanding their behavior and impact on reconstruction accuracy is of utmost 

importance. However, conducting a comprehensive analysis of these parameters under operational 

conditions is both time-consuming and expensive. To address this challenge, we present a Monte Carlo 

Simulation (MCS) approach in this paper. We analyze the 3D reconstruction of a hypothetical point with 

known 3D coordinates, considering different levels of overlap and flight altitudes. Our simulation takes 

into account various sources of uncertainty and instability in the entire reconstruction process, including 

UAV exterior orientation parameter (EOP) instability, visibility issues, camera interior orientation 

parameter (IOP) instability, image observation noise, and aerial triangulation EOP noises. Through 

extensive experimental tests, we examine approximately 900,1610 cases to characterize the accuracy of a 

UAV photogrammetry system for mapping missions. This analysis yields several valuable guidelines. For 

instance, to achieve high accuracy in 3D reconstruction, we recommend increasing the coverage 

difference when the sum of overlap and sidelap exceeds 120%, and decreasing it when it falls below 120%. 

Furthermore, if the flight height increases by 20%, a corresponding 10% increase in total overlap and 

sidelap is recommended to compensate for the decrease in 3D reconstruction accuracy. The findings of 

this study can assist geomatics engineers and surveyors in effectively planning and designing UAV flight 

missions for mapping and monitoring projects. 
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1. Introduction 

The use of drones for photogrammetry was initially 

reported in 1979 (Cryderman et al., 2014). However, 

significant advancements in both hardware and software 

for UAV photogrammetry systems have occurred in recent 

years. These advancements have led to improved quality, 

faster processing times, reduced costs, and a wide range of 

outputs, making UAV photogrammetry a highly effective 

system for collecting spatial data (Kim et al., 2000; Senkal 

et al., 2021; Henri, 2009). 

  UAV photogrammetry has emerged as one of the most 

effective methods for surveying positional data due to 

various factors, including time efficiency, cost-

effectiveness, output diversity, and quality (Erfanzadeh & 

Saadatseresht, 2021). Several parameters influence the 

quality of UAV photogrammetry products (Erfanzadeh & 

Saadatseresht, 2021). Among these, flight altitude and 

image overlap are crucial parameters that directly impact 

the quality of 3D reconstruction and operational costs in 

the field (Erfanzadeh & Saadatseresht, 2021). To achieve 

optimal quality in UAV photogrammetry, a comprehensive 
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understanding of the behavior and impact of these 

parameters under different environmental and topographic 

conditions is essential (Erfanzadeh & saadatseresht, 

2021).  

In pursuit of this knowledge, researchers have 

experimented with different cameras, flight altitudes, and 

imaging overlaps to gather data using a trial and error 

approach. While this method considers various influential 

factors, it does not provide a comprehensive analysis of the 

impact of flight altitude and image overlap/sidelap on 3D 

reconstruction due to its associated costs and time 

requirements. As a result, users often have questions and 

uncertainties regarding this method. For instance, when 

considering safety concerns and increasing the flight 

altitude, how much should the overlaps be increased to 

achieve mapping accuracy? What is the relationship between 

flight altitude, image overlap/sidelap, and 3D reconstruction 

accuracy? 

The design of a UAV photogrammetric network relies on 

various factors, including the desired image and 

geometrical quality, available financial resources, project 

objectives, technical facilities, environmental conditions, 

and safety constraints (Henri, 2009). In addition to sensor 

imaging properties, flight altitude, image overlap, and 

sidelap are crucial parameters in network design 

(Remondino et al., 2012). These parameters directly 

impact the quality of 3D reconstruction and operational 

costs in UAV photogrammetry (Radoslaw, 2017). To 

achieve optimal quality and accuracy in photogrammetric 

products, it is imperative to thoroughly study and model the 

behavior and impact of these parameters under different 

environmental and topographic conditions (Erfanzadeh & 

saadatseresht, 2021). In pursuit of this goal, researchers 

have collected UAV data using various cameras, flight 

altitudes, and image overlaps through trial and error and 

personal experiences (Radoslaw Jan, 2017). While these 

approaches consider important factors, a comprehensive 

analysis of the effects of flight altitude and image overlaps 

on 3D reconstruction is lacking due to the time and cost 

associated with such investigations. Previous studies have 

analyzed limited practical samples under different 

environmental conditions using default parameter values 

(Mesas-Carrascosa et al., 2017; Mesas-Carrascosa et al., 

2015; Mesas-Carrascosa et al., 2016; Shahbazi et al., 

2015; Radoslaw Jan, 2017; Zhang et al., 2011). However, 

these studies do not provide a comprehensive and reliable 

analysis of the problem at hand. 

Studies show that by increasing the overlap and sidelap, 

the Root Mean Square Error (RMSE) value of the control 

points will decrease, while for the checkpoints, it shows a 

random behavior (Radoslaw Jan, 2017). Generally, the 3D 

reconstruction precision will increase by increasing the 

image overlap, but its impact is less than the flight altitude 

(Senkal et al., 2021). The horizontal error with a slope of 

0.03 will increase the flight height. In addition, the 3D 

reconstruction precision will increase by increasing the 

overlap, which is considerable in low-flight altitudes 

(Mesas-Carrascosa et al., 2016). The increment of flight 

altitude will not always lead to higher values of RMSE, and 

the increment of overlap will improve the precision, 

strength, and reliability of results (Mesas-Carrascosa et al., 

2017). 

Several studies have revealed important findings 

regarding the impact of overlap and sidelap on 3D 

reconstruction accuracy. Radoslaw Jan (2017) 

demonstrated that increasing the overlap and sidelap 

results in a decrease in the Root Mean Square Error 

(RMSE) of control points. However, the behavior of 

checkpoints appears to be more random in response to 

these changes. Generally, increasing the image overlap 

contributes to improved precision in 3D reconstruction, 

although its effect is less significant compared to flight 

altitude (Senkal et al., 2021). It has been observed that 

increasing the flight altitude can lead to a gradual increase 

in horizontal error with a slope of 0.03. On the other hand, 

increasing the overlap is particularly impactful in 

achieving higher 3D reconstruction precision, especially at 

lower flight altitudes (Mesas-Carrascosa et al., 2016). 

Importantly, it should be noted that elevating the flight 

altitude does not always result in higher RMSE values, 

while increasing the overlap can enhance precision, 

robustness, and result reliability (Mesas-Carrascosa et al., 

2017). 

While several studies have examined the relationship 

between flight altitude and image overlap, most of these 

investigations have focused on specific cases and limitations 

( Cryderman et al., 2014; Senkal et al., 2021; Rock et al., 

2012; Mesas-Carrascosa et al., 2017; Mesas-Carrascosa et 

al., 2015; Mesas-Carrascosa et al., 2016; Shahbazi et al., 

2015; Radoslaw Jan, 2017; Zhang et al., 2011). However, 

these studies are not comprehensive and do not provide an 

in-depth analysis of the impact of flight altitude and image 

overlap on 3D reconstruction accuracy.  

In this study, a simulation-based approach was employed 

to comprehensively analyze the behavior and impact of flight 

altitude, image overlap, and sidelap on the quality of 3D 

reconstruction. The simulation method was chosen due to its 

cost-effectiveness and flexibility. It allows for a thorough 

assessment of different UAV configurations under various 

conditions by adjusting camera parameters and error 

parameters. This approach offers significant advantages in 

evaluating the accuracy of 3D reconstruction in UAV 
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photogrammetry while maintaining a high level of flexibility 

and minimizing costs. 

In order to comprehensively analyze the impact of flight 

altitude and image overlap on 3D reconstruction accuracy, 

a series of simulation analyses were conducted. The 

simulation focused on a hypothetical ground point with 

known absolute coordinates. It was assumed that the point 

was located on a non-textured, non-specular, and stationary 

surface, allowing for effective multi-view image matching. 

The simulation involved capturing images at different 

altitudes and overlaps, followed by the calculation of the 3D 

coordinates of the imaged point using the space intersection 

method. To simulate the inherent random errors and 

instabilities present in real-world scenarios, Gaussian 

distribution functions were applied to introduce variations 

in the parameters. To ensure the reliability and 

comprehensive analysis of the results across different 

environmental conditions, the tests were performed in five 

modes: Ideal, Excellent, Good, Moderate, and Poor. 

The Monte Carlo Simulation (MCS) method was employed 

to investigate the quality of 3D reconstruction for the ground 

point. This method allowed for a thorough examination of 

the reconstruction accuracy and provided detailed insights 

into the impact of flight altitude and image overlap. Further 

details regarding the analysis and its findings will be 

presented in subsequent sections. 

It is important to acknowledge that this research is a 

simulation-based study and has certain limitations. To 

simplify the research and avoid additional complexities, the 

study focused on ten network design parameters listed in 

Table 2, considering five states. Consequently, certain real-

world factors and situations were not incorporated into the 

simulation. One such example is the influence of flight speed 

and the need to strike a balance between sensor firing speed 

limitations due to hardware constraints and image blurring. 

In practice, increasing the forward overlap would require 

faster image firing, which could result in the UAV needing 

to fly at very slow speeds (< 3 m/s). However, this may not 

be economical due to increased flying times and limitations 

imposed by battery life. Therefore, the present study does not 

address questions such as whether reducing side overlap 

would actually decrease overall flight times when the image-

firing system cannot keep up. Additionally, the potential 

impact of increasing shutter speed or dealing with blurry 

images on precision is not explored if the image firing system 

can handle a higher forward overlap. 

These important questions and situations will be 

addressed in future research, where a more comprehensive 

analysis can be conducted, taking into account the various 

factors and constraints associated with flight speed, image-

firing capabilities, and image quality. 

2. 3D Reconstruction Simulation 

In order to study the complex behavior of UAV 

photogrammetry, our research plan involves implementing a 

simulation approach that progresses from simple to more 

complex cases. This will be done in three phases: (1) 

Analytical simulation of the 3D reconstruction of a 

hypothetical point. (2) Analytical simulation of the 3D 

reconstruction of a grid of hypothetical points. (3) Digital 

simulation of the 3D reconstruction of a hypothetical 

textured surface. The current paper focuses on phase (1) of 

the research, where we conduct an analytical simulation of 

the 3D reconstruction of a single hypothetical point. Out of 

the ten parameters considered in the analytical simulation, 

our emphasis is on two specific parameters: imaging 

sidelap/overlap and flying height. 

To capture the concept of error propagation, we have 

utilized the Monte Carlo Simulation (MCS) method in our 

analytical 3D reconstruction simulation. This method 

enables us to simulate and analyze the impact of 

uncertainties and instabilities throughout the process of 3D 

reconstruction accurately. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Object Space Simulation

• Simulation of the parameters of camera exterior orientation 
in ideal mode

• Simulation of the parameters of camera exterior orientation 
parameters in real mode

Image Space Simulation

•Calculating  the ideal image coordinates of the assumed point 
in each image

• Investigating the visibility of the assumed point in each image

• Simulation of the instability of interior orientation parameters

Systematic and Random Errors Simulation

•Applying the distortions caused by the instability of the 
camera to image coordinates

•Applying random noise to image observations

•Applying random noise to exterior orientation parameters

3D Reconstruction Simulation

• 3D reconstruction of the assumed point

•Estimating the 3D reconstruction quality

Experimental Tests and Results

• Tests of the investigation of 3D reconstraction quality

•Analysis of test results
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Figure 1. An overview of the 3D reconstruction simulation 

in UAV photogrammetry based on the Monte-Carlo 

strategy. 

The Monte Carlo Simulation (MCS) method is a 

computational algorithm that relies on repeated random 

sampling to explore and analyze a problem's entire solution 

space (Kim et al., 2000). It is particularly useful when 

precise solutions cannot be obtained using specific 

algorithms and when there is a high degree of uncertainty 

(DOUG, 2007).  

MCS involves performing multiple iterations of 

computations using random numbers, a task well-suited for 

computer implementation (Palisade). This method has 

gained popularity due to its ability to handle significant input 

uncertainties and analyze phenomena characterized by 

random behavior, instability, and uncertainty (Doringer, 

2018). 

In our study, we employed the MCS method to analyze the 

propagation of errors, considering the random behavior, 

instability, and uncertainty associated with calibration 

parameters, image observation errors, aerial triangulation 

errors, and flight navigation parameters. By simulating 

numerous iterations and incorporating random variations in 

these parameters, we obtained a more comprehensive 

understanding of how uncertainties impact the accuracy of 

3D reconstruction. 

To simplify the problem and streamline calculations, our 

simulation focuses on a single given point. The camera is 

positioned at a specific flight altitude, and imaging is carried 

out with predetermined image overlap and sidelap values. 

Users have the flexibility to determine the number of random 

errors and instability levels in various interior and exterior 

orientation parameters, as well as image observations. 

Using the simulated rays, a space intersection is 

performed in the 3D space to reconstruct the given point. 

This reconstruction process is repeated within the 

framework of the Monte Carlo Simulation (MCS), allowing 

for the calculation of reconstruction errors and Root Mean 

Square Error (RMSE) measures. Mean errors are calculated 

for different network design parameters. 

To facilitate the MCS, it is necessary to define the 

distribution function for random parameter errors. 

However, in UAV photogrammetry, the statistical behavior 

of random parameters is not well-established. In light of this, 

we apply the Gaussian distribution function as the 

distribution model for random errors and instabilities, based 

on the central limit theorem in statistics. This choice allows 

us to conduct the necessary tests and analysis within the 

simulation. 

The flowchart for 3D reconstruction simulation in UAV 

photogrammetry can be divided into five sections (see Figure 

1). This study aims to analyze and monitor the flight altitude 

as well as the overlap and sidelap of images, with respect to 

the quality of 3D reconstruction. In the following sections, 

each component of Diagram 1 will be thoroughly explained. 

 

2.1. Simulation of exterior orientation parameters in ideal mode 

Consider a given 3D point with coordinates X = [0 0 0]. 

Assuming a drone with specific characteristics is flying and 

capturing vertical images above this point at a height of h0 

in multiple strips, with a defined overlap px and sidelap py 

(0 < px, py < 1) along the XY axis. Consequently, the exterior 

orientation parameters (EOP) will be determined for each 

imaging station in the ideal mode (refer to Figure 2). The 

initial flight altitude (h0) is chosen to meet the ground 

sample distance (GSD) requirements for the desired map, 

following the standard guidelines. As per Iranian mapping 

standards, the GSD0 for 1:500, 1:1000, and 1:2000 scale 

maps is 4cm, 8cm, and 16cm, respectively. Hence, the flight 

altitude is calculated using Equation (1), where ps 

represents the sensor pixel size, and c0 denotes the initial 

principal distance. Additionally, the flight altitude can be 

adjusted using Equation (2) by modifying the coefficient of 

the flight altitude to a value within the range of 0.5 < kh < 

2. In Equation (2), kh represents the coefficient of variation, 

and h0 corresponds to the flight height required for a GSD 

of 4 cm.  

0 0

0

.GSD c
h

h
     (1)                                                 

0.hh k h        (2) 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Simulation of the parameters of camera exterior 

orientation in the ideal mode 

2.2. Simulation of exterior orientation parameters in real mode 

In UAV photogrammetry, there exists a disparity in 

position and attitude between the exterior orientation 

parameters in real mode (EOP') and the ideal or design 

mode (EOP). This difference arises due to various factors 

such as the lightweight nature of the drone, the influence of 
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weather conditions, and navigation errors. To simulate the 

instability of the drone and its navigation, random errors 

with a specific standard deviation are introduced to the 

exterior orientation parameters of each image (refer to 

Figure 3). 

According to Equation (3), the standard deviation of the 

position and attitude of the imaging stations is denoted as Sp 

and Sa, respectively. While it is possible to consider distinct 

standard deviations for position (XYZ) and attitude (ω, φ, к 

or roll, pitch, yaw) along each of the three axes, doing so 

would complicate the simulation unnecessarily. Hence, to 

avoid this complexity, a uniform standard deviation is 

applied to both position and attitude parameters. 

'EOP EOP dEOP   

[ (0, ) ( ) , , ]P adEOP N S forxyzN S forroll pitch yaw     (3) 

where N (0, S) is a random value of the normal distribution 

function with the average 0 and the standard deviation S. 

 

 

 

 

 

 

 

 

 

 

Figure 3. Simulation of the parameters of camera exterior 

orientation in real mode 

2.3. Calculating ideal image coordinates of the given point in each 

image 

Once the exterior orientation parameters of each image 

(EOPi') have been calculated, the 3D coordinates of the 

given point X = [0 0 0] in the coordinate system of each 

camera can be determined using equation (4). In this 

equation, Ti represents the coordinates of the image center, 

and Ri denotes the rotation matrix of the ith imaging 

station. Subsequently, by considering the collinearity 

condition, the ideal image coordinates of the given point 

can be obtained using equation (5). In equation (5), c 

represents the principal distance of the camera lens (refer 

to Figure 4). 

Figure 4. Calculating the ideal image coordinates of the 

given point in each image (mm) 

'' '( )i i i iX R X T R T       , , }{i X i Y i Z iX                  (4) 

'

'

i

i

i

Y
y c

z
      and  

'
'

'

i

i

i

X
x c

Z
                                     (5) 

2.4. Investigating the visibility of the given point in each image 

If the image coordinates fall outside the range of the 

image, it indicates that the point is not visible, and as a 

result, the corresponding image should be excluded from the 

space intersection calculation. Therefore, for an image to be 

considered valid, it must satisfy two conditions outlined in 

Equation (6), ensuring that the image dimensions a and b (in 

pixels) align with the X-Y axes (as depicted in Figure 5). 

Equation (6) incorporates the pixel size of the camera, where 

b represents the height of the sensor, and a denotes its width. 

.
| |

2
i

ps b
x     and 

.
| |

2
i

ps a
y                                                        (6) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Investigating the visibility of the given point in 

each image 

2.5. Simulation of the interior orientation parameters of the non-

metric and unstable camera 

Let's suppose we have a digital camera with the principal 

distance of c0 and sensor dimensions of [a,b] (where a>=b) 

in pixels. The pixel size is ps micrometers, with a being 

aligned with the Y-axis and b aligned with the X-axis. 

Consequently, the ground sample distance (GSD) can be 

calculated using the formula GSD=ps.h/c, where h denotes 

the flight altitude. 

In addition to the aforementioned parameters, the camera 

possesses interior orientation parameters (IOP) and other 

fixed parameters including c, x0, y0, radial lens distortion 
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coefficients k1, k2, k3, k4, lens dicentric distortion 

coefficients P1, P2, P3, P4, and affinity parameters B1, B2, 

which account for geometric image distortions. It is assumed 

that all of these parameters have random variations 

represented by dIOP = N(0, SdIOP), where SdIOP indicates 

the standard deviation of each parameter. The dIOP values 

reflect the instability of the non-metric camera and can lead 

to inaccuracies in applying the interior orientation 

parameters during 3D reconstruction. 

It is important to note that while IOP and dIOP remain 

constant for all images, IOP remains the same while dIOP 

varies across different iterations of the Monte Carlo 

simulation (MCS). In order to simulate the values of IOP and 

dIOP, the calibration results of a camera can be utilized. For 

this study, the numerical calibration values of the Phantom 

3 camera, obtained from a real operational project and with 

an image size of 3000x4000 pixels, are used and presented 

in Table 1. 

Table 1. Calibration file of Phantom 4 camera 

 

 

 

 

 

 

 

 

 

 

 

In order to simulate the instability of the interior 

orientation parameters of the camera, the interior 

orientation parameters (IOP) and standard deviation of 

each one of them (SIOP) are considered the calibration 

outputs of the camera of a real sample. Now, according to 

Gaussian distribution function N(0, SdIOP), the changes of 

each parameter are calculated randomly, and image 

distortions Δx, Δy are calculated on an image grid with IOP 

and IOP’=IOP+dIOP. They are subtracted from each other 

so that the image remained distortion grid (Δx, Δy) that is 

equivalent to the non-metric camera instability- will be 

obtained by the Equation (7). 

'd x d xIOP d xIOP       , 'd x d yIOP d yIOP     (7) 

Since in this simulation, we want to introduce T as the 

average image distortion caused by calibration error (per 

pixel) by the user, T is divided by the average value of the 

remaining distortion vectors dΔx,dΔy: 

2 2

T

x y

m

   
 

Then, its value will be multiplied by the image distortion 

grid  dΔx, dΔy so that the final image grid distortion average 

will equal T. In this expression, m is the number of the 

vertices of the above distortion grid. 

2.6. Applying the distortions caused by the instability of the 

camera to image coordinates 

As the distortion grid (dΔx,dΔy) of the camera’s instability 

is obtained, the distortion of image observations will be 

calculated by bilinear interpolation and applied to image 

coordinates using Equation (8). It must be emphasized again 

that according to the iterative logic of the MCS method for 

the application of random search space for input variables 

aimed at the estimation of probable solution and also by 

considering the static mode of calibration parameters’ 

distortions in each imaging station for simulation, in each 

iteration of   MCS, the model of distortion is the same. 

However, in different iterations, it will change randomly 

(Figure 6).     

'x x d x      and 
'x x d x                                       (8) 

Figure 6. (a) the radial distortions caused by camera 

instability to image coordinates, (b) the random noise to 

image coordinates due to low image quality measurement, 

(c) the sum of these two types of image coordinates error 

2.7. Applying random noise to image observations 

In this stage, prior to the 3D reconstruction process, 

random errors of aerial triangulation parameters are 

considered, assuming a normal distribution function. Two 

standard deviations, SATa (angular) and SATp (positional), 

are defined as coefficients relative to the ground sample 

distance, based on real-world observations and expert 

knowledge (as shown in Table 2). These errors are then 

applied to the simulated exterior orientation parameters as 

noise, following Equation (10). 

It is important to note that the nature of these random 

errors differs from the Sa and Sp errors associated with 

simulating instability in UAV navigation. In the second 

stage, these errors are applied to the observed rays visible 

in different images. These errors have an impact on the 

quality of ray intersection. In the process of space 

intersection, Sa and Sp errors alter the functional model of 

intersection equations based on the collinearity condition. 

On the other hand, sata and satp errors modify the statistical 

Calibration 

parameters 

Unit IOP 

calibration 

IOP std dev 
IOP real 

C mm 3.58910000 0.01620000 3.59491066 

Xp mm -0.02420000 0.00060000 0.02411376 

Yp mm 0.01310000 0.00130000 0.01320203 

K1 - 0.00163642 0.00005278 0.00162871 

K2 - -0.00005565 0.00000168 0.00005555 

K3 - -0.00000185 0.00000007 0.00000186 

P1 - -0.00001509 0.00000338 0.00001549 

P2 - -0.00025102 0.00000830 0.00025087 

B1 - -0.00000334 0.00000138 0.00000342 

B2 - 0.00000000 0.00000041 0.00000006 
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model by incorporating a variance-covariance matrix of the 

exterior orientation elements. 

As mentioned earlier, the user incorporates triangulation 

errors based on a coefficient of the ground sample distance 

(GSD). These errors can be calculated using equation (10), 

where kp represents the positional error coefficient and ka 

represents the rotational error coefficient of aerial 

triangulation relative to the GSD. In equation (10), Ka 

represents the coefficient of variation, h denotes the flight 

height, and GSD corresponds to the ground sampling 

distance, which is set at a size of 4cm. 

.a

ATa

K GSD
s

h
   and 

[ (0, ) & (0, ) ]ATp o o o ATadEOP N S forX Y Z N S for  and 

" 'EOP EOP dEOP                                                      (10) 

2.8. 3D reconstruction of the given point 

Now, we have image observations x''y'' that are affected 

by both camera interior orientation instability and random 

errors, as well as the exterior orientation parameters EOP'' 

of different images, which include random errors and UAV 

instability. By performing the space intersection of 

corresponding rays under these conditions, we can obtain 

the 3D coordinates of the given ground point while 

minimizing the sum of the squares of image residuals. This 

is achieved by minimizing Equation (11) while satisfying the 

collinearity condition equations. In Equation (11), x''i 

represents the image coordinates, c denotes the principal 

distance of the camera (specifically, the Phantom 4 Pro in 

this case), R represents the components of the rotation 

matrix, and Ti denotes the positional parameters of the 

exterior orientation parameters. 

2 2

1 2

3 3

. .( ) . .( )
( )

( ) .( )

i i i i

i i

i i i i

c R X T c R X T
F X x y

R X T R X T

     
        
      



(11) 

2.9. Estimation of 3D reconstruction quality 

The MCS method involves calculating possible solutions 

through iterations using different random values from the 

parameters' distribution function. In this study, the objective 

is to determine the relationship between overlap/sidelap, 

flight altitude, and the quality of 3D reconstruction. To 

achieve this, the 3D reconstruction is performed in different 

modes using n iterations of MCS, with n being set to 100. As 

a result, the reconstructed points X' = [X', Y', Z'] are 

scattered around the given point X = [0 0 0]. 

Since the real value of the unknown and the number of 

iterations (n) are known, the estimated value for it, as well 

as the horizontal (RMSExy) and vertical (RMSEz) quality of 

the 3D reconstruction for the given point, can be estimated 

using the RSME (Root Mean Square Error) standard. 

Thus far, we have discussed the proposed flowchart for 3D 

reconstruction in UAV photogrammetry. Moving forward, 

the monitoring tests for flight altitude, longitudinal overlap, 

and sidelap of images will be conducted. The results 

obtained from these tests will be presented and analyzed in 

the following sections.  

3. Experimental tests 

In order to obtain more reliable results, it is necessary to 

conduct tests in various conditions that reflect different 

environmental and camera quality parameters. As 

mentioned earlier, the study considers five modes (Ideal, 

Excellent, Good, Moderate, and Poor) based on the 

experiences of the close-range photogrammetry laboratory 

at Tehran University (as shown in Table 2). These modes 

represent different values and errors for the parameters 

being tested, such as flight altitude and overlap/sidelap. 

For each value of the specified parameter, imaging and 

reconstruction of the given ground point are performed using 

100 iterations of the Monte Carlo Simulation (MCS) 

experiment, following the variation column in Table 2. 

Consequently, the ground point is reconstructed 100 times 

for each parameter value. The average horizontal and 

vertical errors in the 3D reconstruction are then estimated 

using the RMSE standard. The values in Table 2 represent 

the standard deviation of the Gaussian distribution functions 

that generate random values for the corresponding 

parameter in the MCS iterations. In complex systems, instead 

of propagating errors through statistical modeling of 

observation and parameter noise, the statistical behavior is 

analyzed using the trial and error method (DOUG, 2007). 

It is important to note that when a parameter is expressed 

as a standard deviation, it represents the average values 

where 70% of the values are lower than the given value, and 

30% are between this value and three times this value. Based 

on Table 2, Sa and Sp represent the standard deviations of 

tilt angle and position deviations, respectively, relative to the 

ideal or design conditions. Ka and kp are the coefficients of 

the ground sample distance (GSD) used to calculate the 

standard deviations of rotational and positional errors in 

aerial triangulation, which also affect the rotational and 

positional errors of image projection centers. T represents 

the mean image distortion caused by camera instability, 

while So indicates the standard deviation of image 

observations. Px and py represent the overlap and sidelap of 

images, respectively, and kc and kh are the coefficients of 

focal length and flight altitude, which have constant values 

(set to 1) across all five modes for the analysis of image 

overlaps. 

Furthermore, the study examines the impact of UAV flight 

altitude on the accuracy of 3D reconstruction under specific 

cases of imaging overlaps. The focal length is determined 

based on Table 1, and the flight altitude value is set 

according to a 1/500 scale or a ground sample distance of 

4cm. 

The reason for using the Ideal and Poor modes can be 

understood by examining their parameter values in Table 2. 

In the Ideal mode, the UAV motion is perfectly stable, 

resulting in zero values for So, Sa, and Sp. Additionally, the 

camera geometry is highly stable, indicated by T = 0.025 

pixels, which means that the camera's interior orientation 
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parameters vary within a range of 1:40 pixels for different 

images. The image quality is exceptionally high, with the 

image observation error having a standard deviation of So 

= 0.05 pixels, which is close to zero. Moreover, the aerial 

triangulation error for the exterior orientation parameters 

of each image is characterized by rotational and positional 

errors of Ka and Kp within the range of 0.1 pixels, which is 

a typical range for professional metric cameras. 

 

Table 2. Values of parameters, standard deviation, and the range of their changes for five modes of Ideal, Excellent, Good, 

Moderate, and Poor according to the experience of the expert person that indicates different environmental conditions and 

camera quality. 

Parameter/Mode Unit Ideal Excellent Good Moderate Poor Changes 

Sa degree 0 1 2 4 8 - 

Sp meter 0 0.2 0.5 1 5 - 

T pixel 0.025 0.1 0.2 0.5 1 - 

So pixel 0.05 0.2 0.4 1 2 - 

ka GSD 0.1 0.2 0.5 1 2 - 

kp GSD 0.1 0.2 0.5 1 2 - 

px % 90 80 80 80 60 30:5:95 

py % 80 80 70 60 60 30:5:95 

kc - 1 1 1 1 1 - 

kh - 1 1 1 1 1 0.5:0.075:2 

These parameter values gradually increase from the Ideal 

to the Poor modes to represent different conditions related 

to the UAV, camera, and environment. The increasing values 

reflect varying levels of instability and lower quality in UAV 

motion, camera geometry, image observations, and aerial 

triangulation errors. By considering these different modes, 

the study aims to assess the impact of these factors on the 3D 

reconstruction process. 

Suppose we need to assess the overlap and sidelap of an 

image. To accomplish this, we can simply choose a value 

from the "Changes" column in Table 2. Since the desired 

point is visible in at least two photos, it is not possible to have 

both overlap and sidelap less than 50%. Let's assume that 

the selected values for overlap and sidelap are 80% each. In 

order to simulate the 3D reconstruction process, we need to 

determine the camera type and its parameters. For this 

article, we utilize the parameters of the Phantom 4 Pro for 

the simulation. The next step involves introducing 

environmental conditions for imaging, which are determined 

based on the platform's tilt angle and shift, and then 

capturing the images. Following that, we simulate the 

application of camera distortion parameters to the photo 

observations, represented by parameter T in Table 2, whose 

value is the average distortion in the image. The third step in 

the simulation is applying the instability of the interior 

orientation parameters, denoted by the So parameter in 

Table 2. Once these parameters are applied, we proceed to 

simulate aerial triangulation errors for the purpose of the 

simulation and three-dimensional reconstruction. These 

errors are incorporated as two parameters: position and 

rotation. Subsequently, the three-dimensional reconstruction 

is performed using the spatial intersection method and the 

least square error method. Let's assume that the 3D 

reconstruction process is proceeding ideally. Consequently, 

the aforementioned parameters are selected from the first 

column of Table 2. It is worth noting that, except for the 

instability calibration parameter, the mentioned parameters 

are applied to the observations using the standard deviation 

of the Gaussian distribution function. To account for the 

instability of the camera's interior orientation parameters, 

we simulate the error of the camera calibration parameters 

by considering the standard deviation of the Gaussian 

distribution function in the observation grid, which is 

obtained from the file of a real project. 

3.1. Image overlap affecting 3D reconstruction quality 

In order to assess the impact of image overlap and sidelap 

on the quality of 3D reconstruction, the extent of image 

overlaps and sidelap was increased by 5% from 30% to 95%, 

as indicated in the "change" column of Table 2. The Monte 

Carlo simulation (MCS) method was employed for each 

mode to replicate the imaging of ground points and their 

subsequent 3D reconstruction through 100 iterations. The 

first six parameters in Table 2 were subjected to a Gaussian 

noise model with predefined standard deviations. Given that 

the actual values of ground point coordinates and their 

corresponding 100 reconstructed positions using the MCS 

method were known, the quality of 3D reconstruction in each 

mode was evaluated using the root mean square error 

(RMSE) standard for horizontal (RMSExy), vertical 
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(RMSEz), and overall (RMSExyz) measurements. 

Furthermore, the relative changes in 3D reconstruction 

errors perpendicular to the flight strips were calculated 

using equation (12) to examine the variability of errors 

across different image overlaps. 

RMSEx RMSEy

RMSExy

 
 
 

                                                          (12) 

This procedure is iterated across five modes: Ideal, 

Excellent, Good, Moderate, and Poor, corresponding to the 

adjusted standard deviations in Table 2. Consequently, a 

total of 90,000 tests are conducted by considering the five 

modes, 180 ordered pairs of overlap and sidelap, and 100 

iterations of the Monte Carlo simulation (MCS). These tests 

are performed to analyze the impact of overlaps on 3D 

reconstruction, and their findings are summarized in Figure 

8. It is important to note that if both overlap and sidelap are 

below 50%, it would be impossible to perform 3D 

reconstruction for all ground features, and therefore, these 

cases are disregarded. 

Figure 7 depicts the minimum, mean, and maximum 

statistical parameters of horizontal and overall errors in 3D 

reconstruction, which are further visualized in Figure 8. In 

particular, diagrams (c) and (d) demonstrate that adjusting 

the image overlaps can significantly improve the horizontal 

error by up to 10 times and the overall 3D reconstruction 

error by up to five times (up to seven times in the ideal mode). 

Additionally, diagram (b) in Figure 7 illustrates that the 

mean error of 3D reconstruction (RMSExyz) in the Poor to 

Excellent modes is 23, 12, 6, and 2.5 times greater than the 

mean error in the ideal mode. This implies that 

environmental conditions and camera quality can amplify 

the overall 3D reconstruction error by more than 20 times. 

In Figure 8, the horizontal and vertical axes represent the 

overlap and sidelap, respectively. With a 5% step length, the 

hypsographic charts display values for RMSEx, RMSEy, 

RMSEdxy (the relative heterogeneity of 3D reconstruction, 

i.e., absolute value of relative changes in horizontal errors 

based on Equation (12)), RMSExy as the horizontal error, 

RMSEz, and RMSExyz as the overall reconstruction error in 

the five modes. Several practical observations can be 

inferred from these results. 

Firstly, the overlap values of px=95 and py=95 yield the 

lowest 3D reconstruction error (RMSExyz), while px=50 and 

py=30 exhibit the highest error. Furthermore, across the five 

modes, the maximum absolute difference in 3D 

reconstruction errors along the x and y directions ranges 

from 15% to 30% of the horizontal error, specifically in 

cases where overlap and sidelap are above 80% or below 

55%. This indicates that a reduced number of intersected 

image rays weakens the network's effectiveness, leading to 

heterogeneity between x and y errors in 3D reconstruction. 

It is worth noting that higher image overlaps exponentially 

increase the number of rays and the intersection geometry is 

influenced by the overall airbases (i.e., the angle between the 

first and last rays) in both overlap and sidelap directions. 

Therefore, the overall base is dependent on the image 

dimensions, and considering the 3:4 ratio of the images in 

this test (w=4000, h=3000 pixels), a 30% change will occur 

in the x error relative to y. 

The diagrams in Figure 8 reveal that the 3D 

reconstruction error (RMSExyz) does not exhibit 

symmetrical behavior in the overlap/sidelap directions. 

On average, it is approximately 5% higher in the 

sidelap direction (based on numerical values not 

directly visible). This discrepancy arises because the 

longitudinal base for all overlapping images is smaller 

than the transversal base. Conversely, the horizontal 

error (RMSExy) of 3D reconstruction is approximately 

symmetrical and is not dependent on the overall base 

in both overlap and sidelap directions. 

 

Figure 7. Diagram of the 3D reconstruction quality 
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resulted from overlap/sidelap changes for Ideal, Excellent, 

Good, Moderate, and Poor conditions. (a) and (b) are the 

minimum, mean, and maximum values of horizontal and 

overall errors of 3D reconstruction. (c) and (d) are the 

normalized values of these errors relative to the minimum 

values 
 

Furthermore, in all five modes, increasing both overlap 

and sidelap simultaneously leads to a decrease in 3D 

reconstruction error. However, a more detailed comparison 

can be made by examining the diagrams in Figure 9. 

Moreover, across all five modes, the impact of sidelap on 

improving the accuracy of overall 3D reconstruction is 

greater than that of overlap. This becomes apparent as the 

difference between overlap and sidelap increases. For 

example, in the Good mode diagram (numerical values not 

directly visible), the first case of px=95, py=30 and the 

second case of px=30, py=95 exhibit the largest difference 

in overall 3D reconstruction error (RMSExyz), with the first 

error (0.76 GSD) being, on average, 15% higher than the 

second error (0.66 GSD). However, it is not recommended 

to prioritize increasing sidelap over overlap to enhance 

accuracy, as it would incur higher costs and imaging 

duration. Conversely, symmetrical changes in overlap and 

sidelap have nearly identical effects on the horizontal error 

of 3D reconstruction. Additionally, in the five modes, it can 

be concluded that the majority of 3D reconstruction errors 

(RMSExyz) occur when one overlap is between 50% and 

80% and the other is between 30% and 45%. Therefore, if 

one overlap is set below 50%, the other should be adjusted 

to 85% to 95%, or both overlaps should exceed 50% to 

prevent an increase in reconstruction error. 

Furthermore, according to the diagrams in Figure 8, for 

the five modes, it is apparent that when overlaps are below 

60%, increasing sidelap does not necessarily reduce the 3D 

reconstruction error (RMSExyz). Similarly, increasing 

overlap does not necessarily decrease the error when sidelap 

is below 60%. This irregular behavior of errors can be 

attributed to the diminished geometric strength of the 

network. Another contributing factor is the increased 

significance of the overall base of overlapping images 

relative to the value of individual overlapping images. 

Lastly, based on Figure 9, when the sum of overlap and 

sidelap is equivalent, an approximately 50% increase in the 

maximum horizontal and overall error of 3D reconstruction 

occurs due to a decrease in the number of space-intersected 

rays. However, this trend does not hold when the total 

overlaps are equal to or less than 120%. In such cases, the 

network's low strength results in a maximum reduction of the 

overall 3D reconstruction error by 25%. Therefore, when 

total overlap and sidelap exceed 120%, it is advisable to 

maximize their difference, whereas for cases with total 

overlap and sidelap below 120%, it is preferable to keep 

overlap and sidelap values as close to each other as possible. 

3.2. Flight altitude impact on 3D reconstruction accuracy 

To conduct the test, the flight altitude is adjusted based on 

the values specified in the change column of Table II. 

Subsequently, the 3D reconstruction simulation is repeated. 

The outcomes of this test are illustrated in Figure 10. 

As depicted in Figure 10, the 3D reconstruction's 

horizontal and vertical errors exhibit a linear increase as the 

flight altitude is raised. Therefore, altering the flight altitude 

from half to twice the standard value leads to a 

corresponding change in the horizontal and vertical errors 

of the 3D reconstruction, ranging from half to double the 

initial error. In other words, unlike the stereo mode where 

the vertical error of the 3D reconstruction is influenced by 

twice the flight altitude, the vertical error, similar to the 

horizontal error, follows the flight altitude during multiple 

imaging. In this test, the vertical error is represented by the 

red color, while the horizontal error is denoted by the blue 

color. 

3.3. Changing image overlap and flight altitude to preserve 3D 

reconstruction quality 

During this test, modifications were made to the flight 

altitude and overlap-sidelap values based on the variations 

outlined in Table 2. Subsequently, a 3D reconstruction 

simulation was performed. The outcomes of this test are 

displayed in Figure 11. 

As depicted in Figure 11, the 3D reconstruction errors, 

denoted as e, exhibit an almost linear relationship with 

respect to the two parameters that were tested, x1 and x2. 

Consequently, it is possible to fit a regression plane equation 

to the error values using Equation (13). 
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          RMSEx                  RMSEy                    RMSEdxy                RMSExy                 RMSEz                  RMSExyz 

          RMSEx                  RMSEy                    RMSEdxy                RMSExy                 RMSEz                  RMSExyz 

 

 
 

a: similar color scales for each column to figures can be comparable in different modes 

 

          RMSEx                  RMSEy                    RMSEdxy                RMSExy                 RMSEz                  RMSExyz 

 
b: different color scales for each case in order to clearly illustrate the error behaviour 

 

Figure 8. 3D reconstruction by changing the overlap (horizontal 30:5:95 percent) and sidelap (vertical 30:5:95 percent) from 

top to down for the Ideal, Excellent, Good, Moderate, and Poor modes and from left to right for RMSEx, RMSEy, RMSEdxy, 

RMSExy, RMSEz, and RMSExyz. Colorbars in Figure 8a have similar scales for each column, but in Figure 8b, they have local 

scales for each case. 
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Figure 9. Changes of 3D reconstruction horizontal and overall error (vertical axis GSD) for constant px+py (horizontal axis %) 

in the five modes (the index of different colors is shown in the top-right diagram). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Results of the test of the impact of flight altitude on the accuracy of 3D reconstruction (GSD is the value appropriate 

for kh=1) 
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Figure 11. Impact of simultaneous change of flight altitude and image overlapping on the accuracy of 3D reconstruction in the 

five modes 

 

To understand how the parameter x1 changes with the 

value of dx1 and how the parameter x2 should be adjusted to 

maintain the 3D reconstruction error, we introduce new 

variables: X'1 = x1 + dx1 and X'2 = x2 + dx2. By substituting 

these definitions into Equation (13), we can derive Equation 

(14). It is important to note that preserving the quality of the 

3D reconstruction requires equality between Equations (13) 

and (14). Based on the relationship between the two 

parameters p1 and p2, as outlined in Equation (16), we can 

obtain Equation (15).  

1. 1 2. 2 3e p x p x p  
                    (13)             

1.( 1 1) 2.( 2 2) 3e p x dx p x dx p    
                             (14) 

1. 1 2. 2 0p dx p dx 
                                                       

(15)                  

1
2 . 1

2

p
dx dx

p
 

                                                              

(16) 

To predict the necessary adjustment in parameter x2, 

given a change in x1, in order to maintain the accuracy of 

the 3D reconstruction, we calculate the coefficient                k 

= -p1/p2. This coefficient allows us to determine both the 

magnitude and direction of the change in x2 (dx2) as dx2 = 

k*dx1. To calculate the parameters p1 and p2, equations 

need to be established based on Equation (13) using the 

values of x1, x2, and the corresponding reconstruction error 

resulting from their simultaneous change. By constructing 

the coefficient matrix of observations and unknown values, 

p1 and p2 can be calculated through the method of least 

squares of errors. The results of this analysis are presented 

in Table 3, which will be further analyzed and investigated 

in the subsequent section. 

Table 3. Coefficients of 3D reconstruction accuracy 

preservation by changing the flight altitude after changing 

the overlap and sidelap sum. 

Quality 

Measure 

Flight altitude compensation coefficients 

after changing 10% sum of image overlap 

and sidelap 

Mode Ideal Excellent Good Moderate Poor 

RMSExy 0.021 0.022 0.021 0.021 0.020 

RMSEz 0.016 0.012 0.013 0.011 0.013 

RMSExyz 0.018 0.014 0.015 0.014 0.015 

 

Based on the findings presented in Table 3, we can draw 

the conclusion that in order to maintain the horizontal 3D 

reconstruction accuracy (RMSExy), if the total overlap and 

sidelap of images are decreased or increased by 10%, the 

flight altitude should be adjusted accordingly. Specifically, 

in all five modes, the flight altitude needs to be decreased or 

increased by 20% of the standard flight altitude. This 

adjustment ensures the preservation of the horizontal 3D 

reconstruction accuracy. 

3.4. Comparing different cameras and lens FOVs on 3D 

reconstruction simulation 
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The objective of this section is to examine the impact of 

changes in camera lens field of view (FOV) on the simulation 

analysis. To address this question, we have expanded our 

testing to include two additional practical camera/UAV 

systems: the DJI Phantom 4 Pro and a fixed-wing UAV 

equipped with the Sony α6000. These systems have been 

included alongside the DJI Phantom 3 UAV system in Table 

4, allowing us to provide a partial answer to the question at 

hand. 

Table 4. UAV/Camera Systems characteristics utilized for 

simulation 

UAV System 

Lens Focal 

Length 

(mm) 

Sensor Size 

(pixels) 

Pixel 

Size 

(μm) 

FOV 

(Degrees) 

DJI-Phantom3 3.5891 4000*3000 1.5619 95 

DJI-

Phantom4pro 

9.1128 5472*3078 2.5269 82 

Fix-wing Sony 

α6000 

25.9480 7952*5304 4.5265 80 

 

3.4.1 Comparing different cameras and lens FOVs on 3D 

We have successfully completed a total of 900 tests for the 

two additional UAV/Camera systems. After analyzing the 

results, we have observed that they exhibit a high degree of 

similarity and compatibility, with variations ranging from 10 

to 20 percent, as depicted in Figure 12. This indicates that 

our simulation results are highly reliable and can be 

effectively generalized for lens FOV values ranging from 80 

to 95 degrees. 

 
Figure 12. Average RMSExyz (unit GSD) of 3D 

reconstruction for simulation with different UAV/Camera 

systems 

4. Conclusion 

In the present study, the simulation method was employed 

to address real-world challenges related to the analysis of 

flight altitude and image overlap/sidelap. However, certain 

factors such as flight speed and achieving a balance between 

the limitations of sensor firing speed due to hardware 

constraints and image blurring were not taken into account. 

The key findings of this research can be summarized as 

follows: The modification of overlap and sidelap can 

enhance the horizontal (RMSExy) and overall (RMSExyz) 

error of 3D reconstruction by up to 10 and 5 times, 

respectively. Furthermore, the study revealed that the 

heterogeneity of errors along the overlap and sidelap ranges 

from 15% to 30% of the horizontal errors, with greater 

heterogeneity observed when both overlap and sidelap 

exceed 80% or fall below 55%. 

Furthermore, this study indicates that for imaging with a 

total overlap and sidelap of more (or less) than 120%, it is 

better to consider the values of overlaps far from one another 

as much as possible. In other words, when the sum of the 

overlap and sidelap is more than 120%, a higher overlap and 

a lower sidelap would achieve a higher 3D reconstruction 

accuracy. However, when the sum is less than 120%, it is 

better to set overlap and sidelap relatively close to each 

other.  

Another practical result of this study based on our 

experiments is that if one overlaps is chosen to be below 

50%, the other overlap must be 85% to 95%, or both 

overlaps must be above 50% so that the 3D reconstruction 

quality will not be lost. Although by the simultaneous 

increment of both overlaps and sidelap, the 3D 

reconstruction quality will always increase, in the case of 

overlaps and sidelap below 60%, the increment of 

overlapping in one direction will not necessarily improve the 

reconstruction quality. Also, it could be stated that the 

increment of the sidelap improves the 3D reconstruction 

quality more effectively than the overlap, while both overlap/ 

and sidelap have the same impact on the improvement of 

horizontal quality.  

Another result of this study based on our experiments is 

that the horizontal and vertical error will increase by 

increasing flight altitude.  

Another significant result is that by decreasing the sum of 

overlap/sidelap by 10%, the flight altitude must be decreased 

by 20% to compensate for the reduction of horizontal 3D 

reconstruction accuracy. To preserve the horizontal 

accuracy, if the flight altitude increases by 20%, the sum of 

the overlap and sidelap must also be increased by 10%.  

In the end, it should be noted that all these simulation 

outcomes are based on our special experiments and need 

additional real-world cross-checks to be considered as new 

knowledge and rule in UAV photogrammetry. In addition, 

although the above result of the first phase of simulation 

analysis is precious, the second and third phases give us 

more realistic and more complete results at the cost of more 

complexity. 

Our future research will concentrate on two subjects. 

Since the outcomes of this research are derived from a 

simulation process, we plan to examine them practically in 

our future research. In addition, to improve the simulation 

process, we will develop it to reconstruct a group of 3D 

hypothetical points simultaneously instead of a single point.  
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