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Abstract 
Well logging data shows the change of physical properties of rocks and fluids in lithology units with depth. 

Well logging is one of the main parts of natural resources exploration. But in some cases, due to the lack of 

geophysical equipment or due to high exploration costs, it is not possible to record some geophysical logs. In 

this paper, electromagnetic log predicted using electrical logs for the first time. In such cases, estimating the 

desired log using other geophysical logs is a suitable solution. For the estimation of geophysical logs, 

machine learning algorithms are used in most cases. In this research, a new strategy developed for processing 

and preparation of geophysical logs. This strategy consists of three parts: data smoothing, correlation 

intensifier, and MLR (Multiple Linear Regression) or ANN (Artificial Neural Network). The purpose of the 

data smoothing and correlation intensifier section is to remove outliers and identify the pattern of main 

changes in the log data, and as a result, the accuracy in estimating the target log increases. In this article, the 

determination of the electromagnetic log has been done using electric logs. The well logging data have been 

recorded in Southern California and the Central Valley. A total of six wells have been selected, four wells for 

MLR and ANN training and two wells for testing. By applying data smoothing and correlation intensifier to 

these data, the correlation between electrical and electromagnetic data increased significantly and caused the 

estimation accuracy of electromagnetic log to be above 95%. The use of this strategy is not limited to the 

estimation of electromagnetic log and can be used in all well logging data. 
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1. Introduction 

Groundwater is an essential water resource 

for humanity. 50% of the world's population's 

drinking water and 43% of irrigation water 

are entirely or in part supplied by 

groundwater (Köhn et al., 2002). Well 

logging is the essential and routine part of 

groundwater (Köhn et al., 2002; Folch et al., 

2020; Mosaad & Basheer, 2020; Aftab et al., 

2023a), oil (Qin et al., 2020; Aftab et al., 

2023b; Leisi & Saberi, 2022), gas (Senosy et 

al., 2020; Prasad, 2018), geothermal 

(Fiordelisi et al., 2020), and ore deposits 

explorations (Tixier & Alger, 1970; Pant & 

Gupta, 1998), which our new society 

seriously needs water and hydrocarbon 

sources. The main application of well 

logging is to measure the petrophysical 

parameters in the subsurface earth formations 

through a drilled borehole to characterize the 

subsurface physical properties of fluids and 

rocks (Hsieh et al., 2005). Usually, our 

studied geological area for detection of the 

aquifer, hydrocarbon specifically minerals 

complex fractured media in which the fluid is 

able to flow through the porous media (Revil 

et al., 2015). Undoubtedly, for creating a 

subsurface model, the geological 

environment needs to be investigated in 

detail and properly quantified (Rasouli & 

Masoudi, 2020). Well logging measurement 

techniques include resistivity, acoustic, 

nuclear, fluid sampling, magnetic resonance, 

and coring (Donaldson, 1989; Liu, 2017; 

Asfahani, 2005).  

EM well logging tool is one of the well 

logging classes used for applications in 

groundwater explorations. EM logs have 

been designed to maximize vertical 

resolution and depth of geophysical 

investigation and to minimize the effect of 

the borehole fluids. The EM logs record the 

electrical resistivity (conductivity, vice versa) 

of the rocks and fluids surrounding the 

borehole. Electrical resistivity and 
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conductivity are affected by clay content, 

porosity, and permeability of the rocks and 

by the dissolved-solids concentration of the 

water within the rocks. The EM logging data 

depend on structure resistivity and 

geometrical parameters such as invasion 

zones and the geological layer boundaries 

(Kaufman & Itskovich, 2017; Zhang et al., 

2000). 

Geophysical techniques have been used 

extensively for groundwater exploration, but 

EM methods present a real opportunity for 

advanced perception of hydrogeological 

conditions. Ground Penetrating Radar (GPR) 

method was applied successfully for field 

applications. However, the GPR method has 

limitations for clay minerals, conductive 

structures, and soil. EM is the non-invasive 

geophysical method that measures the bulk 

electrical conductivity of the geological 

structure and soils. Bulk electrical 

conductivity is affected by clay minerals, 

salinity, and temperature of the area 

(Robinson et al., 2012). Thus, the EM logs 

are sensitive to mentioned parameters, which 

help for accurate interpretation of the 

subsurface. Due to the correlation between 

water salinity and electrical conductivity, 

electrical methods such as the EM method 

and Electrical Resistivity Tomography (ERT) 

are suitable tools to measure water salinity. 

Also, EM logs are used to monitor changing 

chloride concentration of groundwater in the 

San Joaquin sedimentary basin (Folch et al., 

2020; Metzger & Izbicki, 2013). 

EM investigations are more sensitive when 

aquifer conductivity is high and low sensitive 

when aquifer conductivity is low; therefore, 

EM is the best tool to distinguish the  

saline and freshwater, in which a big 

conductivity contrast exists. One of the first 

field applications of EM logging in the upper 

Florida aquifer was by Stewart and 

Hermeston in 1990, who showed that EM 

could be used to pore fluid conductivity 

estimation and determine seawater 

penetration into Karstic aquifers. Most of the 

published scientific papers about EM logging 

involve monitoring the changes in 

groundwater quality resulting from the 

seawater intrusion into freshwater aquifers 

(Metzger & Izbicki, 2013). 

Each of the electromagnetic and conductivity 

(resistivity vice versa) logs have unique 

characteristics that make each of these logs 

useful in a special situation. Electromagnetic 

logs are sensitive to conductivity, which 

perform accurately in formations with low to 

medium electrical resistance. Conductivity 

logs are sensitive to non-conductive materials 

and perform better in formations with 

medium to high electrical resistance. 

Electromagnetic logs detect more conductive 

zones, while conductivity logs are mostly 

sensitive to resistive zones. Therefore, when 

resistivity of the invaded zone is greater than 

resistivity of the uninvaded formation, 

electromagnetic log data preferred for 

determination of uninvaded zone resistivity 

because conductivity logs dominantly 

affected by invaded formation. In the case, 

the resistivity of the invaded zone is less than 

resistivity of uninvaded zone, the 

conductivity logs preferred for determination 

of uninvaded zone resistivity. The 

electromagnetic logs recommended for wells 

drilled with moderately conductive or non-

conductive mud and for air-drilled or empty 

wells. However, conductivity logs suitable 

for wells drilled with highly conductive mud 

(Novo et al., 2008; Xing et al., 2008). 

The innovation of this research has two 

aspects. The first innovation is the estimation 

of the electromagnetic log using electric logs, 

which is the first time to propose the 

estimation of the electromagnetic log. And 

the second innovation is processing and 

preparation of well logging to increase the 

target log estimation accuracy. This approach 

consists of three parts. The first part consists 

of RLOESS (Robust Locally Estimating 

Scatterplot Smoothing), which is intended to 

remove outliers and smooth the data. The 

second part of this system consists of CI 

(Correlation Intensifier), in this step, it is 

tried to increase input logs correlation with 

the target by combining the input logs. The 

third part of this strategy consists of an MLR 

(Multiple Linear Regression) or an ANN 

(Artificial Neural Network). Consecutive use 

of these three parts causes accurate 

estimation of geophysical logs, which will be 

given in the results of this article. 

 

2. Site geology 

Of all the fifty states of the United States, 

California's geology and history are the most 

amazing and interesting parts. The rocks of 

California date back 1.8 billion years and 

erupted volcanoes just a century ago. The 
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geology of California is highly complicated, 

with numerous expansive mountains, active 

tectonic and significant faults, rich mineral 

deposits and hydrocarbon resources, and a 

history of both ancient and comparatively 

recent intense geological activity. One of 

California's distinct geological features is its 

Central Valley, a long flat trough-shaped 

depression between the sierras and the Coast 

Ranges. However, the term Central Valley is 

usually used to the topographic feature but 

the term Great Valley is used to describe the 

geological basin (including the surface and 

bedrock) that lines beneath the Central 

Valley. The average rainfall (snow and rain) 

for California is quite low, only 58 cm falling 

per year. Northern parts of California are 

typically watered (more than 240 cm) and 

mountains, particularly the Sierras get 

significant snowfall and rainfall. In contrast, 

the south part of California is semi-desert or 

full desert, which is not enough water to 

support its people and agriculture. Therefore, 

groundwater exploration in California is an 

essential issue (Prothero, 2017). The location 

of the used wells and the geology map of 

California state illustrated in Figure 1. 

The Great Valley of California consists of 

heterogeneous materials, which are filled 

deposits. Gravel and sand are constructing 

the Great Valley aquifer systems. Page 

(1983) studied the texture and grain size of 

the Great Valley sedimentary deposits using 

685 geophysical logs. 

Great Valley is one of the prominent 

geological units and sedimentary basins in 

the United States and the world. The Great 

Valley, is usually divided into two significant 

sections: the first section known as 

Sacramento Valley (northern part) and the 

second section known as San Joaquin Valley 

(southern part). Hundreds of scientific studies 

have been performed about the geology, 

geochemistry and hydrology of the Great 

Valley. Mendenhall et al. (1916) and Bryan 

(1940) have reported valuable information 

about the Great Valley geology and 

hydrology. Clay minerals of the San Joaquin 

basin studied in detail by Davis et al. (1959). 

Another comprehensive study has been 

reported by Olmsted and Davis (1961) 

concerning the Sacramento basin geology, 

hydrology and geological history. Also, 

many other reports have been written with 

the aim of Great Valley detail recognition. 

Great Valley is a sedimentary basin that is 

filled by sediments between the Sierra 

Nevada Mountains and Coast Ranges. These 

sediments include marine deposits, deltaic, 

and continental origin (Prothero, 2017). The 

thickness of the Great Valley sediments 

varying from 0 in Sierra Nevada to 16 km in 

middle and western edge of the basin 

(Wentworth et al., 1995). The average 

thickness of the continental sediments is 730 

m, but the thickness of these sediments in the 

south part of the Great Valley is 2750 m 

(Planert & Williams, 1995). Note that, the 

continental sediments are gravel and sand 

which are blended and interbedded with silt 

and clay minerals. Fine-grained sediments 

are mostly slit and clays that consisting 50% 

of valley sediments (Planert & Williams, 

1995).
 

 
                                           (a)                                                                     (b) 
Figure 1. (a) Location map of the wells. Blind well-1 and blind well-2 are test wells. (b) The simplified geological map 

of California state (Prothero, 2017). 
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3. Methodology 

3-1. Motivation 

Electric and electromagnetic systems are 

different in the way they generate and 

transmit signals. Electric systems primarily 

use electric currents and fields to transmit 

signals, while electromagnetic systems use 

both electric and magnetic fields to transmit 

signals. While electric and electromagnetic 

systems have differences in the way they 

generate and transmit signals, they also share 

similarities. Both systems involve the 

movement of electrons or ions within fluid 

(water), and both can be used to power 

devices and transmit information. 

Understanding both electric and 

electromagnetic measurements can help in 

optimizing the aquifer detection process. 

Because electric and electromagnetic 

methods measure the conductivity or 

resistance of subsurface formations, for this 

reason, the estimation of electromagnetic 

logs using electric logs is possible and can 

even be considered the best option. 

Estimating the electromagnetic log can be a 

fundamental step to reduce groundwater 

exploration costs and expand the study of 

groundwater in sedimentary basins. 

 

3-2. RLOESS 

RLOESS is a robust well logging data 

smoothing algorithm which was presented 

recently by Aftab and Hamidzadeh 

Moghadam (2022). This algorithm is used to 

remove outliers and to weight the well 

logging data. RLOESS is powerful non-

parametric regression model that combine 

multiple regression patterns in a KNN (K 

Nearest Neighbor). The behavior of this 

algorithm is such that it gives more weight to 

the data that is close to the mean of the data 

in each section, and the weight of the data 

changes as it moves away from the average. 

In addition, this algorithm considers zero 

weight to data that are outside six standard 

deviations. The use of this algorithm causes 

the removal of outlier data, and as a result, 

the correlation between the input data and the 

target increases, which will be presented in 

the results section of this article (Figure 2). 

For more information about this algorithm, 

refer to Aftab and Hamidzadeh Moghadam 

(2022). 

 

 

3-3. CI 
CI is the second stage of the well logging 

data preparation. In this step, an input log 

that has the highest correlation with the target 

log should be selected and added to all the 

input logs to create combined logs (new 

inputs for MLR or ANN). This will increase 

the correlation of the input logs with the 

target log significantly. The main aim of this 

step is combining logs to increase correlation 

of new inputs with target log (Figure 2). 

 

3-4. Linear Regression 

In machine learning and statistics, linear 

regression is a linear method for modeling 

the relationship between the response and 

one or more variables (Leisi et al., 2022; 

Kheirollahi et al., 2023). The case of one 

variable is known as simple linear regression, 

and the case of two or more variables is 

called multiple linear regressions. Regression 

is the central part of the statistical modeling 

and machine learning. From a machine 

learning point of view, we are not concerned 

about the model fitting performance, but 

rather care about how well it predicts new 

observations. For minimizing fitting error, 

OLS (Ordinary Least Square) method has 

been used (Johansson, 2018). Out of six well 

logging data, four wells are considered for 

training the model (70% for train, 15% for 

validation, and 15% test) and two wells for 

predicting (blind wells) EM log. Note that the 

performance of a machine learning algorithm 

depends on data. Data conditioning before 

feeding to the algorithm is a significant issue, 

in which the accuracy of the results is highly 

affected by data. Outliers are observations 

that are significantly different from other data 

points. Even the best machine learning 

algorithms will underperform if outliers are 

not handled in data. Outliers can adversely 

affect the training process of a machine 

learning algorithm, resulting in a loss of 

accuracy (Figure 2). 

 

3-5. Artificial Neural Network (ANN)  

Used ANN in this research involves an input 

layer, one middle layer (hidden layer), and an 

output layer, that middle layer connects the 

input layer to the output layer. Hidden layer 

includes 10 neurons and sign function used 

as activation function. Levenberg–Marquardt  

 

 



A New Approach for Electromagnetic Log Prediction Using …/ Aftab et al.                            61 

 

algorithm is used to train ANN system. The 

number of hidden layers depends on the 

problem's complexity and nature. Like linear 

regression, four wells were considered for 

training the ANN (70% train, 15% validation, 

15% test), and two wells as blind wells. Data 

conditioning is performed before feeding 

data to ANN (Figure 2). 

 

4. Results and Discussion 

As mentioned, the well logging data was 

selected from California, United States. Out 

of six existing wells, we have only shown 

well-1(Figure 3). The well-1 data is Kern 

County data in the south part of California. 

The county's economy highly depends on the 

agriculture and the petroleum industry. One 

of California's most significant geological 

features is its Central Valley, a long flat 

trough-shaped depression between the sierras 

and the Coast Ranges. The Conductivity 

16N, conductivity 64N, and lateral 

conductivity logs are information, and the 

EM log is the unknown geophysical log. 
 

 
Figure 2. A brief infographic of strategy used in this paper consists of RLOESS, CI, and MLR or ANN. The inputs are 

geophysical logs. 
 

 
                                              (a)                        (b)                      (c)                      (d) 

Figure 3. The well-1 (a) conductivity 16N, (b) conductivity 64N, (c) conductivity, (d) EM (Target log). 
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The correlation between the input logs and 

the target log is given in Table 1. In this 

table, the correlation between the raw data, 

the correlation after RLOESS, and the 

correlation after CI are given. From the 

results of Table 1, it is clear that RLOESS 

and CI have a significant effect on the 

correlation between the input logs and the 

target log, and will increase the accuracy of 

the estimation using MLR and ANN. For this 

reason, in Table 1, the correlation between 

the conductivity logs and the electromagnetic 

log is given. Note, due to the type of lateral 

conductivity data recording, RLOESS and CI 

does not have much effect on this data. 

The training results of the MLR and ANN 

after RLOESS and CI procedures for train 

wells are illustrated in Figure 4. The training 

results of the MLR and ANN show that the 

ANN has better performance in comparison 

with MLR. However, the performance of the 

MLR is acceptable. It seems that, there is a 

reliable relationship between combined 

electrical logs with electromagnetic logs, the 

training results of which are satisfactory. The 

test results of the MLR and ANN for blind 

well 1 and 2 is illustrated in Figures 5 and 6, 

respectively. The results show that the ANN 

performance is better than MLR in predicting 

test wells. Figure 7 shows the comparison of 

the MLR and ANN predicted 

electromagnetic log with actual 

electromagnetic logs in blind well 1 and 2. 

The performance of this approach in  

 

estimating the electromagnetic log is 

acceptable. Preparation and processing of the 

well logging data before feeding to MLR and 

ANN is the main reason of high accuracy 

estimation. In the blind well 1, the geology of 

the area is not so complex, but in the blind 

well 2, the geology of the area is complex. 

Note that, the distance of the wells used in 

this research is far enough from each other. 

Using MLR, the RMSE (Root Mean Square 

Error) in estimating the electromagnetic log 

in blind well-1 and blind well-2 is 0.33 and 

2.68, respectively. In the case of the ANN, 

the estimating error for blind well-1 and 2 is 

0.17 and 1.76, respectively. However, the 

relationship established in MLR and ANN 

has worked acceptable in blind wells that are 

geologically different from each other. The 

MLR relationship for estimating 

electromagnetic log using electrical logs is as 

follows: 
 

EM = −0.0134 + 0.2295(C1 + C3) +
0.1012(C2 + C3) + 0.1623(C3)               (1) 
 

where C1 is conductivity16N, C2 is 

conductivity 64N, and C3 is lateral 

conductivity. 

The estimation results of MLR and ANN for 

raw data and for smoothed data (input logs 

just smoothed with RLOESS) are given in 

Table 2. Comparison of Table 2 results with 

Figure 7 results shows that the significant 

effect of data processing on estimation 

results.

 
Table 1. Comparing the correlation of raw data with processed data after RLOESS and CI. 

Raw data correlation 

 Conductivity16N Conductivity64N Conductivity (Lateral) 

EM 0.8601 0.6728 0.9310 

Correlation of data after RLOESS 

 Conductivity16N Conductivity64N Conductivity (Lateral) 

EM 0.8904 0.7869 0.9348 

Correlation of data after RLOESS and CI 

 
Conductivity16N+Conductivity 

(Lateral) 

Conductivity64N+Conductivity 

(Lateral) 
Conductivity (Lateral) 

EM 0.9428 0.9229 0.9348 
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Table 2. The correlation between actual and estimated electromagnetic log for raw and smoothed data. The RMSE for 

each case is given in the table. 

MLR (for raw data) MLR (after RLOESS) 

 Blind well-1 Blind well-2 Blind well-1 Blind well-2 

Correlation 0.8924 0.8712 0.9532 0.9261 

RMSE 10.3% 12.15% 4.7% 7.4% 

ANN (for raw data) ANN (after RLOESS) 

 Blind well-1 Blind well-2 Blind well-1 Blind well-2 

Correlation 0.8911 0.8865 0.9592 0.9374 

RMSE 10.1% 11.45% 4.1% 6.3% 

 

  
(a) (b) 

Figure 4. (a) Training result for MLR after RLOESS and CI processes in test wells, (b) Training results for ANN after 

RLOESS and CI processes in test wells. 

 

  
(a) (b) 

Figure 5. (a) The MLR performance in predicting electromagnetic log in blind well 1, (b) The ANN performance in 

predicting electromagnetic log in blind well 1. 
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(a) (b) 

Figure 6. (a) The MLR performance in predicting electromagnetic log in blind well 2, (b) The ANN performance in 

predicting electromagnetic log in blind well 2. 

 

 
                       (a)                                    (b)                                      (c)                                     (d) 

Figure 7. (a) and (b) the MLR results for blind well 1 and 2. (c) and (d) ANN results for blind well 1 and 2. 

 
Regarding the errors and accuracy of the 

estimates obtained in this research, it should 

be noted that the quality of the estimated EM 

log depends on the quality of the electrical 

logs. If the electrical logs are measured with 

good quality and accuracy, the accuracy of 

the estimated log will also be good. 

Geological and lithological conditions also 

affect the accuracy of the results. For 

example, the presence of clay minerals in 

aquifers reduces porosity and permeability, 

which causes electrical conductivity to 

decrease. On the other hand, the presence of 

clay minerals increases electrical 

conductivity due to their mineralogical 

nature. Therefore, in some unexpected 

conditions, very high accuracy of 

electromagnetic log by-estimation may not 

be achieved. 

For realization of geophysical logs 

connection with geological parameters, the 

significant reports about Great Valley have 

been studied below and then the relationship 

of geophysical logs with geological aspects 

introduced. 

Texture change of sediments affect the 

different geophysical logs. The electrical logs 

changing can reflect the changing from fine-
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grain to coarse grain zone or transition from 

glacial to interglacial condition. Studies 

showed that the various factors affect the 

electrical measurements of sedimentary 

layers, including grain size of sediments, the 

percentage of ions in the pore fluids, 

sediments' distance from source rocks, and 

the sediments' density. Recognition of these 

relationships in geophysical logs can spread 

up to sedimentary basin. Studying these 

connections in different zones of Great 

Valley, will lead to better identification of 

sedimentary basins and decrease the 

geophysical surveys and operating costs. 

Note that, recording three types of the 

conductivity measurements for 

electromagnetic log prediction and invasion 

parameters is essential. 

 

5. Conclusion 

In this article, a fast, robust and accurate 

technique for estimating electromagnetic log 

is presented. The main finding of this 

research is that the preparation and 

processing of input logs have a significant 

effect on the estimation results. Considering 

the well logging data that was used in this 

research, the corrections made on the data led 

to the correlation between the input logs and 

the target log to increase significantly. Doing 

these corrections made the estimation of 

electromagnetic log to be done with high 

accuracy. The data used in this article is for 

southern California. This area is facing a 

water shortage crisis due to low rainfall. 

Estimating the electromagnetic log can be 

effective in reducing the costs of 

groundwater exploration and expand the 

process of investigating groundwater in this 

area. In this research, by applying data 

smoothing and correlation intensifier to input 

(electrical data) and output (electromagnetic 

data) data, the correlation between electrical 

and electromagnetic data was increased 

significantly and caused the estimation 

accuracy of electromagnetic log to be above 

95%. The use of this strategy is not limited to 

the estimation of electromagnetic log and can 

be used in all well logging data. 
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