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Abstract 

In the present article, the theory of linear thermoelasticity without energy 

dissipation is addressed from the perspective of the analysis of the spatial 

evolution of harmonic vibrations in time, in the context of a porous 

micropolar media. Some preliminary identities are determined that will lead 

to estimates of the harmonic vibration amplitude, some of these estimates 

being consequences of the distance influence from the disturbed base, 

provided that a certain critical value for the vibration frequency is 

considered. 
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1. Introduction 

Here introduce the paper, and put a nomenclature if necessary, with the same font size as the rest of the paper. 

The paragraphs continue from here and are only separated by headings, subheadings, images and formulae. The 

section headings are arranged by numbers, bold and 10 pt. Here follows further instructions for authors. 

The classical theory of elasticity does not have the possibility of correctly presenting the behaviour of some 

media that possess an internal structure, see [1-4] for example polycrystalline media or media with fibers, studied by 

modern engineering. Media that have voids or notches, which constitute stress concentrations, have an apparent 

strength inversely proportional to the particle size, the greater strength being associated with the smaller-sized 

particles, exemplified by very thin beames and fibres, for which the bending and torsional forces are greater. 

Examples of works that address various aspects of these media are [5-14]. 
The micropolar elasticity is the one suitable for studying these media, for which the classical theory of elasticity 

is inappropriate, because it takes into account their granularity, see [15-17]. 
The theory of media with voids has applications in various fields such as the petroleum industry, the 

pharmaceutical industry, biology and geology. 
The starting point of these theories is related to Goodman and Cowin who in [18] introduced an additional degree 

of kinematic freedom, with the aim of developing the theory of porous fluid media.  

The theory of elastic media with voids was extended, in the linear case, by Cowin and Nunziato in [19], where 

the uniqueness and stability of the weak solution is demonstrated, with the mention that the theory is, in fact, the 

linear version of the  
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nonlinear theory of porous solids, whose behaviour was studied by then in [20]. A study of thermoelastic media, 

considering the interaction between thermal and mechanical domains, is developed by Ieșan in [21] and extended for 

porous media in [22]. 
The theory of thermoelasticity without energy dissipation, whose promoters are Green and Naghdi in [23, 24] is 

characterized by the appearance of the notion of „thermal displacement”, directly associated with the common 

temperature and uses the principle introduced by these authors in [25], with reference to a general balance of the 

entropy, this theory being developed in the circumstances of heat flow in a rigid solid, with specifications for finite 

speed of the thermal waves propagation. 
The linear theory of thermoelasticity without energy dissipation has been the subject of a large number of works, 

as for example [26, 27] where Chandrasekharaiah formulates, in the context of this theory, the problem with initial 

and boundary values for isotropic and homogeneous media, [28] where Ciarletta, based on the results obtained by 

Green and Naghdi, studies the effect of a Galerkin- type solution, determined within a theory of micropolar 

thermoelasticity, which allows the propagation of thermal waves at finite speed, as well as [29], where Nappa 

establishes a dynamic principle of Sain-Venant regarding the bounded and the unbounded media respectively, 

obtaining a uniqueness theorem for unbounded bodies. 
Also, in the context of the same linear theory, Ieșan determines in [30] the fundamental solutions, as well as the 

continuous dependence of the results, Chiriță establishes in [31] a reciprocity theorem for an anisotropic and 

inhomogeneous media, with a symmetry center at each point, offering an alternative characterization of the mixed 

problem solution, with initial and boundary data, and Marin and Băleanu study in [32] the vibrations in the 

thermoelasticity of micropolar media, without energy dissipation. Examples of papers addressing the 

thermoelasticity without dissipation of energy, also called the type II thermoelasticity, which allows the finite speed 

propagation of the thermal waves are [30, 33, 34], as well as examples of works that approach the study of vibrations 

in the context of this type of thermoelasticity, such as [14, 35]. 
In [36-39], the authors present results regarding the magneto-thermoelastic media. 
The structure of this article consists of the formulation, first of all, of the mixed initial boundary value problem, 

in the case of the porous micropolar media thermoelasticity in the absence of energy dissipation, after which some 

auxiliary differential identities are demonstrated, these relations constituting the foundation for determining the main 

result, that of obtaining estimates of the amplitude of harmonic vibration, including those estimates that are 

consequent of the influence of the distance from the perturbed base, considering a critical value for the vibration 

frequency. 

2. Notations and fundamental equations 

It is considered  an open domain from three - dimensional Euclidean space , to which corresponds, in the 

reference configuration, a thermoelastic, micropolar, porous, anisotropic and homogeneous media, having the 

closure and the boundary denoted by , a regular region, respectively , a smooth surface. 

Using a rectangular, fixed Cartesian system of axes , each point of the domain  is characterized by 

three orthogonal coordinates, noting that it uses the notation  for  and  for time. In the following, the 

functions will be regarded as functions of , defined on the cylinder , where . Both the 

spatial and the time variable arguments will be omitted when the possibility of confusion is excluded. Also, the well-

known Einstein summation convention is used, applicable if an index is repeated within a monomial, and the values 

that the Greek and Latin indices will take are  respectively 1,2,3. 

The partial derivative of a function with respect to time will be denoted by a dot above the function, i.e. , 

and an index preceded by a comma will represent the partial derivative with respect to the corresponding Cartesian 

coordinate, i.e. . 

The independent variables which characterize a porous micropolar thermoelastic media, see 

Error! Reference source not found., are the displacement vector , the microrotation vector 

, the volume function  corresponding to the pores and , the variation of the media temperature 

compared to the absolute temperature , which it has in the reference configuration:  
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Following the proposal offered by Green and Naghdi in [23], we will define, with the aid of temperature, the 

thermal displacement  and the temperature gradient  in the form of the following expressions  

  (1) 

Obviously, the relations below are fulfilled  

  (2) 

if . 

Representing the strain kinematic characteristics, the tensors , as well as the vector  are expressed by the 

geometric equations  

  (3) 

where  is the Levi-Civita symbol. 

The equations that govern the theory of porous micropolar media thermoelasticity, whithout energy dissipation, 

are: 
- the equations of motion  

  (4) 

 

- the equilibrated forces balance 

 

  (5) 

 

- the energy equation 

 

  (6) 

 

The notations used in the previous equations are presented in the following: 
  are the components of the stress tensor, respectively of the couple stress tensor, 

  are the components of the body force vector, respectively, the components of the couple body force, 

  is the mass density in the reference configuration, 

  are the components of the equilibrated stress vector, 

  is the extrinsic equilibrated body force, related to the pores, 
  are the microinertia coefficients, 

  is the specific entropy, 

  is the heat supply per unit mass, 
  are the components of the heat flux vector, 

  is the inertia coefficient. 
Considering that the reference media has a symmetry center at each point, being non-isotropic, the free energy 

, through which the constitutive equations are deduced, is given in the form  
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  (7) 

 representing the thermal displacement related to the variation of temperature, the connection between  and  

being represented by the relation  

  (8) 

At the same time, the coefficients that appear in the form of the free energy ((7)) represent the media 

characteristics and satisfy the following symmetry relations  

  (9) 

being prescribed functions of class . 

The constitutive equations, obtained by means of the free energy ((6)), for  are  

  (10) 

the system of equations being complete if the heat flow law is added  

  (11) 

Introducing the constitutive equations ((10)) and the geometric equations ((3)) into the motion equations ((4)), 

the equilibrated forces balance ((5)) and the energy equation ((6)) lead to a system of equations related to the 

displacements , the microrotations , the volum fraction variation  and the thermal displacement , namely  

  (12) 

for any  
 

3. Preliminary results 

Considering a cross section  of a prismatic cylinder and the section boundary, denoted by , is presumed to 

be continuously differetiable. The Cartesian system of orthogonal axes is chosen so that its origin is located at the 

center of the cylinder base and the positive side of the  axis is conducted along the cylinder. 
The length of the cylinder being denoted by  its lateral boundary is  The cylinder content is an 

anisotropic and homogeneous micropolar media with voids. At the same time, the cylinder is load-free on the lateral 

surface, so the body force, the couple body force and the flow rate of external heat supply are zero, as well as the 

displacements, microrotations, the volume fraction variation and the thermal displacement. It is mentioned that on 

the cylinder base surface the displacements, the microrotations, the volume fraction variation, as well as the thermal 

displacement are presumed to be harmonic in time. In this context, along with the system of equations ((12)), the 

following boundary conditions are added for the lateral surface  

  (13) 

respectively the following boundary conditions for the base  
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  (14) 

where  and  are smooth, prescribed functions,  is the complex unit and 

 is a positive prescribed constant. 
The harmonic vibrations in time are generated by the loads in the interior of the cylinder, their form being given 

by  

  (15) 

The amplitude  of the vibrations satisfies the following system of differential equations:  

  (16) 

 

The boundary conditions of the lateral surface ((13)) take the form  

  (17) 

and the boundary conditions for the base become  

  (18) 

 

In the context of a finite cylinder, the boundary conditions for the upper cylinder base  are prescribed. 

Regarding an imposed oscillation, the spatial behaviour of the amplitude was studied in [28, 40] as long as the 

disturbing frequency is lower than a certain critical frequency. The principal purpose of this article is to approximate 

the evolution of the amplitude in relation to the axial distance from the disturbed base, and in the following, using 

the procedure presented in [32] the demonstration of some estimates on a solution of the system of differential 

equations ((16)) is presented, with the boundary conditions for the lateral surface ((17)) and the boundary conditions 

for the base ((18)). In what follows, the notation  

  (19) 

will be used. 
In the theorem presented below, four identities will be determined that will constitute the foundation for 

obtaining the principal result.  
Theorem 1.  If  is a solution of the boundary value problem represented by the equations ((16))-

((18)), then the following equalities are fulfilled: 
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  (20) 

  

  

  

 

 

  (21) 

  (22) 

  (23) 

where  is the complex conjugate of .  

 

Proof. By multiplying the relations ((16)) ,((16))  and ((16)))  with , respectively  as well as the 

conjugates of these relations with  and , and then, by adding the six relations obtained, we deduce the 

equality:  

  (24) 
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The previous relation can be rewritten in the following form  

  

  

  

  (25) 

  

  

 Integrating the previous equality (25) over  and using the lateral surface boundary conditions  (17), yields 

the equality (20). 
To prove the relation ((21)), the same relations are considered, i.e. ((16)) , ((16))  and ((16)) , with the help of 

which the next equality is reached 

 

  (26) 

The previous relation ((26)) cam also be written as follows  

  

  

  (27) 

  

  

By integrating the previous equality (27) on  and by applying the boundary conditions ((17)) related to the 

lateral surface, the equality ((21)) is deduced. 

The addition of the relations obtained by multiplying the equation ((16))  by , as well as its conjugate by , 

lead to the following equality  

  (28) 

 equality that can be rewritten in the form  

  (29) 

 Integrating the relations ((29)) over  and using the boundary conditions ((17)) yields the equality ((22)) To 

demonstrate the last relation ((23)), the same equation ((16))  is used, obtaining the equality  
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  (30) 

 which can be presented in the form below  

  (31) 

 Integrating, on , the relation above ((31)), and taking into account the boundary conditions ((17)), the 

relation ((23)) is deduced, which concludes the  proof of the  Theorem 1, this being complete. □ 

 

The theorem presented in the following is referring equally to the demonstration of some auxiliary identities, 

necessary to obtain the main result.  
Theorem 2. If  is a solution of the boundary value problem expressed through the equations ((16)

)–((18)), then the following equalities are satisfied:  

  

  

  

  

  

  

  

  (32) 

  

  

  

  

  

  

  

  (33) 
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Proof. Using the equation ((16)) –((16)) , the following equality holds  

  (34) 

The previous relation can also be written in the form  

  

  

  

  

  

  

  (35) 

  

  

  

  

  

 

The above equality (35) leads to the form  

  

  

  

  

  

  

  

  (36) 
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By integrating the previous equality (36) over  and taking into consideration the boundary conditions ((17)

), the next identity is obtained:  

  

  

  

  

  

  

  

  

  

  (37) 

  

  

  

  

  

  

  

  

 

Considering the boundary conditions ((17)), corresponding to the lateral surface, it is deduced that  

  (38) 

On the curve , the following relation is satisfied  

  (39) 

where  represent the components of the unit tangent vector to . Under the influence of the conditions ((17)), 

it is deduced that  on the curve , so the following relations are obtained  
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  (40) 

and  

  (41) 

Using the equations ((38)),((40)) and ((41)), the last integral of the equality (38) becomes  

  (42) 

For the other integrals of this type from the relation (38), the next equalities are obtained  

  

  

  

  (43) 

  

  

  

Replacing the relations ((42)) and (43) in the equality (37) leads to obtaining the first equation of the   

Theorem 2, denoted by (32). 
In order to demonstrate the relation ((33)), we use the equality ((16))  and deduce the following relation  

  (44) 

To above equality can also be written in the form  

  (45) 

relation that can be rewritten as follows  

 (46)  

The previous equality (Error! Reference source not found.) is integrated over  and the boundary 

conditions ((17)) are used, which leads to  
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  (46) 

Using the boundary conditions ((17)) in a way similar to the one used to demonstrate the relation, it follows  

  (47) 

It is observed that the equality ((46)) implies the equality ((33)), which means that the proof of the  Theorem 2 is 

complete. □ 

 

4. Main results 

The object of the proof for the theorem below is constituted by the conservation laws, which will lead to 

obtaining „a priori” estimates for a solution of the mixed initial boundary value problem in our context. 

 

Theorem 3. If  is a solution of the boundary value problem consisting of the equation ((16))–((18)

), the following two conservation laws take place  

  (48) 

 

  

  

  

  (49) 

  

  

  

 

Proof. To demonstrate the equality ((48)), the relations ((16)) , ((16))  and ((16))  are used, through which the 

next equality is obtained:  
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  (50) 

 The previous relation leads to  

  (51) 

 Integrating the above equality over  and using the boundary conditions ((17)), we get  

  (52) 

 By using the equation ((16)) , the following equality remains fulfilled:  

  (53) 

 The previous relation ((53)) can also be written in the form below  

  (54) 

 If the relation ((54)) is integrated over  and the conditions ((17)) are used, the next equality is obtained:  

   (55) 

By means of the relations ((52)) and ((55)), the equality ((48)) is reached, and through the equalities ((21) and 

((23)) the conservation law (50) is determined, this completes the proof of Theorem 3, which is now concluded.  
The result presented in the following represents the first estimate that characterizes the solution spatial 
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behaviour. □ 

Theorem 4. If  is a solution of the boundary value problem represented by the equations ((16))–

((18)), the following equality is satisfied:  

  

  

  

  

  (56) 

  

  

  

  

  

Proof. The use of the equations (20) and ((22)) leads to the immediate obtaining of the relation (57). □ 

 

In what follows, a theorem that establishes another estimate will be presented.  
Theorem 5. If  is a solution of the boundary value problem consisting of the equations ((16))–

((18)), then the next equality is fulfilled:  

  

  

  

  

  

  

  

  (57) 
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Proof. The equality (58) is obtained by using the results represented by equalities (32) and (33) of the  Theorem 

2, together with the equation (57) of the  Theorem 4. 
The relation (58) will constitute the foundation for deducing the conclusions regarding the spatial behaviour of 

the amplitude , and for accuracy, it will be assumed that the micropolar thermoelasticity tensors 

satisfy the usual hypotheses of continuum mechanics, namely, they satisfy the strong ellipticity conditions:  

  (58) 

 for all non-null vectors , and the specific heat , the coefficients  and the 

components of the conductivity tensor  fulfill the conditions below  

  (59) 

 for all non-null vectors  Using the relation ((58)), the following deduction are evident  

  (60) 

 for all non-null vectors  The curve  being assumed to be regular, it follows that there exists 

 such that . 

The following inequalities will be satisfied:  

  (61) 

 where  

  (62) 

 At the same time, the inequalities related to the conductivity tensor are fulfilled, namely:  

  (63) 

 where  is defined by the relation ((62))  and  

  (64) 

 Next, enter the quantities  and  as follows  
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  (65) 

   (66) 

   (67) 

   (68) 

 It is assumed that  

  (69) 

   (70) 

 where  

  (71) 

   (72) 

For expression of  represented by the relation (71), the maximum is determined for 

 and ,  being the usual Sobolev space, thus determining a critical value 

for the vibration frequency, presented in the following  

  (73) 

To estimate the spatial behaviour of the amplitude , the relation (58),(61),(63) and (69) are used, 

obtaining the next inequality:  

  

  

  

  

  

  

  (74) 
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 The preceding relation (75) represents an estimate of the spatial behaviour of the amplitude , 

which leads to the conclusion that the proof of Theorem 5 is complete. □ 

5. Conclusions 

The study of the spatial evolution of the harmonic in time vibrations, associated with porous micropolar media, 

is carried out, throughout this article, in a special way from the classic Saint-Venant type estimates, being based 

only on the conditions of strong ellipticity of the thermoelastic coefficients. The first two theorems lead to the 

determination of some preliminary identities, which will constitute the basis for obtaining the main results, 

consisting of estimates of the harmonic vibrations amplitude, including those derived from the influence of the 

distance from the disturbed base, taking into account a critical value of the vibration frequency. 
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