

In-Depth Analysis of Various Artificial Intelligence Techniques in Software

Engineering: An Experimental Study

Mohd Mustaqeem *

*Corresponding Author, Ph.D. Scholar, Department of Computer Science, Science, Aligarh Muslim

University (AMU), Aligarh, U.P, India. E-mail: mohdmustaqeem34@gmail.com

Tamanna Siddiqui

Professor, Department of Computer Science, Aligarh Muslim University (AMU), Aligarh, U.P, India.

E-mail: tsiddiqui.cs@amu.ac.in

Najeeb Ahmad Khan

Associate Professor, Faculty of Engineering & Technology at Arunachal University of Studies,

Namsai, Arunachal Pradesh, India. E-mail: naahkh@gmail.com

Deepak Kumar

Professor, Amity University Uttar Pradesh, Noida, India. E-mail: deepakgupta_du@rediffmail.com

Abstract

In this paper, we have extended our literature survey with experimental implementation.

Analyzing numerous Artificial Intelligence (AI) techniques in Software Engineering (SE) can

help understand the field better; the outcomes will be more effective when used with it. Our

manuscript shows various AI-based algorithms that include Machine Learning techniques

(ML), Artificial Neural Networks (ANN), Deep Neural Networks (DNN) and Convolutional

Neural Networks (CNN), Natural Language Processing (NLP), Genetic Algorithms (GA)

applications. Software testing using the Ant Colony Optimization (ACO) approach, predicting

software maintainability with Group Method of Data Handling (GMDH), Probabilistic Neural

Network (PNN), and Software production with time series analysis technique. Furthermore,

data is the fuel for AI-based model testing and validation techniques. We have also used the

NASA dataset promise repository in our script. There are various applications of AI in SE,

and we have experimentally demonstrated one among them, i.e., software defect prediction

using AI-based techniques. Moreover, the expected future trends have also been mentioned;

these are some significant contributions to the research.

https://orcid.org/0000-0001-5055-5969
https://orcid.org/0000-0002-0068-4241
https://orcid.org/0000-0002-1588-924X
https://orcid.org/0000-0003-2409-9706

Journal of Information Technology Management, 2023, Vol. 15, Issue 3, 163

Keywords: Software Engineering, Defects Prediction, Artificial Intelligence, ML, ANN,

DNN, CNN

Journal of Information Technology Management, 2023, Vol. 15, Issue 3, pp. 162-181 Received: April 03, 2023

Published by the University of Tehran, Faculty of Management Received in revised form: June 13, 2023

doi: https://doi.org/10.22059/jitm.2023.93632 Accepted: July 20, 2023

Article Type: Research Paper Published online: August 26, 2023

© Authors

Introduction

In today's world, every person is surrounded by modern-day technologies. Social media, e-

commerce purchasing, e-health, and online transactions are the daily life parts of people. All

these things require some online platform information system software so that people can take

advantage of this modern-day thing. But as technology is emerging daily, data is generated

continuously, and hackers and crackers are constantly trying to compromise the security of

these systems. So, there is a need to prevent data and protect software from malfunctioning.

To prevent software from any failure, testing is one of the methods. According to Kuhn et al.

(2004), exhaustive testing of software is done if an error occurs due to some or all parameters

testing team tests those parameters rather than complete software testing. Finding those

parameters and combinations is also hectic and time-consuming, and the chance of success is

not very high. To maintain quality and save cost, time, and labor, exhaustive testing of

software is not a good idea. It is not feasible, and testing must be automated. To overcome this

issue, an AI-based technique ant colony optimization (ACO) (Srivastava & Baby, 2010)

approach is used; this approach creates some test sequences due to which complete software

is covered for testing. The development of better software and its success mainly depends on

knowledge, practice, experience, and learning of systems which results in providing true

information in accurate time, at the correct place, and according to the needs of the recipient.

Sometimes this approach remains less effective; there is another approach of SE decision

support (SEDS) (Li et al., 2017); it combines various aspects of software systems, like

models. Experimental techniques, with intelligent methods of analysis and interpretation to

know the results of decisions that help reduce the chances of future mistakes. After making a

decision, Software coding is one of the essential tasks that require a programmer or a team of

a programmer with proper knowledge of different types of programming languages who can

analyze, write thousands of lines of code, and change accordingly, which require lots of time,

energy having greater chances of error.

On the other side, using an AI-based automated intelligent expert system for computer

programmer assistants can resolve almost all the above issues. A small defect in the software

may lead to software collapse; the motive of software development is destroying when the

software faces any defect; the software industry and other software product owners cannot

https://doi.org/10.22059/jitm.2023.93632
https://creativecommons.org/licenses/by-nc/4.0/

In-Depth Analysis of Various Artificial Intelligence Techniques in Software… 164

bear the loss of time, money, and labor. When the company runs on a software platform

during working hours, a small defect in software may collapse the entire company. So, the

prediction of software defects, in the beginning, is one of the significant challenges in SE;

many software models design uses previous data or history from the database, mine it, and

detect the defects in software (Kim et al., 2011) in this traditional defect prediction technique,

there is a chance of not getting complete success, it may be time taking process chances of

failure, to develop the high-quality product which is defect-free, feasible to the stakeholders

and the results may be good when we use the intelligent system: there are various AI-based

techniques to predict the defect in the software, in the manuscript (Siddiqui et al., 2021) and

(Bibi et al., 2006) we have reviewed machine learning Classification algorithm which identity,

determines, evaluate advance and manage the system. Planning for a software project is one

of the essential activities of SE. Poor planning may lead to project collapse; estimating the

cost of the system is one of them. It is the process of predicting the necessary effort to develop

a software system. If the cost and effort are not estimated correctly with time, it may cause

project failure.

There are many software cost estimation models developed. If a model is selected must

have accuracy in estimation, and the cost of the product does not exceed the limit. The

COCOMO model is one of them, but it has some limitations. It cannot deal effectively with

incomplete, indefinite data. The COCOMO model must be standardized to estimate it

precisely (Gharehchopogha & Khalifehlou, 2012). To overcome this issue, an intelligent

method is used for early prediction of cost estimation of any software. We have used

regression analysis techniques in our paper. The regression analysis model takes the dataset

from the NASA project and is classified as the trained and testing data (Strnad & Guid, 2010).

The rest of the paper is organized as follows: Section 2 represents the related work. Section

3 presents the applications of AI techniques in SE. Section 4 presents the Impact analysis.

Section 5 describes the datasets, section 6 presents the experimental study, section 7 presents

the Results and Discussion, section 8 presents the future trends, and section 9 concludes.

Literature Review

Nowadays, SE and AI are used together to get better and faster results. According to N. Guide

(Bennett & Rajlich, 2000), by using AI, we can easily predict the best team among many; in

cricket and business, AI-based techniques are used to predict the best team. The success of

any software and another project mainly depends on planning and team; choosing a solid team

is essential and can complete the project on time, more efficiently, and accurately. It is

difficult for a manager and team selector to select a perfect team traditionally from the cluster;

we have reviewed the fuzzy-genetic analytical model technique for software team building. It

works on the team members' historical and modern personal attributes, which can predict the

best team. Once a team is allotted to develop software, maintainability of software is also a

Journal of Information Technology Management, 2023, Vol. 15, Issue 3, 165

significant phase of any software. It depends entirely on its maintenance; if the software is not

well maintained, it will not be used in the future; for developers and owners, this is one of the

significant issues; to some extent, this issue is resolved in SE with some methods. However, if

we talk about AI, we have used the (Malhotra1 & Chug2, 2012) Group Method of Data

Handling (GMDH), Genetic Algorithms (GA), and Probabilistic Neural Network (PNN)

approach to maintain the software. In this technological world, due to the enormous usage of

software systems, companies are developing a considerable amount of software, so software

forecasting and its trends and quality must be known to companies which can be predicted

from different forecasting techniques.

Nevertheless, we have reviewed time-series analysis with quality forecasting in open-

source software (Parizi & Ghani, 2010)to forecast software trends and quality in the market

for software production. We have reviewed the above application of AI-based techniques in

SE and gathered information on a single platform which will be helpful for further research.

As we know, the basic definition of SE is the principles used in developing software, complex

and human-oriented activity; using artificial intelligence, many software development

activities can be improved (Saini, 2016). The hybrid techniques are also used for predicting

software defects using AI techniques (Mustaqeem & Saqib, 2021). When computational work

is performed by humans and requires intelligence, the artificial intelligence field comes into

consideration. The main focus of AI is creating an intelligent machine, a computer system that

can understand natural language like a human. Many sub-fields of AI have applications in SE,

like machine learning; it deals with the issues of how to develop systems that can solve

problems through self-learning and previous experience. It is effectively applied in numerous

parts of SE, from pattern recognition behavior extraction, testing of software, and prediction

of defects. Machine learning algorithms are used for innumerable data mining problems,

where many databases may contain valuable information that can be recognized

automatically.

ML algorithms explore areas not explored by humans and do not have the idea to develop

algorithms in areas where the programs must dynamically adapt to changing conditions. The

algorithms which are used in machine learning are Concept Learning (CL), Decision Trees

(DT), Artificial Neural Networks (ANN), Bayesian Belief Networks (BBN), Reinforcement

Learning (RL), Genetic Algorithms (GA), and Genetic Programming (GP), Instance-Based

Learning (IBL), Inductive Logic Programming (ILP), and Analytical Learning (AL) (Nassif et

al., 2012).

Application of Artificial Intelligence techniques in SE

In the past few years, SE has created a different image in the market; its rising rate is high. It

starts from software development to modification data generated learning problems which

may result in learning algorithms, as shown in Figure 1.

In-Depth Analysis of Various Artificial Intelligence Techniques in Software… 166

 Machine Learning

 Deep Learning

 Natural Language Processing

 Genetic Algorithms

 Time Series Analysis

Figure 1.

AI techniques in SE

Machine Learning: Machine learning algorithms have been essential in improving SE.

Earlier, old approaches were used to find software defects, and software cost estimation was

very time-consuming and not efficient. However, now we can apply regression analysis,

classification, clustering, and dimensionality reduction techniques to enhance the capabilities,

as shown in Figure 2.

Journal of Information Technology Management, 2023, Vol. 15, Issue 3, 167

Figure 2.

Hierarchy of Machine Learning Algorithms

Deep Learning: Deep learning is a subset of machine learning based on Artificial Neural

Networks (ANN) and representation learning. ANN is used in biological systems to process

information and send messages to different nodes. There are a lot of differences between the

brains of living things and ANNs. Neural networks are fixed and symbolic, while the brains of

living things are analog and change over time. Deep learning uses multiple layers in the

network; deep learning algorithms use unknown datasets to find helpful information at

numerous layers; deep learning is feature learning; it can automatically pull features from raw

data. Deep learning algorithms like ANN, DNN, CNN, and GCNN are used in SE. These

algorithms help SE keep up with modern technologies and make SE a more realistic, robust,

dynamic, and automated field.

ANN: According to the paper, software efforts can be predicted using ANN from use case

diagrams depending on the Use Case Point (UCP) model. The software size, how well it

works, and how complicated it is can be used as inputs, and the software efforts can be used

to predict the results. Multiple linear regression models with three independent variables and

one dependent variable were used to measure ANN. ANN is experienced against the

regression model and Use Case Point (UCP) model based on MMER and PRED, and results

show that the ANN model performs 8% and 50% against the regression model and UCP

(Nassif et al., 2012). ANN or Multi-layer perceptron is also used for classification purposes

and can be used for software defect prediction; figure 3 shows the ANN input layers with

corresponding weights and output. Mathematically, we can represent it as:

∑ = (𝑦𝑖 × 𝑤𝑖) + (𝑦2 × 𝑤2) + ⋯ + (𝑦𝑛 × 𝑤𝑛) (1)

In-Depth Analysis of Various Artificial Intelligence Techniques in Software… 168

Where 𝑦𝑖 are the inputs and 𝑤𝑖 are the allocated weights. The values of the weights play a

crucial role in output.Row vectors for input are represented as 𝑦 = [𝑦𝑖 , 𝑦2, ⋯ , 𝑦𝑛] and 𝑤 =

[𝑤𝑖 , 𝑤2, ⋯ , 𝑤𝑛], their dot product can be represented as:

𝑦. 𝑤 = (𝑦𝑖 × 𝑤𝑖) + (𝑦2 × 𝑤2) + ⋯ + (𝑦𝑛 × 𝑤𝑛) (2)

The final dot product is represented as:

∑ = 𝑦. 𝑤 (3)

By implementing the bias c with the dot product's summation, we get p, and the equation

can further be written as:

𝑝 = 𝑦. 𝑤 + 𝑐 (4)

The value of p can be passed to the activation function; we will implement the sigmoid

activation function here:

𝑥 ̅ = 𝜎(𝑝) =
1

1+ 𝑒−𝑝 (5)

𝜎 denotes the activation function and predicted value (𝑥)̅̅̅ the output value after forward

propagation.

 A loss function can be used for deviation from the actual result that we can show using

mean square error:

𝑀𝑆𝐸𝑖 = (𝑥𝑖 − 𝑥�̅�)
2 (6)

For the entire training dataset, the loss function's average, known as cost function R, can be

calculated:

R=MSE=
1

𝑛
∑ (𝑥𝑖 − 𝑥�̅�)

2𝑛
𝑖=1 (7)

The gradient of R wrt weights can be calculated using partial derivation.

𝜕𝑅

𝜕𝑤𝑖
=

𝜕𝑅

𝜕𝑥
 ×

𝜕𝑥

𝜕𝑝
×

𝜕𝑝

𝜕𝑤𝑖
 (8)

𝜕𝑅

𝜕𝑥
=

𝜕𝑅

𝜕𝑥

1

𝑛
∑ (𝑥𝑖 − 𝑥�̅�)

2𝑛
𝑖=1 = 2 ×

1

𝑛
∑ (𝑥𝑖 − 𝑥�̅�)

𝑛
𝑖=1 (9)

𝜕𝑥

𝜕𝑝
 =

𝜕 𝜎(𝑝)

𝜕𝑝
 (10)

𝜕𝑝

𝜕𝑤𝑖
=

𝜕(𝑝)

𝜕𝑤𝑖
 (11)

Journal of Information Technology Management, 2023, Vol. 15, Issue 3, 169

For optimization, we can select the hyperparameter, which is also known as the learning

rate (𝛽).

Weights and bias can be updated by backpropagation, and gradient descent is used until

convergence:

𝑤𝑖 = 𝑤𝑖 − (𝛽 ×
𝜕𝑅

𝜕𝑤𝑖
) (12)

c=c− (𝛽 ×
𝜕𝑅

𝜕𝑐
) (13)

DNN: The DNN, an ANN, is another deep learning algorithm used in automotive software.

It makes nonlinear compound patterns by hiding many units between the input and output

layers. Using DNN, we can change the hidden layers, units per layer, and connections per

unit. Its organization is flexible in these ways, as shown in (Falcini et al., 2017).

Mathematically, we can say that DNN is a computational function. And it has three layers

input layer, a hidden layer, and an output layer.

Let 𝑀𝑘(𝑦): 𝑃𝑎𝑖𝑛 → 𝑃𝑎𝑜𝑢𝑡 beM-layer NN, with 𝑀𝑘 neurons in the kth layer (𝑀0 =

𝑎𝑖𝑛 , 𝑀𝑘 = 𝑎𝑜𝑢𝑡). Weight matrix and vector bias can also be denoted in the kth layer by 𝑊𝑘 ∈

𝑃𝑀𝑘×𝑀𝑘−1 and 𝐶𝑘 ∈ 𝑃𝑀𝑘 . By applying the nonlinear activation function, we can get the

following values:

Input/Initial layer:

In-Depth Analysis of Various Artificial Intelligence Techniques in Software… 170

𝑀0(𝑦) = 𝑦 ∈ 𝑃𝑎𝑖𝑛, (14)

Hidden/Middle layer:

𝑀𝑘(𝑦) = 𝜎(𝑊𝑘𝑀𝑘−1(𝑦) + 𝐶𝑘) ∈ 𝑃𝑀𝑘 for 1≤ 𝑘 ≤ 𝐾 − 1 (15)

Output layer:

𝑀𝐿(𝑦) = (𝑊𝐾𝑀𝐾−1(𝑦) + 𝐶𝐾) ∈ 𝑃𝑎𝑜𝑢𝑡 (16)

CNN: Good quality software is based on software requirements, including information,

effects, and expectations about software development. Large or small, the software requires

lots of human effort and involvement. We looked at the CNN model, which uses the

PROMISE dataset well on SRC (Navarro-Almanza et al., 2017), to automate and classify

software requirements without much human or less human involvement. The mathematical

representation of CNN is by using the * sign. If we have Y as an input image and a filter t,

then the expression would be like this:

𝑀 = 𝑌 ∗ 𝑡 (17)

The linear transformation can be done:

𝑀 = 𝑊𝑇 . 𝑌 + 𝑐 (18)

The sigmoid activation function can be applied as follows:

f(x)=
1

(1+ 𝑒−𝑦)
 (19)

M1= 𝑊𝑇 . 𝑓(𝑥) + 𝑐 (20)

𝜕𝑀1

𝜕𝑓(𝑥)
= 𝑊𝑇 (21)

Output=Sigmoid(M1) (22)

Natural Language Processing (NLP): For designing, developing, and sequentially testing

the software product, industries use a process called software development life cycle (SDLC),

which is the most essential, stepwise chronological structure in SE (Sadiku et al., 2018). In

SDLC, documentation and plain text are the final articles that would be helpful to apply NLP

in every phase of SDLC. In our paper, we have reviewed NLP applications in SDLC

(Pressman & Roger S., 2010), which use textual characters as input for NLP, and the artefacts

show the textual document generation. There are various phases of textual artefacts'; we are

reviewing some below. Text processing can be done to transform different words into one

speech form. We can also measure the similarities and differences among the strings.

Journal of Information Technology Management, 2023, Vol. 15, Issue 3, 171

Text similarity measuring can be done using cosine similarity metrics.

cos(𝜃) =
𝑃.𝑄̅̅ ̅̅ ̅

|𝑃||𝑄|
 (23)

We can convert words into numerical vectors using vectorization methods like "bag of

words" and "TF-IDF." To find feature independence in text classes, we have used Naïve

Bayes

P(a|b) =
𝑃(𝑎|𝑏)×𝑃(𝑎)

𝑃(𝑏)
 (24)

arg max [𝑃(𝑅𝑙 × Π𝑃(𝑦𝑖|𝑅𝑙))] (25)

Table 1.
Analysis Phase Textual Artifacts

Document/ Artifact Author
Requirement Document System Analyst

Software Requirement Specification System analysts Business manager
Use Case Description System Analyst

Acceptance Test Cases Tester

Table 2.
Design Phase Textual Artifacts

Document/ Artifact Author
Software Design Specification Designer

UML Diagrams Design Engineer
Design-level Test cases Tester

Textual artifacts and a cost requirement analysis are part of the umbrella activities. As

discussed in SDLC (Pressman & Roger S., 2010), NLP uses a textual format generated by the

above activities and can be automated using tools and techniques. Using a machine

translation, it can be turned into another natural language, according to Yalla and Sharma

(2015).

Genetic Algorithms: Genetic Algorithms are part of soft computing instead of AI.

However, this survey can still be considered because AI algorithms solve some problems with

SE optimization. Biological theories inspire genetic algorithms-Darwin's principle of best

fittest for survival, and many times, it is used to find out the best-fitted population before

applying any AI-based techniques, as in the following examples: Mathematically, we can

show it as:

(𝑎1, 𝑎2, ⋯ , 𝑎𝑛)2=(∑ 𝑎𝑖2
𝑗𝑀

𝑗=0) = 𝑦′ (26)

In the above equation (𝑎𝑗 ∈ {1,0}) is chromosome gene,

We can convert the 𝑦′ value in the interval (0;1) from the following equation:

In-Depth Analysis of Various Artificial Intelligence Techniques in Software… 172

𝑦 = 𝑘𝑙𝑜𝑤 + 𝑦′ 𝐾𝑢𝑝𝑝𝑒𝑟

2𝑀−1
 (27)

𝑘𝑙𝑜𝑤 = 0 𝑎𝑛𝑑 𝑘𝑢𝑝𝑝𝑒𝑟 = 1

Now, the combination will become o's, and 1'sother combinations will also be in the range:

(𝑘𝑙𝑜𝑤 , 𝑘𝑢𝑝𝑝𝑒𝑟).

Software Testing using Ant Colony Optimization (ACO): In SE, many human activities are

error-prone, and software engineers do many tasks. Like these activities, they should focus on

whether the valuable data collected helps decision-making. When the software testing is done,

heterogeneous data is collected. It keeps track of where and when the error happens. This

information can be used to find interesting patterns and test information for more significant

testing problems. As L. C. Briand talks (Jalote, P., 2012), an automated decision-making

algorithm is used to find errors, faults, and possible ways to improve test specifications and

decide the order of importance for test cases.

According to H. Li and C. P. Lam (Briand, 2008), software testing involves making test

data, running tests with the test data and the software being tested, and evaluating the results

of the tests. When testing software, the main goal is to choose test cases that will find the

most module bugs. For example, it is possible to make an exciting set of test cases, but it is

expensive and takes a long time, so cost optimization automation is needed (Li & Lam, 2014).

We have reviewed a paper (Briand, 2008) in which H. Li and C. P. Lam discuss ACO; its

performance is replicated with the real Ant for test case generation. Various activities consider

the ACO algorithm, such as converting testing cases into a graph; a heuristic measure of the

path through the chart; a mechanism for creating possible solutions efficiently; by this

approach, the test pattern can be generated for state-based software testing. Mathematically,

we can demonstrate the algorithm using:

𝑃𝑘,𝑙 =
(𝜏𝑘,𝑙

𝛾
)(𝜂𝑘,𝑙

𝛿)

∑(𝜏
𝑘,𝑙
𝛾

)(𝜂𝑘,𝑙
𝛿)

 (28)

𝐼𝑡 𝑖𝑠 𝑡ℎ𝑒 (𝜏𝑘,𝑙
𝛾

) pheromone amount on edge k, l

𝛾 it is used to control the influence of the parameter of (𝜏𝑘,𝑙
𝛾

).

The desirability of the edge (𝑘, 𝑙) is defined by (𝜂𝑘,𝑙
𝛿):

𝛿 control the influence of (𝜂𝑘,𝑙
𝛿)

The pheromone updating is done using the following:

𝜏𝑘,𝑙= (1-𝜌) 𝜏𝑘,𝑙 + △𝑘,𝑙 (29)

Journal of Information Technology Management, 2023, Vol. 15, Issue 3, 173

𝐼𝑡 𝑖𝑠 𝑡ℎ𝑒 (𝜏𝑘,𝑙
𝛾

) pheromone amount on edge k, l

𝜌 denotes the rate of evaporation of pheromone.

△𝑘,𝑙 𝑝ℎ𝑒𝑟𝑜𝑚𝑜𝑛𝑒 𝑎𝑚𝑜𝑢𝑛𝑡 𝑑𝑒𝑝𝑜𝑠𝑖𝑡

𝜏𝑘,𝑙 = (1 − 𝜑). 𝜏𝑘𝑙 + 𝜑. 𝜏0 (30)

𝜑 ∈(0,1], pheromone decay coefficient𝜏0 initial value.

Software maintainability using Group Method of Data Handling (GMDH), Genetic

Algorithms (GA), and Probabilistic Neural Network (PNN):

Another subfield, like deep learning, also has applications in SE. We have reviewed many

papers on software maintainability using different algorithms. When software works well and

is easy to change, its performance stays good throughout its working life and meets the

customer's needs. When this happens, we call the software "maintained." The enormous

software maintenance cost is much more than the software developed. Observing the software

metrics during the development phase is essential to controlling maintenance costs. This is

done in many industries; they use tools and techniques to predict software maintainability

during software metrics design (Horgan et al., 1994; Briand et al., 2001). We looked at the

papers on the Group Method of Data Handling (GMDH), the Genetic Algorithm (GA), and

the Probabilistic Neural Network (PNN) to keep the link between software metrics and

maintainability. In GMDH, a polynomial model function has been developed, which can

bring. The predicted value of the output is close to the actual value of the production. It

applies to the link and genetic module in the polynomial term to decide layers. GA

optimization is based on Darwin's evolution theory. Natural selection and genetics are the

basis for searching for the most acceptable solution and a set of software metrics that gives

the best arrangement. It first found the location of software metrics solutions for object-

oriented software maintainability (Malhotra1 & Chug2, 2012). The latest algorithm, based on

a neural network, is PNN; it works on the same principle as the human brain intelligence for

new problem-solving. Neurons can also learn from problems that have already been solved

and use that knowledge to develop new ones.

𝛿1 =
𝜕

𝜕𝑤𝑘
𝑙

1

2
||ℎ𝑦,𝑎(𝑝) − 𝑞||2 = -(𝑞𝑘-𝛼𝑘

𝑙)𝑔′(𝑤𝑘
𝑙) (31)

𝛿𝑚 = ((𝑛𝑙)𝑇𝛿𝑘+1) 𝑔′(𝑤𝑚) (32)

Function 𝑔′ is found by GMDH, does not use actual function (𝑔); instead, it uses

approximation for output (o).It contains input vector V=(𝑣1 , 𝑣2 , 𝑣3, ⋯ , 𝑣𝑛), and it is close to

the actual output, Q(TOC, R1, R2), for multi-input data:

In-Depth Analysis of Various Artificial Intelligence Techniques in Software… 174

𝑜𝑖 = 𝑔(𝑣𝑖1, 𝑣𝑖2 , 𝑣𝑖3 , ⋯ , 𝑣𝑖𝑛) (i =1,2,3,⋯ , 𝑁) (33)

For any input vector V=(𝑣𝑖1 , 𝑣𝑖2, 𝑣𝑖3 , ⋯ , 𝑣𝑖𝑛), GMDH can be trained as:

𝑜𝑖 = 𝑔′(𝑣𝑖1 , 𝑣𝑖2 , 𝑣𝑖3, ⋯ , 𝑣𝑖𝑛) (i =1,2,3,⋯ , 𝑁) (34)

Determination of GMDH, which can minimize the square difference.

∑ [𝑔′(𝑣𝑖1 , 𝑣𝑖2 , 𝑣𝑖3, ⋯ , 𝑣𝑖𝑛) − 𝑜𝑖]
2

→ 𝑚𝑖𝑛𝑁
𝑖=0 (35)

The equation (30) can be resolved as:

o = Y (𝑣𝑖 , 𝑣𝑗) = 𝑏0 + 𝑏1𝑣𝑖 + 𝑏2𝑣𝑗 + 𝑏3𝑣𝑖 2
 +⋯ (36)

3.5 Time Series Analysis: With time, software demand is increasing drastically; almost

every sector, like business, education, and the government, is working on software to

overcome the direction and improve software productivity and excellence; data mining

algorithms are used in SE tasks. Data should be in an expressive form, which can be done

using the pattern-mining domain and enhanced capability of mining algorithms. Practical data

mining algorithms are required to aid in analyzing the massive amounts of SE. Data to

generate the best pattern, mine sequences, graphs, and text. Also, data-mining techniques

include time-series data analysis, which keeps track of specific points in time. As we all know,

data is made every second. From this time, series data mining can generate essential

information for future use. Software trends can be analyzed and developed according to the

recipient's needs. Data plotted against time can generate an excellent approach to testing the

movement. Using time-series data analysis can find the irregularity in the data and forecast

the pattern for future development software. Open-Source Software (OSS) uses statistical

time series analysis to automate modeling and analysis and make predictions about software

quality assurance. How software is tested now makes this more complicated; in the future,

time-series analysis can predict software quality early and improve software productivity. It

can reduce human efforts and involvement by predicting software excellence early.

Impact Analysis of Various AI Techniques SE

We have used various AI techniques to correlate with SE applications in the given manuscript.

In the given Table 3 shows the analysis.

Journal of Information Technology Management, 2023, Vol. 15, Issue 3, 175

Table 3.

AI techniques on SE

AI Techniques Software Engineering

ML
Software defect prediction and software cost prediction can be

made using ML techniques

ANN
Software Efforts Predictions using use case diagrams and software

defects prediction
DNN Automotive Software
CNN Software Requirement Classifications
NLP Textual Data Classifications

Genetic Algorithms Software Cost Estimation
Ant Colony Optimization Software Testing

Group Method of Data Handling (GMDH),

Genetic Algorithms (GA), and Probabilistic

Neural Network (PNN)
Software maintainability

Time Series Analysis
Automate the Modeling, analyze forecast software quality

assurance of Open-Source software

Figure 4.

AI tools in SE

From the above discussions, Table 3 and Figure 4, we can say that AI and its sub-

techniques can be used as a booster, effective, efficient, and time-saving SE methods.

Dataset

The working of the AI-based model purely depends on the datasets. Datasets are the fuel to

test the performance of the models. There are so many types of models that have been

developed to solve various problems. In the manuscript, we talked about software defect

prediction datasets and how they were tested on a model that had already been made. We used

our study's PROMISE software defect dataset repository (Horgan et al., 1994). The KC1,

CM1, JM1, and PC3 datasets represent what we extract data, divided into training and testing

In-Depth Analysis of Various Artificial Intelligence Techniques in Software… 176

datasets used for SDP. Moreover, the datasets we used for our computation present the

following features in Table 4.

Table 4.

PROMISE SDP features details

Feature Name Description

LOC Module total number of line count

Iv(g) (McCabe) complexity design analysis

Ev(g) McCabe complexity

N Module numeral operators

v(g) cyclomatic complexity measurement (McCabe)

D Difficulty Measurement

B Effort's Estimation

L Length of Program

V Volume

I Intelligence Measurement

E Effort measurement

Locomment Software module line of comment

Loblank number of total blank lines in the module

uniq_op number of total unique operators

uniq_opnd number of total unique operand

T Estimator of Time

Branchcount number of total branch in the software module

total_op number of total operators

Total_opnd number of total operators

Locodeandcomment number of total line of code and comments

Defects/Problems defect regarding information, whether it is present or not

The dataset description may include information such as dataset name, number of modules,

and number of defective and non-defective classes, with their percentage shown in Table 5.

Table 5.

PROMISE Software Defect Prediction Dataset Details

Dataset

Name
Total values Non-defective Defective %Non-defective %Defective

CM1 1988 1942 46 97.6 2.4
PC3 1077 943 134 87.5 12.5
KC1 2109 1750 359 82.9 17.0

Experimental Demonstration

Performance Metrics: In this section, we have demonstrated the performance metrics used in

our experiment. The confusion matrix is used to measure the common five evaluation metrics.

Journal of Information Technology Management, 2023, Vol. 15, Issue 3, 177

Table 6.

Confusion Matrix

Accuracy: The number of correct answers given in a classification. In a confusion matrix,

there are two types of solutions. True Positive (TP) (where the defective value has been

identified as defective) and True Negative (TN) (where the defective value has not been

determined as defective) (where the non-defective value is specified as non-defective). The

following formula can be used to calculate accuracy:

Accuracy=((TP)+(TN))/((TP+FN+FP+TN))

Precision: Measure correctly answered defective values to the total predicted defective values

in the given classification. This can be represented as:

Precision=((TP))/((TP)+(FP))

Recall: Measure truly answered defective values, all actual defective values in the

classification. This can be represented as:

Recall=((TP))/((TP)+(FN))

F1-score: Weighted average Precision and Recall. It can be represented as:

F=(2*Precision*Recall)/ (Precision + Recall)

Implementation

We have implemented the given datasets using Python programming and the Spyder

platform on our AI-based model shown below.

Dataset CM1: The CM1 dataset is used in the proposed AI-based model. Figure 5 shows

the confusion matrix.

In-Depth Analysis of Various Artificial Intelligence Techniques in Software… 178

Figure 5.

CM1 Confusion Matrix using AI-based Model

Dataset PC3: The PC3 dataset is used in the proposed AI-based model. Figure 6 shows the

confusion matrix.

Figure 6.

PC3 Confusion Matrix Using AI-Based Model

Dataset KC1: The KC1 dataset is used in the proposed AI-based model. Figure 7 shows the

confusion matrix.

Figure 7.

KC1 Confusion Matrix Using AI-Based Model

Journal of Information Technology Management, 2023, Vol. 15, Issue 3, 179

Results and Discussion

The experimental study of NASA repository datasets CM1, KC1, and PC3 on the proposed

AI-based model shows the following results in Table 7.

Table 7.

Evaluation measures using considered metrics with an AI-based model

Performance of AI-based Model

Evaluation Metrics

Datasets Precision Recall F1-score Accuracy
CM1 88 98 93 87
KC1 91 92 91 85
PC3 89 88 94 88

From the above experimental study, we can make the discussions that AI techniques can

effectively implement in software engineering tasks that can enhance performance and give

promising results.

Future trends

We have seen the many uses of AI-based algorithms in the SE field. But there are a few

doubts in our minds about whether AI will be helpful for SE in the future or not. Will there be

any trend of AI that will be used in SE? From our knowledge, there may be some possible

trends in the future, which we have discussed below.

Automated error-correcting and intelligent software: In the future, companies that make

software will make intelligent AI-based software that can automatically fix mistakes, works

quickly, and is efficient and reliable. Furthermore, governments may use AI-based software in

their systems, such as government offices, educational institutions, national security,

agriculture, and the environment, to combat cybercrime and space-related activities.

AI-based intelligent software will be timely-efficient, working efficacy will be enhanced,

its low maintenance cost and fewer people may run them, and more occasional efforts will be

required from these qualities. It may be possible that the country's economy will increase by

using innovative education with AI-based software in the future, which will enhance the

understanding and intelligence level of the learner concept of intelligent farming, like

autonomous tractors, automatic watering, robotic harvesters, and seeding robots. e.g., Agrobot

is the first robot used for successfully harvesting strawberries and many more; it will fulfill

the need for food of the country's rising population.

Automation in Space-related activities: Data mining and machine learning techniques of AI

are used to collect data from space. In the future, intelligent AI-based software will solve and

draw valuable patterns and information from big data.

Automated security systems: We think stopping cybercrime will be easier if the system

software is safe and based on AI. National security is one of any country's significant

In-Depth Analysis of Various Artificial Intelligence Techniques in Software… 180

challenges and most sensitive issues. If robust and intelligent software is implemented, it will

soon strengthen the country's defense. e.g., the concept of a robotic army with intelligent

systems installed can save the soldier's life, and many more things will be secured.

Conclusion

AI is used in SE in ways like the above literature review and the experimental implementation of an

AI-based model for predicting software bugs. We have shown numerous artificial intelligence

techniques that have made implementation easy and efficient in SE. We have also examined the

datasets used for AI models and our experiments. This manuscript puts some essential applications on

a common platform, like software defect prediction using AI-based classification algorithms. Our in-

depth analysis shows that the development of AI has opened new research domains and challenges in

SE for researchers and scientists to use to solve problems. We conclude that there will be a wide range

of ways that AI-based techniques can be used in SE in the future, with some new and advanced hybrid

algorithms. This will help in understanding and decision-making for future research.

Conflict of interest

The authors declare no potential conflict of interest regarding the publication of this work. In

addition, the ethical issues including plagiarism, informed consent, misconduct, data

fabrication and, or falsification, double publication and, or submission, and redundancy have

been completely witnessed by the authors.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of

this article.

References

Bennett, K. H., & Rajlich, V. T. (2000, May). Software maintenance and evolution: a roadmap. In
Proceedings of the Conference on the Future of Software Engineering (pp. 73-87).

Bibi, S., Tsoumakas, G., Stamelos, I., & Vlahavas, I. P. (2006, March). Software Defect Prediction
Using Regression via Classification. In AICCSA (pp. 330-336).

Briand, L. C. (2008, August). Novel applications of machine learning in software testing. In 2008 The
Eighth International Conference on Quality Software (pp. 3-10). IEEE.

Briand, L. C., Bunse, C., & Daly, J. W. (2001). A controlled experiment for evaluating quality
guidelines on the maintainability of object-oriented designs. IEEE Transactions on Software
Engineering, 27(6), 513-530.

Falcini, F., Lami, G., & Costanza, A. M. (2017). Deep learning in automotive software. IEEE
Software, 34(3), 56-63.

Gharehchopogha, F. S., & Khalifehlou, Z. A. (2012). A new approach in software cost estimation using
regression based classifier. Global Journal on Technology, 2.

Horgan, J. R., London, S., & Lyu, M. R. (1994). Achieving software quality with testing coverage
measures. Computer, 27(9), 60-69.

Jalote, P. (2012). An integrated approach to software engineering. Springer Science & Business Media.

Kim, S., Zhang, H., Wu, R., & Gong, L. (2011, May). Dealing with noise in defect prediction. In 2011
33rd international conference on software engineering (ICSE) (pp. 481-490). IEEE.

Journal of Information Technology Management, 2023, Vol. 15, Issue 3, 181

Kuhn, D. R., Wallace, D. R., & Gallo, A. M. (2004). Software fault interactions and implications for

software testing. IEEE transactions on software engineering, 30(6), 418-421.

Li, H., & Lam, C. P. (2007). Software test data generation using ant colony optimization. International
Journal of Computer and Information Engineering, 1(1), 137-140.

Li, J., He, P., Zhu, J., & Lyu, M. R. (2017, July). Software defect prediction via convolutional neural
network. In 2017 IEEE international conference on software quality, reliability and security
(QRS) (pp. 318-328). IEEE.

Malhotra¹, R., & Chug, A. (2012). Software maintainability prediction using machine learning
algorithms. Software engineering: an international Journal (SeiJ), 2(2).

Mustaqeem, M., & Saqib, M. (2021). Principal component based support vector machine (PC-SVM):
a hybrid technique for software defect detection. Cluster Computing, 24(3), 2581-2595.

Nassif, A. B., Capretz, L. F., & Ho, D. (2012, December). Estimating software effort using an ANN
model based on use case points. In 2012 11th International Conference on machine learning
and applications (Vol. 2, pp. 42-47). IEEE.

Navarro-Almanza, R., Juarez-Ramirez, R., & Licea, G. (2017, October). Towards supporting software
engineering using deep learning: A case of software requirements classification. In 2017 5th
International Conference in Software Engineering Research and Innovation (CONISOFT) (pp.
116-120). IEEE.

Parizi, R. M., & Ghani, A. A. A. (2010, May). Towards Automated Monitoring and Forecasting of
Probabilistic Quality Properties in Open Source Software (OSS): A Striking Hybrid Approach.
In 2010 Eighth ACIS International Conference on Software Engineering Research, Management
and Applications (pp. 329-334). IEEE.

Pressman, R. S. (2010). A practitioner’s approach. Software Engineering, 2, 41-42.

Sadiku, M. N. O., Zhou, Y., & Musa, S. M. (2018). Natural language processing in healthcare.
International Journal of Advanced Research in Computer Science and Software Engineering,
8(5), 39-42.

Saini, D. (2016). Applications of various artificial intelligence techniques in software engineering.
International Journal for Research in Emerging Science and Technology, 3(3), 25-33.

Siddiqui, T., Mustaqeem, M., Athar, S., Khan, N., & Hasan, S. (01 2021). Impact Analysis of Machine
Learning Techniques in Software Engineering. GIS-Zeitschrift Fü Geoinformatik, 8.

Srivastava, P. R., & Baby, K. (2010, December). Automated software testing using metahurestic
technique based on an ant colony optimization. In 2010 international symposium on electronic
system design (pp. 235-240). IEEE.

Strnad, D., & Guid, N. (2010). A fuzzy-genetic decision support system for project team formation.
Applied soft computing, 10(4), 1178-1187.

Yalla, P., & Sharma, N. (2015). Integrating natural language processing and software engineering.
International Journal of Software Engineering and Its Applications, 9(11), 127-136.

Bibliographic information of this paper for citing:

Mustaqeem, Mohd; Siddiqui, Tamanna; Khan, Najeeb Ahmad & Kumar, Deepak (2023). In-Depth

Analysis of Various Artificial Intelligence Techniques in Software Engineering: Experimental Study.

Journal of Information Technology Management, 15 (3), 162-181. https://doi.org/

10.22059/jitm.2023.93632

Copyright © 2023, Mohd Mustaqeem, Tamanna Siddiqui, Najeeb Ahmad Khan and Deepak Kumar

https://doi.org/10.22059/jitm.2023.93632
https://doi.org/10.22059/jitm.2023.93632

